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a b s t r a c t

This paper deals with the nonlinear dynamics of a susceptible-infectious-recovered (SIR) epidemic model
with nonlinear incidence rate, vertical transmission, vaccination for the newborns of susceptible and
recovered individuals, and the capacity of treatment. It is assumed that the treatment rate is proportional
to the number of infectives when it is below the capacity and constant when the number of infectives
reaches the capacity. Under some conditions, it is shown that there exists a backward bifurcation from
an endemic equilibrium, which implies that the disease-free equilibrium coexists with an endemic equi-
librium. In such a case, reducing the basic reproduction number less than unity is not enough to control
and eradicate the disease, extra measures are needed to ensure that the solutions approach the disease-
free equilibrium. When the basic reproduction number is greater than unity, the model can have multiple
endemic equilibria due to the effect of treatment, vaccination and other parameters. The existence and
stability of the endemic equilibria of the model are analyzed and sufficient conditions on the existence
and stability of a limit cycle are obtained. Numerical simulations are presented to illustrate the analytical
results.

� 2012 Elsevier Inc. All rights reserved.

1. Introduction

One of the focuses of theoretical studies in mathematical epide-
miology is to understand the nonlinear dynamics of various
epidemic models. Classical susceptible-infectious-recovered (SIR)
models with a bilinear incidence rate usually have a disease-free
equilibrium and at most one endemic equilibrium (see Capasso
and Serio [7] and Hethcote [20]). In such a case, the basic reproduc-
tion number is a threshold: when it is less than unity the disease-
free equilibrium exists and is stable, which indicates that the disease
will die out; when it is greater than unity the disease-free equilib-
rium becomes unstable and an endemic equilibrium exists, which
demonstrates that the disease will persist. The bifurcation leading
from a disease-free equilibrium to an endemic equilibrium is called
forward.

Recently there has been a great interest in investigating the non-
linear dynamics (such as Hopf bifurcation, saddle-node bifurcation,
Bogdanov–Takens bifurcation, existence of periodic and homoclinic
orbits, coexistence of limit cycles and homoclinic orbits) in
epidemic models with multiple endemic equilibria due to social

groups with different susceptibilities, nonlinear or nonmonotone
incidence rate, stage structure, behavioral change of susceptibles,
etc. (see Alexander and Moghadas [1], Derrick and van den
Driessche [12], Feng and Thieme [14], Hu et al. [21], Liu et al.
[26,27], Ruan and Wang [30], Tang et al. [33], and Xiao and Ruan
[39]). For instance, Liu et al. [26] proposed a nonlinear saturated
incidence function bSI‘=ð1þ aIhÞ to model the effect of behavioral
changes to certain communicable diseases, where bSI‘ describes
the infection force of the disease, 1=ð1þ aIhÞ measures the inhibi-
tion effect from the behavioral change of the susceptible individuals
when the number of infectious individuals increases, ‘;h, and b are
all positive constants, and a is a nonnegative constant. The case
when ‘ ¼ h ¼ 1, i.e. the function bSI=ð1þ aIÞ, was used by Capasso
and Serio [7] to represent a ‘‘crowding effect’’ or ‘‘protection mea-
sure’’ in modeling the cholera epidemics in Bari in 1973. Because
of the nonlinearity and saturation property of these incidence func-
tions, it has been shown that SIR epidemic models with such non-
linear incidence rates can possess multiple endemic equilibria.
Moreover, such models can exhibit Hopf bifurcation, saddle-node
bifurcation and Bogdanov–Takens bifurcation [1,12,26,27,30], the
existence of two limit cycles [21], and the coexistence of a limit cy-
cle and a homoclinic cycle [33]. These results demonstrate that the
nonlinear dynamics of these epidemic models are very sensitive to
the model parameters and various outcomes could occur depending
on the initial population sizes. The disease may be eradicated (solu-
tions approach a disease-free equilibrium), persistent (solutions
approach an endemic equilibrium), or occurring periodically
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(solutions approach a limit cycle). Understand such nonlinear
dynamics and identify the underlie factors is very important in
the control and prevention of spread of communicable diseases.

The phenomenon that the disease-free equilibrium coexists
with an endemic equilibrium when the basic reproduction number
is less than unity was first observed by Castillo-Chavez et al. [8,9]
and Huang et al. [23] in multi-group HIV/AIDS models. It was
termed as backward bifurcation by Hadeler and Castillo-Chavez
[17] and Hadeler and van den Driessche [18] and was shown to ex-
ist in epidemic models that include behavioral responses (such as
via education) to perceived disease risk. The existence of backward
bifurcation in epidemic models has important qualitative implica-
tions since the disease now cannot be eradicated by simply reduc-
ing the basic reproduction number to be less than unity. Dushoff
et al. [13] provided a general framework for the mechanisms be-
hind backward bifurcations in simple epidemic models and dis-
cussed the biological interpretation of the features of these
models that induce backward bifurcations. Therefore, it is also
important to study backward bifurcation in epidemic models in or-
der to seek for conditions for the control of diseases (see Arino
et al. [3], Blayneh et al. [4], Brauer [5,6], Greenhalgh and Griffiths
[15], Kribs-Zaleta and Velasco-Hernandez [24], Regula et al. [29],
Safan et al. [31], van den Driessche and Watmough [34], and
Wan and Zhu [35]). In this case, the basic reproduction number
does not give information on disease elimination; rather disease
elimination is determined by the values of critical parameters at
the turning points.

Treatment is an important and effective method to prevent and
control the spread of various infectious diseases. In classical epi-
demic models, the treatment rate of the infectives is assumed to
be proportional to the number of the infective individuals [2]. Dur-
ing the SARS outbreaks in 2003, the dramatically increasing of
SARS cases in Beijing challenged the normal public-health system
and capacity in Beijing City and forced the Chinese government
to create the first and only SARS hospital, Beijing Xiaotangshan
Hospital, to treat the large number of SARS patients [37]. After this
experience, researchers started to consider the capacity of the
health-care system from both modeling and analyzing points of
view. Wang and Ruan [38] considered a SIR model in which the
capacity for the treatment of a disease in a community is a con-
stant. Namely, they used the following function

TðIÞ ¼
k; if I > 0;
0; if I ¼ 0

�
ð1:1Þ

to describe the treatment rate and studied the effect of treatment
parameter k on the dynamics of the model. They found that the
model undergoes a sequence of bifurcations including saddle-node,
Hopf, and homoclinic bifurcations and exhibits homoclinic orbits
even though incidence rate is assumed to be bilinear. Moreover, it
is shown that it may not be necessary to set k so high to eliminate
endemic equilibria since such equilibria may be unstable. Wang
[36] proposed the following piecewise linear treatment function

TðIÞ ¼
kI; if 0 6 I 6 I0;

u ¼ kI0; if I > I0;

�
ð1:2Þ

in a SIR model, where I0 is the infective level at which the health-
care system reaches capacity; that is, treatment increases linearly
with I before the capacity is reached and is constant afterward. It
was shown that the model has bistable endemic equilibria when
I0 is low and backward bifurcation can occur.

The treatment function (1.2) has been used by some other
researchers. For example, Zhang and Liu [41] studied a model with
a general incidence rate kðI þ SÞn�1SI ð0 6 n 6 1Þ and the treatment
function (1.2). Hu et al. [22] considered an epidemic model with
standard incidence rate bSI=N and the treatment function (1.2). Li

et al. [25] studied an epidemic model with nonlinear incidence rate
bI=ð1þ aIÞ with the treatment function (1.2) and analyzed the sta-
bility and bifurcation of the system. Other types of treatment func-
tions have also been proposed. For instance, Zhang and Liu [40]
used a saturated treatment function TðIÞ ¼ rI=ð1þ lIÞ; r > 0;
l P 0, and found that the saturated function has the advantage
of giving near-linear treatment response when I is low and ap-
proaches a constant capacity as I gets large. Eckalbar and Eckalbar
[11] introduced a new treatment function, TðIÞ ¼ maxfcI � gI2; 0g;
c > 0; g > 0, into a SIR model with bilinear incidence rate. It was
found that the system could have up to four equilibria with possi-
ble bi-stability, backward bifurcations, and limit cycles. See also Li
et al. [25], Zhou and Fan [42], etc.

In this paper, we consider a SIR epidemic model with the non-
linear incidence rate bSI=ð1þ aIÞ, the treatment rate function
(1.2), vertical transmission, and vaccination for the newborns of
the susceptible and recovered individuals. To formulate our model,
let SðtÞ; IðtÞ and RðtÞ be the number of susceptible, infective and
recovered individuals at time t, respectively. The basic assump-
tions are as follows.

(i) The total population size at time t (day) is denoted by
N ¼ Sþ I þ R. The newborns of S and R are susceptible indi-
viduals, and the newborns of I who are not vertically
infected are also susceptible individuals.

(ii) The positive constant b (per day) denotes the death rate and
birth rate of susceptible and recovered individuals. The posi-
tive constant d (per day) denotes the death rate and birth
rate of infective individuals. The positive constant c (per
day) is the natural recovery rate of infective individuals.
The positive constant qðq 6 1Þ (per day) is the vertical trans-
mission rate, and note p ¼ 1� q (per day), then 0 6 p 6 1.
Fraction m0 of all newborns with mothers in the susceptible
and recovered classes are vaccinated and appeared in the
recovered class, while the remaining fraction, m ¼ 1�m0,
appears in the susceptible class.

(iii) The incidence rate is described by a nonlinear function
bSI=ð1þ aIÞ, where b (per day) is a positive constant describ-
ing the infection rate and a (per person) is a nonnegative
constant represents the half saturation constant.

(iv) The treatment rate of a disease is TðIÞ given in (1.2).

Under the above assumptions, the SIR epidemic model takes the
following form:

dS
dt ¼ bmðSþ RÞ � b SI

1þaI � bSþ pdI;
dI
dt ¼ b SI

1þaI þ qdI � dI � cI � TðIÞ;
dR
dt ¼ cI � bRþ bm0ðSþ RÞ þ TðIÞ:

8><
>: ð1:3Þ

Because

dN
dt
¼ 0;

the total number of population N is a constant. For convenience, it is
assumed that N ¼ Sþ I þ R ¼ 1, thus S; I and R are taken as the pro-
portions of susceptible, infective and recovered individuals in the
total population. By using Sþ R ¼ 1� I, the first two equations of
system (1.3) do not contain the variable R. Therefore, system (1.3)
is equivalent to the following 2-dimensional system:

dS
dt ¼ �b SI

1þaI � bSþ bmð1� IÞ þ pdI;
dI
dt ¼ b SI

1þaI � pdI � cI � TðIÞ:

(
ð1:4Þ

It is easy to verify that the positive invariant set of system (1.4)
is

D ¼ ðS; IÞjS P 0; I P 0; Sþ I 6 1f g:

Z. Hu et al. / Mathematical Biosciences 238 (2012) 12–20 13



Author's personal copy

When 0 6 I 6 I0, system (1.4) is

dS
dt ¼ �b SI

1þaI � bSþ bmð1� IÞ þ pdI;

dI
dt ¼ b SI

1þaI � pdI � cI � kI:

(
ð1:5Þ

When I > I0, system (1.4) becomes (u ¼ kI0)

dS
dt ¼ �b SI

1þaI � bSþ bmð1� IÞ þ pdI;

dI
dt ¼ b SI

1þaI � pdI � cI � u:

(
ð1:6Þ

The purpose of this paper is to study the nonlinear dynamics of
system (1.4). Under some conditions, it is shown that there exists a
backward bifurcation from an endemic equilibrium, which implies
that the disease-free equilibrium coexists with an endemic equilib-
rium. In such a case, reducing the basic reproduction number less
than unity is not enough to control and eradicate the disease, extra
measures are needed to ensure that the solutions approach the dis-
ease-free equilibrium. When the basic reproduction number is
greater than unity, model (1.4) can have multiple endemic equilib-
ria due to the effect of treatment, vaccination and other parame-
ters. The existence and stability of the endemic equilibria of the
model are analyzed and sufficient conditions on the existence
and stability of a limit cycle are obtained. Numerical simulations
are presented to illustrate the analytical results.

The organization of this paper is as follows. In next section, we
analyze the existence and bifurcations of equilibria for (1.4). In Sec-
tion 3, we study the stability of various equilibria and the existence
and stability of a limit cycle in (1.4). In Section 4, we give some
numerical simulations to verify our results. A brief discussion is
presented in Section 5.

2. Existence of equilibria

In this section, we consider the equilibria of system (1.4). Obvi-
ously, E0 m;0ð Þ is the disease-free equilibrium of (1.4).

For the positive equilibrium E�ðS�; I�Þ of system (1.4), when
0 < I� 6 I0, let the right side of (1.5) be equal to zero. Then S� and
I� satisfy the following equations:

�b S�I�

1þaI� � bS� þ bmð1� I�Þ þ pdI� ¼ 0;

b S� I�

1þaI� � ðpdþ cþ kÞI� ¼ 0:

(
ð2:1Þ

When I� > I0, let the right side of (1.6) be equal to zero. Then S� and
I� satisfy the following equations

�b S�I�

1þaI� � bS� þ bmð1� I�Þ þ pdI� ¼ 0;

b S� I�

1þaI� � ðpdþ cÞI� � u ¼ 0:

(
ð2:2Þ

From (2.1) we obtain that

I� ¼ bðpdþ cþ kÞðR0 � 1Þ
bðbmþ cþ kÞ þ abðkþ cþ dpÞ ; ð2:3Þ

where

R0 ¼
bm

pdþ cþ k
ð2:4Þ

is called the basic reproduction number of (1.4); if R0 > 1; I� in (2.3) is
positive. At the same time, I� in (2.3) must satisfy I� 6 I0, which is
equivalent to

u P
kbðpdþ cþ kÞðR0 � 1Þ

bðbmþ cþ kÞ þ abðkþ cþ dpÞ ¼ u2: ð2:5Þ

Therefore, E0 m;0ð Þ is always the disease-free equilibrium of (1.4).
E� S�; I�ð Þ is the endemic equilibrium of system (1.4) if and only if
R0 > 1 and u P u2, where

S� ¼ abmðpdþ cþ kÞ þ ðbmþ cþ kÞðpdþ cþ kÞ
bðbmþ cþ kÞ þ abðpdþ cþ kÞ : ð2:6Þ

According to (2.2), I� satisfies the following equation

b0ðI�Þ2 þ b1I� þ b2 ¼ 0; ð2:7Þ

where

b0 ¼ bðbmþ cÞ þ abðpdþ cÞ;
b1 ¼ bðpdþ c� bmÞ þ uðabþ bÞ;
b2 ¼ bu:

ð2:8Þ

If b1 P 0, it is clear that Eq. (2.7) does not have a positive solu-
tion. Let us suppose that b1 < 0. Clearly, b1 < 0 is equivalent to

bm > pdþ c and u <
bðbm� pd� cÞ

baþ b
: ð2:9Þ

From (2.8), we get

D ¼ b2
1 � 4b0b2

¼ ðabþ bÞ2u2 � 2b ðbm� pd� cÞðabþ bÞ þ 2 bðbmþ cÞ½f
þabðpdþ cÞ�guþ b2ðpdþ c� bmÞ2:

Note that

f�2b ðbm� pd� cÞðabþ bÞ þ 2 bðbmþ cÞ þ abðpdþ cÞ½ �f gg2

� 4ðabþ bÞ2b2ðpdþ c� bmÞ2

¼ 4 bðbmþ cÞ þ abðpdþ cÞ½ � bðbmþ cÞ þ abðpdþ cÞ½
þ ðbm� pd� cÞðabþ bÞ� > 0:

Denote

g ¼ bðbmþ cÞ þ abðpdþ cÞ½ � bðbmþ cÞ þ abðpdþ cÞ½

þ ðbm� pd� cÞðabþ bÞ�
1
2:

It follows that D P 0 is equivalent to

u P
b ðbm� pd� cÞðabþ bÞ þ 2 bðbmþ cÞ þ abðpdþ cÞ½ � þ 2gf g

ðabþ bÞ2

ð2:10Þ
or

u6
b ðbm� pd� cÞðabþ bÞ þ2 bðbmþ cÞ þabðpdþ cÞ½ � �2gf g

ðabþ bÞ2
¼ u0:

ð2:11Þ

As bm > pdþ c, we have

u0 <
bðbm� pd� cÞ

abþ b
:

Therefore, b1 < 0; D P 0 if and only if bm > pdþ c and u 6 u0.
Suppose that u 6 u0 and bm > pdþ c, then (2.7) has two posi-

tive solutions I1 and I2, where

I1 ¼
�b1 �

ffiffiffiffi
D
p

2b0
; I2 ¼

�b1 þ
ffiffiffiffi
D
p

2b0
: ð2:12Þ

Let

Sj ¼
bm� u� ðbmþ cÞIj

b
:

If Ij > I0ðj ¼ 1;2Þ, then EjðSj; IjÞðj ¼ 1;2Þ is an endemic equilibrium of
(1.4).

By the expression of I1, we notice that I1 > I0 is equivalent to

�
ffiffiffiffi
D
p

> 2b0I0 þ b1: ð2:13Þ

This implies that 2b0I0 þ b1 < 0. It is easy to prove that 2b0I0 þ b1 <

0 is equivalent to
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u <
bkðbm� pd� cÞ

2½bðbmþ cÞ þ baðpdþ cÞ� þ kðbaþ bÞ ¼ u1: ð2:14Þ

Furthermore, I1 > I0 requires that

ðb1 þ 2b0I0Þ2 � D > 0:

Following some calculations, we obtain that

ðb1 þ 2b0I0Þ2 � D ¼ 4b0I0

k
kb pdþ cþ k� bm½ � þ bðbmþ cþ kÞ½f

þ abðpdþ cþ kÞ�ug:

(1) If pdþ c < bm 6 pdþ cþ k, then ðb1 þ 2b0I0Þ2 � D > 0.
(2) If bm > pdþ cþ k, that is, R0 > 1, then the inequality
ðb1 þ 2b0I0Þ2 � D > 0 is equivalent to u > u2.

Therefore, I1 > I0 holds if and only if either u < u1; u 6 u0 and
bm > pdþ c or u < u1; u > u2; u 6 u0 and R0 > 1. Similarly,
I2 > I0 holds if and only if either u 6 minfu0;u1g and bm > pdþ c,
or u < minfu0;u2g; u > u1 and R0 > 1.

Note that the sign of u2 � u1 is determined by

U ¼ R0 � R�0;

where

R�0 ¼ 1þ kðbðbmþ cþ kÞ þ abðpdþ cþ kÞÞ
ðpdþ cþ kÞ bðbmþ cÞ þ abðpdþ cÞ½ � : ð2:15Þ

It follows that u1 > u2 if 1 < R0 < R�0, and u1 < u2 if R0 > R�0.
Summarizing the above discussions, we have the following con-

clusions for the existence of equilibria.

Theorem 2.1. (i) For system (1.4), the disease-free equilibrium
E0 m;0ð Þ always exists. (ii) E�ðS�; I�Þ is an endemic equilibrium of
system (1.4) if and only if R0 > 1 and u P u2. Furthermore, suppose
R0 > 1; u P u2 and one of the following conditions is satisfied:

ðaÞ u > u0;
ðbÞ u1 < u < u0.

Then E� is the unique endemic equilibrium of system (1.4).

Theorem 2.2. The endemic equilibria E1ðS1; I1Þ and E2ðS2; I2Þ of sys-
tem (1.4) do not exist if bm 6 pdþ c or u > u0. On the other hand,
suppose u 6 u0 and bm > pdþ c, we have the following results.

ðiÞ If R0 6 1 and u < u1, then the equilibria E1 and E2 of system
(1.4) exist.

ðiiÞ If 1 < R0 < R�0 and u2 < u < u1, then the equilibria E1 and E2 of
system (1.4) exist.

ðiiiÞ If 1 < R0 < R�0 and u < u2, then the equilibrium E2 of system
(1.4) exists but E1 does not exist, and the equilibrium E2 does
not exist if u > u1.

ðivÞ If 1 < R�0 < R0, then E1 does not exist. Furthermore, E2 exists if
u < u2 and does not exist if u > u2.

We can see that under the conditions in Theorem 2.1 (i), the dis-
ease-free equilibrium E0 coexists with two endemic equilibria E1

and E2. In fact, we have the following result.

Corollary 2.3. If R0 < 1; bm > pdþ c, and u < min u0;u1f g, then
system (1.4) has a backward bifurcation of endemic equilibria.

We now present examples to show that, for various parameter
values, system (1.4) has a forward bifurcation from one endemic
equilibrium to another endemic equilibrium (see Example 2.4)

and a backward bifurcation with a disease-free equilibrium and
two endemic equilibria (Example 2.5). Note that by Theorem 2.1
(ii) and Theorem 2.2 (ii), there are conditions that guarantee the
existence of all three endemic equilibria E1; E2, and E� (Example 2.6).

Example 2.4. We choose the parameter values as follows:
b ¼ 0:34; a ¼ 0:4; c ¼ 0:01; d ¼ 0:01; b ¼ 0:2; p ¼ 0:02; k ¼ 0:03
and m ¼ 0:3. By calculations, R0 = 2.53731, R�0 ¼ 2:12826;R0 > R�0
and u2 ¼ 0:00996346, case (iv) of Theorem 2.2 holds. When u 6 u2,
a bifurcation diagram is illustrated in Fig. 1, the bifurcation at
u ¼ u2 is forward when the parameter u decreases, and system
(1.4) has a unique endemic equilibrium for all u > 0.

Example 2.5. We choose the parameter values as follows: b ¼
0:2;a ¼ 0:4; c ¼ 0:01; d ¼ 0:01; b ¼ 0:2; p ¼ 0:02; k ¼ 0:03 and m ¼
0:1. By calculations, we have R0 ¼ 0:497512< 1;u0 ¼ 0:000590643;
u1 ¼ 0:00266885, so case (i) of Theorem 2.2 holds. A backward bifur-
cation diagram is illustrated in Fig. 2, where the horizontal line
denotes the disease-free equilibrium E0. Two endemic equilibria
appear simultaneously at u¼ u0 when the parameter u decreases.
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Fig. 1. The forward bifurcation diagram from I� to I2 versus u for (1.4).
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Fig. 2. The backward bifurcation diagram of I1 and I2 versus u.
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Example 2.6. Choose b ¼ 0:34; a ¼ 0:4; c ¼ 0:01; d ¼ 0:01;
b ¼ 0:2; p ¼ 0:02; k ¼ 0:03 and m ¼ 0:2. We have R0 = 1.69154,
R�0 = 2.274 05, u0 = 0.00582652, u1 = 0.00719025 and u2 =
0.00548396, so case (ii) of Theorem 2.2 holds. A bifurcation dia-
gram is illustrated in Fig. 3, where the horizontal line denotes
the endemic equilibrium E�. It shows that there is a bifurcation
at u ¼ u0 when the parameter u decreases, which gives rise to
the existence of multiple endemic equilibria E�; E1, and E2.

3. Stability of equilibria

For the stability of the disease-free equilibrium E0 m;0ð Þ, we
have the following theorem.

Theorem 3.1. The disease-free equilibrium E0 m;0ð Þ is locally asymp-
totically stable if R0 < 1 and unstable if R0 > 1. Moreover, E0 m;0ð Þ is
globally asymptotically stable in D if R0 < 1 and u > u0.

Proof. It is easy to obtain that the characteristic roots to the line-
arized equation of system (1.4) at E0 m;0ð Þ are k1 ¼ �b < 0 and
k2 ¼ ðpdþ cþ kÞðR0 � 1Þ. Thus, E0 is locally asymptotically stable
if R0 < 1 and unstable if R0 > 1.

Next, if R0 < 1; E� does not exist by Theorem 2.1. By Theorem
2.2, E1 and E2 do not exist if u > u0. Therefore, E0 is the unique
equilibrium of system (1.4). Since D is the invariant set of system
(1.4) and E0 is locally asymptotically stable, it follows from
Bendixson Theorem that every solution of system (1.4) in D
approaches E0 when t tends to positive infinity. h

For the endemic equilibrium E�ðS�; I�Þ, we have the following
theorem.

Theorem 3.2. If the endemic equilibrium E�ðS�; I�Þ of system (1.4)
exists, then it is locally asymptotically stable.

Proof. According to Theorem 2.1, the endemic equilibrium
E�ðS�; I�Þ exists if and only if R0 > 1 and u P u2. The Jacobian matrix
of system (1.4) at E�ðS�; I�Þ is

J� ¼
�b� b I�

1þaI� �b S�

ð1þaI�Þ2
� bmþ pd

b I�

1þaI� b S�

ð1þaI�Þ2
� pd� c� k

0
@

1
A: ð3:1Þ

Because S� and I� satisfy Eq. (2.1), by means of (2.1), the trace and
determinant of J� are simplified into

trðJ�Þ ¼ � bþ ½bþ aðbþ pdþ cþ kÞ�I�

1þ aI�
< 0;

detðJ�Þ ¼ baðpdþ cþ kÞ þ bðbmþ cþ kÞ
1þ aI�

I� > 0:

Therefore, all eigenvalues of matrix J� have negative real parts when
R0 > 1; u P u2. It follows that E�ðS�; I�Þ is locally asymptotically
stable. h

Now we discuss the stability of endemic equilibria EiðSj; IjÞðj ¼
1;2Þ. The Jacobian matrix of system (1.4) at EjðSj; IjÞ is

Jj ¼
�b� b

Ij

1þaIj
�b

Sj

ð1þaIjÞ2
� bmþ pd

b
Ij

1þaIj
b

Sj

ð1þaIjÞ2
� pd� c

0
B@

1
CA; j ¼ 1;2: ð3:2Þ

Theorem 3.3. If the endemic equilibrium E1ðS1; I1Þ of system (1.4)
exists, then it is unstable.

Proof. For the endemic equilibrium E1ðS1; I1Þ; S1 and I1 satisfy (2.2).
By (2.2), (2.7) and (2.12), after some calculations, the determinant
of the matrix J1 is

detðJ1Þ ¼
�

ffiffiffiffi
D
p

1þ aI1
< 0: ð3:3Þ

Therefore, E1ðS1; I1Þ is a saddle and unstable. h

For the endemic equilibrium E2ðS2; I2Þ, similarly, the determi-
nant of J2 is

detðJ2Þ ¼
ffiffiffiffi
D
p

1þ aI2
> 0: ð3:4Þ

Thus, E2 may be a node, focus, or center.
By (2.2), (2.7) and (2.12), the trace trðJ2Þ of matrix J2 is very

complicated, but the sign of trðJ2Þ is determined by

u ¼ �2bb0b2 þ b1u bðbþ baÞ � bðbmþ cÞ½ �
� ½b2ðbþ aðbþ pdþ cÞÞ þ b0u�

ffiffiffiffi
D
p

: ð3:5Þ

(1) According to b1 < 0 and (3.5), if bðbþ baÞP bðbmþ cÞ, then
u < 0.

(2) If bðbþ baÞ < bðbmþ cÞ, because

� 2bb0b2 þ b1u bðbþ baÞ � bðbmþ cÞ½ �

¼ u �2b2 bðbmþ cÞ þ baðpdþ cÞ½ � þ bðpdþ c�mbÞ bðb½
n

þbaÞ � bðbmþ cÞ� þ ðbaþ bÞ bðbþ baÞ � bðbmþ cÞ½ �u
o
;

ð3:6Þ

it is known from (3.6) that if

0 < bm� pd� c 6
2b½bðbmþ cÞ þ baðpdþ cÞ�

bðbmþ cÞ � bðbþ baÞ ¼ g1; ð3:7Þ
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Fig. 3. The bifurcation diagram with multiple endemic equilibria versus u.

u P
�2b2 bðbmþ cÞ þ baðpdþ cÞ½ � þ bðpdþ c�mbÞ bðbþ baÞ½ � bðbmþ cÞ�

ðbaþ bÞ bðbmþ cÞ � bðbþ baÞ½ � ¼ u3; ð3:8Þ
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then u < 0.
(3) It follows from (3.6) that if bðbþ baÞ < bðbmþ cÞ; bm�

pd� c > g1and
then u < 0.

(4) It is known from (3.5) and (3.6) that if bðbþ baÞ <
bðbmþ cÞ; bm� pd� c > g1; u < u3 and

v ¼ D� �2bb0b2 þ b1u bðbþ baÞ � bðbmþ cÞ½ �f g2

½b2ðbþ aðbþ pdþ cÞÞ þ b0u�2
> 0;

ð3:9Þ

then u < 0.

Summarizing the above discussions, we have the following re-
sults on the stability of the equilibrium E2ðS2; I2Þ.

Theorem 3.4. Suppose that the endemic equilibrium E2ðS2; I2Þ exists,
if one of following conditions is satisfied:

ðiÞ bðbþ baÞP bðbmþ cÞ;
ðiiÞ bðbþ baÞ < bðbmþ cÞ and bm� pd� c 6 g1;
ðiiiÞ bðbþ baÞ < bðbmþ cÞ; bm� pd� c > g1 and u P u3;
ðivÞ bðbþ baÞ < bðbmþ cÞ; bm� pd� c > g1; u < u3 and v > 0,

then E2ðS2; I2Þ is locally asymptotically stable. It is unstable if
bðbþ baÞ < bðbmþ cÞ; bm� pd� c > g1; u < u3 and v < 0.

The existence of limit cycles plays an important role in deter-
mining the dynamical behaviors of the system. For example, if
there is no limit cycle in system (1.4) and its endemic equilibrium
is unique and locally asymptotically stable, then it must be globally
stable. Now, we consider the existence of limit cycles in system
(1.4).

Theorem 3.5. Suppose R0 > R�0 and u < min u0;u2f g. If u > 0, then
system (1.4) has at least a stable limit cycle which encircles E2.

Proof. As R0 > R�0 > 1 and u < u2, it is known from Theorem 2.1
that the equilibrium E� of system (1.4) does not exist. Again,
because R0 > R�0; u < u0 and u < u2, it follows from Theorem 2.2
that the equilibrium E1 of system (1.4) does not exist, but the equi-
librium E2 exists.

It is known from u > 0 that E2 is an unstable focus or node. It is
easy to check that the unstable manifold at E0ðm;0Þ which is a
saddle point, is in the first quadrant. As the set D is positively
invariant for system (1.4), and system (1.4) does not have any

equilibrium in the interior of D n fE2g. It follows from Poincaré–
Bendixson theorem that system (1.4) has at least a stable limit
cycle which encircles E2. h

4. Numerical simulations

In this section, we present some numerical simulations of sys-
tem (1.4) to illustrate our results.

Example 4.1 (Example 2.4 continued). Choose b ¼ 0:34;a ¼ 0:4;
c ¼ 0:01; d ¼ 0:01; b ¼ 0:2; p ¼ 0:02; k ¼ 0:03 and m ¼ 0:3. We have
R0=2.53731, R�0 ¼ 2:12826;R0 > R�0;u0 ¼ 0:0101133 and u2 ¼
0:00996346. A forward bifurcation diagram was given in Fig. 1.

If we select I0 ¼ 0:4, then u ¼ 0:012 > u2, the equilibrium
E�ð0:133942;0:332115Þ exists, but E1 and E2 do not exist (see
Theorem 2.1(ii)). Its phase portrait is given in Fig. 4, which shows
that the unique equilibrium E� is globally asymptotically stable.

If we choose I0 ¼ 0:2, then u ¼ 0:006 < u2, the equilibrium
E2ð0:0754805;0:55577Þ exists, but E1 and E� do not exist (see
Theorem 2.2(iv)). Its phase portrait is illustrated in Fig. 5. The
unique equilibrium E2 is globally asymptotically stable in D.

Example 4.2 (Example 2.5 continued). Choose b ¼ 0:2;a ¼ 0:4;
c ¼ 0:01; d ¼ 0:01; b ¼ 0:2; p ¼ 0:02; k ¼ 0:03 and m ¼ 0:1. By cal-
culations, R0 ¼ 0:497512 < 1;u0 ¼ 0:000590643;u1 ¼ 0:00266885
and R0 < 1. A backward bifurcation diagram was given in Fig. 2.
If we choose I0 ¼ 0:01, then u ¼ 0:0003 < u0, the equilibria
E1ð0:0929588;0:036941Þ and E2ð0:060531;0:238294Þ exist, but
the equilibrium E� does not exist. Its phase portrait is illustrated
in Fig. 6. It shows that the equilibria E0 and E2 are asymptotically
stable.

Example 4.3 (Example 2.6 continued). For system (1.4), we
choose parameter values as follows: b ¼ 0:34;a ¼ 0:4; c ¼ 0:01;
d ¼ 0:01; b ¼ 0:2; p ¼ 0:02; k ¼ 0:03;m ¼ 0:2 and I0=0.1867. Then
we have R0= 1.69154, R�0=2.274 05. bðbþ baÞ � bðbmþ cÞ ¼
0:067 > 0;u0 ¼ 0:00582652; u1 ¼ 0:00719025; u2 ¼ 0:00548396
and u ¼ 0:0056. The parameter values satisfy the conditions of
Theorem 3.2, the condition (ii) of Theorem 2.2 and the condition
(i) of Theorem 3.4. Therefore, all four equilibria
E0ð0:2;0Þ; E�ð0:126881; 0:182799Þ; E1ð0:123039;0:195843Þ and
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Fig. 4. The phase portrait of system (1.4) when E� is globally asymptotically stable.
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Fig. 5. The phase portrait of system (1.4) when E2 is globally asymptotically stable.
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E2ð0:0917512;0:320995Þ exist. The phase portrait of system (1.4) is
illustrated in Fig. 7, where the black thin lines are the separatrices
of saddle points E0 and E1. It is known from Fig. 7 that the equilibria
E2 and E� are asymptotically stable, and E0 and E1 are unstable.
Thus, system (1.4) has bistable endemic equilibria E� and E2.

We can see from Fig. 7 that the stable separatrices Cs of saddle
point E1 separate the positive invariant set D into two regions, the
basin of attraction for the stable equilibrium E2 is the region above
Cs and the basin of attraction for the stable equilibrium E� is the re-
gion below Cs.

Example 4.4. Choose b ¼ 0:2;a ¼ 0:8; c ¼ 0:01; d ¼ 0:03; b ¼ 0:01;
p ¼ 0:2; k ¼ 0:04 and m ¼ 0:9. We have R0 ¼ 3:21429;R�0 ¼
3:22723;u0 ¼ 0:00404965;u1 ¼ 0:00405539 and u2 ¼ 0:00404964.
If we choose I0 ¼ 0:101225, then u ¼ 0:004049 < u0; trðJ2Þ ¼
0:00407523 > 0, the equilibria E2ð0:29783;0:103826Þ exists but is
unstable, and the equilibria E� and E1 do not exist. The parameter
values satisfy the conditions of Theorem 3.5. Its phase portrait is
given in Fig. 8, which shows that system (1.4) has a stable limit
cycle which encircles E2. Therefore, under some conditions, system
(1.4) has a stable periodic orbit which encircles the equilibrium E2.

5. Discussion

In this paper, we have analyzed a SIR epidemic model to study
the effect of limited resources for the treatment of patients in the
public-health system, which could occur when there is a very large
number of patients but the medical facilities are insufficient, the
number of beds is limited, or the number of health-care workers
is short-handed. We also considered nonlinear incidence rate, ver-
tical transmission and vaccination for the newborns of the suscep-
tible and recovered individuals in the model. Theorem 2.2 and
Corollary 2.3 imply that a backward bifurcation occurs when
R0 < 1, that is, the disease-free equilibrium coexists with an ende-
mic equilibrium. Theorems 2.2 and 3.4 indicate that system (1.4)
has multiple endemic equilibrium when R0 > 1 where a bifurcation
diagram displays forward bifurcations. When there are two ende-
mic equilibria, one of them is always unstable and the other one
is stable under certain conditions. When there are three endemic
equilibria, bistable endemic equilibria can occur. Numerical simu-
lation confirmed that system (1.4) has a stable periodic orbit which
encircles an endemic equilibrium under some conditions. The exis-
tence and stability of equilibria of system (1.4) can be summarized
in Table 1 (DNE = does not exist).

We can see that when the basic reproduction number R0 < 1
and the treatment term u < minfu0;u1g, a backward bifurcation
occurs with a disease-free equilibrium and two endemic equilibria.
Note that the disease-free equilibrium is always stable since
R0 < 1, the stability of the endemic equilibria depends on other
conditions. Recall that u ¼ kI0, where k is the treatment parameter
and I0 represents the infective level at which the health-care sys-
tem reaches capacity,

R0 ¼
bm

pdþ cþ k
;

u0 ¼
b ðbm� pd� cÞðabþ bÞ þ 2 bðbmþ cÞ þ abðpdþ cÞ½ � � 2gf g

ðabþ bÞ2
;

u1 ¼
bkðbm� pd� cÞ

2½bðbmþ cÞ þ baðpdþ cÞ� þ kðbaþ bÞ ;
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Fig. 7. The phase portrait of system (1.4) with bistable endemic equilibria.
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Fig. 8. A stable limit cycle of system (1.4) encircling the unstable equilibrium E2.
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and

u2 ¼
kbðpdþ cþ kÞðR0 � 1Þ

bðbmþ cþ kÞ þ abðkþ cþ dpÞ :

Therefore, in order to eradicate the disease, the basic reproduction
number R0 must be lowered than a threshold or the treatment
u > maxfu0;u1g by other control measures, possibly a combination
of different types of measures. Epidemic models with two different
types of interventions have been studied by some other researchers,
see Brauer [6] and Sun and Yang [32]. For example, reduce the rate
of vertical transmission rate qð¼ 1� pÞ, increase the vaccination
rate m0, or increase the treatment rate k, so that the disease ap-
proaches a lower endemic steady state for a range of parameters.
If the capacity for treatment increases further to a certain level, then
the disease may be eradicated.

We would like to mention that related models have been stud-
ied and similar results have been obtained by other researchers, for
example, Cui et al. [10], Li et al. [25], and Hu et al. [22]. However,
we have considered more factors and components in our model
and obtained different and new results. For example, we assumed
that the disease can be transmitted vertically and vaccination ap-
plies to the newborns of susceptible and recovered individuals.
Moreover, we established the existence and stability of a limit cy-
cle when there is a unique unstable endemic equilibrium.

As pointed out by Greenhalgh and Griffiths [15], the study of
backward bifurcation in epidemic modeling is relatively new and
there are many issues deserving further investigation for this
new and interesting phenomenon. So far most studies focus on
the theoretical aspects of backward bifurcation and very few relate
to real communicable diseases (see Greenhalgh and Griffiths [15]
on a Bovine Respiratory Syncytial virus epidemic model and Blay-
neh et al. [4] and Wan and Zhu [35] on West Nile virus epidemic
models). As mentioned in the Introduction, we started the project
with modeling the SARS outbreaks in 2003 [38]. The second SARS
outbreak in Toronto, Canada in 2003 (see Gumel et al. [16]) may
be explained as a result of backward bifurcation since the basic
reproduction number was certainly less than unity after the first
outbreak when restrictive and suitable infection-control proce-
dures were being taken [19]. We expect that our results in this pa-
per might be helpful to study the endemic of hepatitis B virus in
China [43] and the outbreaks of cholera in Haiti or Zimbabwe
[28]. We propose to study these in the future.
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