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Abstract. In this paper we study a two-consumers-one-resource competing

system with Beddington-DeAngelis functional response. The two consumers
competing for a renewable resource have intraspecific competition among their

own populations. Firstly we investigate the extinction and uniform persistence
of the predators, local and global stability of the equilibria, and existence of

Hopf bifurcation at the positive equilibrium. Then we compare the dynamic

behavior of the system with and without interference effects. Analytically
we study the competition of two identically species with different interference

effects. We also study the relaxation oscillation in the case of interference

effects. Finally we present extensive numerical simulations to understand the
interference effects on the competition outcomes.

1. Introduction. In this paper we study a two-consumers-one-resource system
with Beddington-DeAngelis functional response. The two consumers (predators)
competing for a renewable resource (prey) have interference competition among
their own populations. The mathematical model takes the following system of
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three nonlinear ordinary differential equations Beddington [2], DeAngelis et al. [8],
Huisman and De Boer [15]:

dx

dt
= rx(1− x

K
)− m1x

a1 + x+ b1y1
y1 −

m2x

a2 + x+ b2y2
y2,

dy1

dt
= (

e1m1x

a1 + x+ b1y1
− d1)y1, (1)

dy2

dt
= (

e2m2x

a2 + x+ b2y2
− d2)y2

with initial values x(0) = x0 > 0, y1(0) = y10 > 0, y2(0) = y20 > 0.
In (1) x(t), y1(t), and y2(t) represent the population density of prey and two

predators respectively at time t. In the absence of predation, the prey grows lo-
gistically with intrinsic growth rate r and carrying capacity K. The i-th preda-
tor consumes the prey according to the Beddington-DeAngelis functional response
mixyi

ai+x+biyi
and its growth rate is eimixyi

ai+x+biyi
, where ei is the conversion efficiency coef-

ficient ; mi is the maximal consumption rate; ai is the half-satuation constant and
bi measures the intraspecific interference among the population of i-th predator; di
is the death rate.

Note that if b1 = b2 = 0 then system (1) is reduced to a system with Holling
type II functional responses:

dx

dt
= rx(1− x

K
)− m1x

a1 + x
y1 −

m2x

a2 + x
y2,

dy1

dt
= (

e1m1x

a1 + x
− d1)y1, (2)

dy2

dt
= (

e2m2x

a2 + x
− d2)y2.

Hsu, Hubbel and Waltman [13, 14], Butler and Waltman [5], Keener [18], Muratri
and Rinaldi [20], Smith [21], Liu, Xiao and Yi [19], among others, have showed
that system (2) exhibits coexistence in the sense of Armstrong and McGehee [1],
that is, for appropriate parameter values and suitable initial population densities
(x(0), y(0), z(0)), the model does predicts coexistence of the two predators via a
locally attracting periodic orbit. However, system (1.2) cannot be uniformly per-
sistent. The case when b1 = 0 and b2 6= 0 was studied in Catrell, Cosner and Ruan
[7].

This paper is organized as follows. In Section 2, we study existence and stability
of equilibria in system (1), including the semi-trivial equilibria( i.e., with survival
of only one predator species ) and the positive equilibrium ( with the coexistence of
both competing predators). Sufficient conditions for the uniform persistence of the
system are obtained. In Section 3, we construct a Lyapunov function to establish the
global stability of the positive equilibrium. We also have similar extinction results
as those in [14]. In Section 4, we consider the competition of two identical predators
with different interference effects. In Section 5, we study relaxation oscillations to
system (1) with r � 1 and bi = O(ε1+µi) where ε = 1/r and µi > 0, i = 1, 2.
Numerical simulations are presented to explain the obtained results.

2. Local analysis.

2.1. Subsystems. Consider the following predator-prey system which is a subsys-
tem of (1):
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
dx

dt
= rx(1− x

K
)− mx

a+ x+ by
y,

dy

dt
= (

emx

a+ x+ by
− d)y,

x(0) > 0, y(0) > 0.

(3)

With the scaling:
t→ rt, x→ x/K, y → by/K (4)

the system (3) becomes 
dx

dt
= x(1− x)− sxy

x+ y +A
,

dy

dt
= δy(−D +

x

x+ y +A
),

(5)

where

s =
m

br
, δ =

me

r
, D =

d

me
, A =

a

K
.

From the analysis in Cantrell and Cosner [6] and Hwang [16, 17], we have the
following results about the asymptotic behavior of the solutions of (5). The first
result is about the extinction of predator.

Proposition 1. If em ≤ d or K ≤ λ = a
( me

d )−1 , then the equilibrium (1, 0) of

system (5) is globally asymptotically stable, or equivalently the equilibrium (K, 0) of
system (3) is globally asymptotically stable.

Now we assume that

(H1): K > λ > 0.

Under the assumption (H1), there exist three equilibria (0, 0), (1, 0) and (x∗, y∗),
where x∗ and y∗ are positive and satisfy

1− x∗ −
sy∗

x∗ + y∗ +A
= 0,

x∗
x∗ + y∗ +A

= D.
(6)

Obviously, we have

s >
sy∗

x∗ + y∗ +A
= 1− x∗

and from (6) it follows that y∗ =
(1− x∗)(x∗ +A)

x∗ + s− 1
,

x2
∗ + (s− 1−Ds)x∗ −DAs = 0.

(7)

From the second equation of (7), we have

x∗ + s− 1 > x∗ + s− 1−Ds =
DAs

x∗
, y∗ > 0 .

The variational matrix of system (5) is given by

J(x, y) =

[
1− 2x− sy

x+y+A + sxy
(x+y+A)2

−sx
x+y+A + sxy

(x+y+A)2

δy(y+A)
(x+y+A)2

δx
x+y+A −

δxy
(x+y+A)2 −Dδ

]
. (8)

From Hwang [16, 17], we have the following result.
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Table 1. Stability of equilibria for system (3)

Conditions Stability of equilibrium
em ≤ d or K ≤ λ (K, 0) is globally asymptotically stable (GAS)

K > λ
(x̄, ȳ) is GASand

b ≥ min{ 1
e ,

m2e2−d2
de(me−d)+mre2 }

λ < K < K∗
(x̄, ȳ) is GASand

b < min{ 1
e ,

m2e2−d2
de(me−d)+mre2 }

K > K∗ > λ (x̄, ȳ) is an unstable focus and there
and exists a unique limit cycle

b < min{ 1
e ,

m2e2−d2
de(me−d)+mre2 }

Proposition 2. Let the assumption (H1) hold.

(i) If tr
(
J(x∗, y∗)

)
< 0 then the equilibrium (x∗, y∗) of system (5) is globally

asymptotically stable.
(ii) If tr

(
J(x∗, y∗)

)
> 0 then there exists a unique limit cycle for system (5).

Furthermore,

(1) If s ≤ max{δ, Dδ
1+D + 1

1−D2 } or equivalently

b ≥ min{1

e
,

m2e2 − d2

de(me− d) +mre2
} (9)

then tr
(
J(x∗, y∗)

)
≤ 0.

(2) If s > max{δ, Dδ
1+D + 1

1−D2 } or equivalently

0 ≤ b < min{1

e
,

m2e2 − d2

de(me− d) +mre2
} (10)

then there exists 0 < A∗ <
1−D
D such that tr

(
J(x∗, y∗)

)
< 0 (> 0) if and only if

A > A∗ (A < A∗).

Remark 1. In the above (ii), if we set K∗ = a/A∗, then the prey and predator
coexist in equilibrium if the carrying capacity K satisfies λ < K < K∗ and the prey
and predator populations exhibit periodic oscillation if K > K∗.

Let x̄ = Kx∗, ȳ = K
b y∗. From (5), (x̄, ȳ) is a positive equilibrium of system (3).

We summarize the results for system (3) in Table 1.

2.2. Equilibria analysis and uniform persistence. In this section, we shall
find all equilibria of system (1) and determine their stabilities. Consider

dx

dt
= rx(1− x

K
)− m1x

a1 + x+ b1y1
y1 −

m2x

a2 + x+ b2y2
y2 := f(x, y1, y2),

dy1

dt
= (

e1m1x

a1 + x+ b1y1
− d1)y1 := g(x, y1),

dy2

dt
= (

e2m2x

a2 + x+ b2y2
− d2)y2 := h(x, y2).
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Then the Jacobian matrix of system (1) takes the form

J(x, y1, y2) =

fx fy1 fy2
gx gy1 0
hx 0 hy2

 (11)

where

fx = r(1− x

K
)− m1y1

a1 + x+ b1y1
− m2y2

a2 + x+ b2y2
+

x(− r

K
+

m1y1

(a1 + x+ b1y1)2
+

m2y2

(a2 + x+ b2y2)2
),

fy1 = − m1x(a1 + x)

(a1 + x+ b1y1)2
,

fy2 = − m2x(a2 + x)

(a2 + x+ b2y2)2
,

gx =
e1m1y1(a1 + b1y1)

(a1 + x+ b1y1)2
,

gy1 =
e1m1x

a1 + x+ b1y1
− d1 −

b1e1m1xy1

(a1 + x+ b1y1)2
=

e1m1x(a1 + x)

(a1 + x+ b1y1)2
− d1,

hx =
e2m2y2(a2 + b2y2)

(a2 + x+ b2y2)2
,

hy2 =
e2m2x

a2 + x+ b2y2
− d2 −

b2e2m2xy2

(a2 + x+ b2y2)2
=

e2m2x(a2 + x)

(a2 + x+ b2y2)2
− d2.

We now consider the equilibria and periodic solutions on the boundary.
(a) E0 = (0, 0, 0). The trivial equilibrium E0 always exists and is a saddle with
a two-dimensional stable manifold {(x, y, z) : x = 0, y1 > 0, y2 > 0} and a one-
dimensional unstable manifold {(x, y, z) : y1 = 0, y2 = 0}.
(b) EK = (K, 0, 0). The semi-trivial equilibrium EK always exists. The Jacobian
matrix at EK is given by

J(EK) =

−r ∗ ∗
0 e1m1K

a1+K − d1 0

0 0 e2m2K
a2+K − d2

 .
Then EK is asymptotically stable if

e1m1K

a1 +K
− d1 < 0 and

e2m2K

a2 +K
− d2 < 0 .

We note that eimiK
ai+K

− di < 0 if and only if

eimi ≤ di or K < λi =
ai

( eimi

di
)− 1

,

where λi is the break-even density for the i-th predator where there is no intraspe-
cific competition within the population of the i-th predator. If K > λ1 and K > λ2

then EK is a saddle with a one-dimensional stable manifold {(x, y1, y2) : x > 0, y1 =
y2 = 0}.

Actually, we can verify the global asymptotical stability of EK under a weaker
condition in the following lemma.

Lemma 2.1. If eimi ≤ di then lim supt→∞ yi(t) = 0 for i = 1, 2.
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Proof. We only prove the case of i = 1. By the first equation of (1), we know that
lim supt→∞ x(t) ≤ K. So we assume x(t) ≤ K for t large enough. It is easy to see
that

e1m1K ≤ d1K < d1(a1 +K).

Let µ = d1− e1m1K
a1+K > 0. According to the monotonicity of the function e1m1x

a+x with
respect to x, we have

ẏ1

y1
=

e1m1x

a1 + x+ by1
− d1 <

e1m1x

a1 + x
− d1 ≤

e1m1K

a1 +K
− d1 = −µ.

This implies that lim supt→∞ y1(t) = 0. We complete the proof.

From now on we always assume that

(H2): e1m1 > d1 and e2m2 > d2.

Hence eimiK
ai+K

− di < 0 if and only if K < λi if (H2) holds.

(c) E1 = (x̄1, ȳ1, 0). The semi-trivial equilibrium E1 is a boundary equilibrium on
the (x, y1)-plane, where x̄1, ȳ1 are obtained by restricting to the system of the first
predator y1 and the prey x. The Jacobian matrix at E1 is given by

J(E1) =

x̄1(− r
K + m1ȳ1

(a1+x̄1+b1ȳ1)2 ) − m1x̄1(a1+x̄1)
(a1+x̄1+b1ȳ1)2 − m2x̄1

a2+x̄1
e1m1ȳ1(a1+b1ȳ1)
(a1+x̄1+b1ȳ1)2 − b1e1m1x̄1ȳ1

(a1+x̄1+b1ȳ1)2 0

0 0 e2m2x̄1

a2+x̄1
− d2

 .
We note that the top left 2 × 2 submatrix is exactly the Jacobian matrix J in (8)
for the subsystem (3) at the equilibrium (x∗, y∗), where a, b, e, m, d are replaced by
a1, b1, e1, m1, d1 (The conditions are presented in Table 1). And e2m2x̄1

a2+x̄1
− d2 < 0

if and only if x̄1 < λ2 under the assumption (H2). There are four cases for the
stability of E1.

Case A1:: The equilibrium E1 is asymptotically stable in R3 if (x̄1, ȳ1) is an
asymptotically stable equilibrium for system (3) with a, b, e, m, d replaced by
a1, b1, e1, m1, d1 (The conditions are presented in Table 1) and e2m2x̄1

a2+x̄1
−d2 <

0.
Case A2:: If (x̄1, ȳ1) is an asymptotically stable equilibrium for system (3) and
x̄1 > λ2, then E1 is a saddle with a one-dimensional unstable manifold Wu

1

and a two-dimensional stable manifold on the (x, y1) plane.
Case A3:: If (x̄1, ȳ1) is an unstable focus for system (3) and x̄1 < λ2, then E1 is

a saddle with a one-dimensional stable manifold W s
1 and a unique limit cycle

Γ1 on the (x, y1) plane.
Case A4:: If (x̄1, ȳ1) is an unstable focus for system (3) and x̄1 > λ2, then E1

is a repeller.

We summarize the results on local stability of the boundary equilibrium E1 for
system (1) in Table 2.
(d) E2 = (x̄2, 0, ȳ2). Similar to the above case (c), the Jacobian matrix at E2 is
given by

J(E1) =

x̄2(− r
K + m2ȳ2

(a2+x̄2+b2ȳ2)2 ) − m1x̄2

a1+x̄2
− m2x̄2(a2+x̄2)

(a2+x̄2+b2ȳ2)2

0 e1m1x̄2

a1+x̄2
− d1 0

e2m2ȳ2(a2+b2ȳ2)
(a2+x̄2+b2ȳ2)2 0 − b2e2m2x̄2ȳ2

(a2+x̄2+b2ȳ2)2

 .
We note that the 2 × 2 submatrix gotten by deleting the second row and second
column of above matrix is exactly the Jacobian matrix J in (8) for the subsystem
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Table 2. Stability of equilibrium E1 for system (1)

Conditions Stability of equilibrium E1

K > λ1

and x̄1 < λ2 E1 is GAS

b1 ≥ min{ 1
e1
,

m2
1e

2
1−d

2
1

d1e1(m1e1−d1)+m1re21
} (x̄1 > λ2) (E1 is a saddle with a one-dimen-

λ1 < K < K∗ sional unstable manifold Wu
1 and

and a two-dimensional stable manifold

b1 < min{ 1
e1
,

m2
1e

2
1−d

2
1

d1e1(m1e1−d1)+m1re21
} on the (x, y1) plane.)

K > K∗ > λ1 x̄1 < λ2 E1 is an unstable focus and there

and exists a unique limit cycle

b1 < min{ 1
e1
,

m2
1e

2
1−d

2
1

d1e1(m1e1−d1)+m1re21
} (x̄1 > λ2) (E1 is a repeller)

Table 3. Stability of equilibrium E2 for system (1)

Conditions Stability of equilibrium E2

K > λ2

and x̄2 < λ1 E2 is GAS

b2 ≥ min{ 1
e2
,

m2
2e

2
2−d

2
2

d2e2(m2e2−d2)+m2re22
} (x̄2 > λ1) (E2 is a saddle with a one-dimen-

λ2 < K < K∗ sional unstable manifold Wu
2 and

and a two-dimensional stable manifold

b2 < min{ 1
e2
,

m2
2e

2
2−d

2
2

d2e2(m2e2−d2)+m2re22
} on the (x, y2) plane.)

K > K∗ > λ2 x̄2 < λ1 E2 is an unstable focus and there

and exists a unique limit cycle

b1 < min{ 1
e1
,

m2
1e

2
1−d

2
1

d1e1(m1e1−d1)+m1re21
} (x̄2 > λ1) (E2 is a repeller)

(3) at the equilibrium (x∗, y∗) where a, b, e, m, d are replaced by a2, b2, e2, m2, d2.
We have four cases:

Case B1:: The equilibrium E2 is asymptotically stable in R3 if (x̄2, ȳ2) is an
asymptotically stable equilibrium for system (3) with a, b, e, m, d replaced
by a2, b2, e2, m2, d2 and x̄2 < λ1.

Case B2:: If (x̄2, ȳ2) is an asymptotically stable equilibrium for system (3) and
x̄2 > λ1, then E2 is a saddle with a one-dimensional unstable manifold Wu

2

and a two-dimensional stable manifold on the (x, y2) plane
Case B3:: If (x̄2, ȳ2) is an unstable focus for the system (3) and x̄2 < λ1, then
E2 is a saddle with a one-dimensional stable manifold W s

2 and a unique limit
cycle Γ2 on the (x, y2) plane.

Case B4:: If (x̄2, ȳ2) is an unstable focus for system (3) and x̄2 > λ1, then E2

is a repeller.

Similarly, we summarize the results on local stability of the boundary equilibrium
E2 for system (1) in Table 3.
(e) EΓ1

= (φ1, ψ1, 0). If the condition in Proposition 2 (ii) is satisfied, then the
equilibrium Ē = (x̄1, ȳ1) on the (x, y1) plane is unstable and there is a unique
stable limit cycle Γ1 on the (x, y1) plane, denoted by (φ1(t), ψ1(t)). Consequently,
EΓ1 = (φ1, ψ1, 0) is a boundary periodic solution for system (1). Since EΓ1 is stable
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restricted to the (x, y1) plane, we only need to discuss its stability in the y2-axis
direction.

The stability of EΓ1
is determined by the Floquet multipliers of the variational

system

Φ̇(t) = J(φ1, ψ1, 0)Φ(t), Φ(0) = I (12)

where J(x, y1, y2) is defined in (11) and I is the 3×3 identity matrix. Let ω1 be the
period of the periodic solution (φ1, ψ1). Then the Floquet multiplier corresponding
to the y2-direction is given by

exp[
1

ω1

∫ ω1

0

(
m2e2φ1(t)

a2 + φ1(t)
− d2) dt].

Thus EΓ1 is stable if

d2 >

∫ ω1

0

m2e2φ1(t)

a2 + φ1(t)
dt (13)

and unstable if

d2 <

∫ ω1

0

m2e2φ1(t)

a2 + φ1(t)
dt . (14)

(f) Similarly, if the boundary periodic solution EΓ2
= (φ2(t), 0, ψ2(t)) with period

ω2 exists then it is stable if

d1 >

∫ ω2

0

m1e1φ2(t)

a1 + φ2(t)
dt (15)

and unstable if

d1 <

∫ ω2

0

m1e1φ2(t)

a1 + φ2(t)
dt . (16)

We now have the following results on the uniform persistence of system (1). (Bulter
et. al [4], Butler and Waltman [3], Freedman et. al [9], Smith and Thieme [22]).

Theorem 2.2. Assume one of the following cases holds:

(i) Let Case A2 and Case B2 holds, i.e., E1 and E2 are unstable in the y2-axis
and the y1-axis direction, respectively.

(ii) Let Case A2, Case B4 and (16) hold, i.e., E1 and EΓ2
are unstable in the

y2-axis and the y1-axis direction, respectively.
(iii) Let Case B2, Case A4 and (14) hold, i.e., E2 and EΓ1 are unstable in the

y1-axis and the y2-axis direction, respectively.
(iv) Let Case A4, (14), Case B4 and (16) hold, i.e., EΓ1

and EΓ2
are unstable

in the y2-axis and the y1-axis direction, respectively.

Then system (1) is uniformly persistent.

(g) Ec = (xc, y1c, y2c). From the 2nd and 3rd equations of (1), xc, y1c, y2c satisfy

eimix

ai + x+ biyi
= di (17)

for i = 1, 2 or

y1c = M1(xc − λ1) > 0, y2c = M2(xc − λ2) > 0 (18)

where we use the notations M1 = e1m1−d1
d1b1

and M2 = e2m2−d2
d2b2

for simplifying.
Assume that

(H3): 0 < λ1 < λ2 < K.
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From the first equation of (1), xc satisfies the equation

rx(1− x

K
)− d1

e1
M1(x− λ1)− d2

e2
M2(x− λ2) = 0.

Let

F (x) = rx(1− x

K
)− d1

e1
M1(x− λ1)− d2

e2
M2(x− λ2).

Then F (K) < 0, F (0) > 0, F (λ1) > 0, and

F (λ2) = rλ2(1− λ2

K
)− d1

e1
M1(λ2 − λ1).

Hence if

F (λ2) > 0 (19)

then Ec = (xc, y1c, y2c) exists and is unique. If

F (λ2) < 0 (20)

then Ec does not exist. Rewrite

F (x) = (− r

K
)x2 + x

(
r − d1

e1
M1 −

d2

e2
M2

)
+
(d1

e1
M1λ1 +

d2

e2
M2λ2

)
.

Then xc is the unique positive root of F (x) = 0,

xc =
K(B +

√
B2 + 4rC/K)

2r
(21)

where B = r − d1
e1
M1 − d2

e2
M2 and C = d1

e1
M1λ1 + d2

e2
M2λ2. The condition (19) for

the existence of Ec is equivalent to

K > λ2

(
1− d1

re1λ2
M1(λ2 − λ1)

)−1
= K̃ > 0 (22)

or xc > λ2. We note that in (22) we need

r >
d1

e1
M1(1− λ1

λ2
) (23)

The Jacobian matrix of the system (1) at Ec takes the form

J(Ec) =

f∗x f∗y1 f∗y2
g∗x g∗y1 0
h∗x 0 h∗y2


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where

f∗x = xc
(
− r

K
+

m1y1c

(a1 + xc + b1y1c)2
+

m2y2c

(a2 + xc + b2y2c)2

)
f∗y1 = − m1xc(a1 + xc)

(a1 + xc + b1y1c)2
< 0

f∗y2 = − m2xc(a2 + xc)

(a2 + xc + b2y2c)2
< 0

g∗x =
e1m1y1c(a1 + b1y1c)

(a1 + xc + b1y1c)2
> 0 (24)

g∗y1 = − b1e1m1xcy1c

(a1 + xc + b1y1c)2
< 0

h∗x =
e2m2y2c(a2 + b2y2c)

(a2 + xc + b2y2c)2
> 0

h∗y2 = − b2e2m2xcy2c

(a2 + xc + b2y2c)2
< 0 .

The characteristic polynomial of J(Ec) is given by

λ3 + α1λ
2 + α2λ+ α3 = 0

where

α1 = −(f∗x + g∗y1 + h∗y2),

α2 = f∗xg
∗
y1 + f∗xh

∗
y2 + g∗y1h

∗
y2 − f

∗
y2h
∗
x − f∗y1g

∗
x ,

α3 = f∗y1g
∗
xh
∗
y2 + f∗y2g

∗
y1h
∗
x − f∗xg∗y1h

∗
y2 .

By Routh-Hurwitz criterion we have the following result on the local stability of
Ec.

Proposition 3. Assume that

α1 > 0, α3 > 0, and α1α2 > α3

then Ec is locally asymptotically stable.

Remark 2. If f∗x < 0, then α1 > 0 and α2 > 0. From equations (24), (17), and
(18), f∗x < 0 if and only if

r

K
xc >

m1xcy1c

(a1 + xc + b1y1c)2
+

m2xcy2c

(a2 + xc + b2y2c)2

= (
d1

e1m1
)

m1y1c

a1 + xc + b1y1c
+ (

d2

e2m2
)

m2y2c

a2 + xc + b2y2c
.

Then

(
d1

e1m1
)

m1y1c

a1 + xc + b1y1c
+ (

d2

e2m2
)

m2y2c

a2 + xc + b2y2c

≤ max{ d1

e1m1
,
d2

e2m2
}
( m1y1c

a1 + xc + b1y1c
+

m2y2c

a2 + xc + b2y2c

)
= max{ d1

e1m1
,
d2

e2m2
}r(1− xc

K
).

If
r

K
xc > max{ d1

e1m1
,
d2

e2m2
}r(1− xc

K
)
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or equivalent
M̄

1 + M̄
K < xc < K,

where M̄ = max{ d1
e1m1

, d2
e2m2
}, then f∗x < 0.

2.3. Hopf bifurcation. In this section, we will verify that the Hopf bifurcation
indeed occurs. It is obvious that if b1e1 ≥ 1 and b2e2 ≥ 1, then α1 and α3 are
positive for all K > 0 from the expressions of α1 and α3

α1 = −(f∗x + g∗y1 + h∗y2),

=
rxc
K
− m1 xc y1c

(b1 y1c + xc + a1)
2 −

m2 xc y2c

(b2 y2c + xc + a2)
2 +

b1 e1m1 xc y1c

(b1 y1c + xc + a1)
2 +

b2 e2m2 xc y2c

(b2 y2c + xc + a2)
2 ,

α3 = f∗y1g
∗
xh
∗
y2 + f∗y2g

∗
y1h
∗
x − f∗xg∗y1h

∗
y2

=
b2 e1 e2m1

2m2 xc
2 (xc + a1) y1c (b1 y1c + a1) y2c

(b1 y1c + xc + a1)
4

(b2 y2c + xc + a2)
2 +

b1 e1 e2m1m2
2 xc

2 (xc + a2) y1c y2c (b2 y2c + a2)

(b1 y1c + xc + a1)
2

(b2 y2c + xc + a2)
4 +

b1b2e1e2m1m2xc
2y1cy2c

(
r xc

K −
m2 xc y2c

(b2 y2c+xc+a2)2
− m1 xc y1c

(b1 y1c+xc+a1)2

)
(b1 y1c + xc + a1)

2
(b2 y2c + xc + a2)

2

=
a1b2 e1 e2m1

2m2 xc
2 y1c y2c

(b1 y1c + xc + a1)
3

(b2 y2c + xc + a2)
2 +

a2b1 e1 e2m1m2
2 xc

2 y1c y2c

(b1 y1c + xc + a1)
2

(b2 y2c + xc + a2)
3

+
rb1b2e1e2m1m2xc

3y1cy2c

K (b1 y1c + xc + a1)
2

(b2 y2c + xc + a2)
2 > 0 .

Hence, by Proposition 3, the positive equilibrium Ec will lose its stability if α1α2−
α3 ≤ 0. We take K as the bifurcation parameter. It is easy to see that xc, y1c, and
y2c are functions of K by the equations (21) and (18). The expression of α1α2−α3

has the form,

α1α2 − α3 = −(f∗x + g∗y1 + h∗y2)(f∗xg
∗
y1 + f∗xh

∗
y2 + g∗y1h

∗
y2 − f

∗
y2h
∗
x − f∗y1g

∗
x)−

(f∗y1g
∗
xh
∗
y2 + f∗y2g

∗
y1h
∗
x − f∗xg∗y1h

∗
y2)

= −(f∗x)2gy1 − (f∗x)2hy2 − (g∗y1)2hy2 + f∗y1g
∗
xg
∗
y1 − g

∗
y1(h∗y2)2 + f∗y2h

∗
xh
∗
y2+

f∗x
(
f∗y2h

∗
x + f∗y1g

∗
x − (g∗y1)2 − 2g∗y1h

∗
y2 − (h∗y2)2

)
.

In the last formula, we have two classes

−(f∗x)2gy1 − (f∗x)2hy2 − (g∗y1)2hy2 + f∗y1g
∗
xg
∗
y1 − g

∗
y1(h∗y2)2 + f∗y2h

∗
xh
∗
y2

and
f∗x
(
f∗y2h

∗
x + f∗y1g

∗
x − (g∗y1)2 − 2g∗y1h

∗
y2 − (h∗y2)2

)
.

All terms of the first class are positive and all term of another one are negative
except for the function f∗x . So we should clarify the behavior of f∗x as a function of
K.

By the representation of xc, (21), it is easy to see that if B = r − d1
e1
M1 −

d2
e2
M2 > 0 then limK→0+ xc(K) = 0, limK→0+ xc(K)/K > 0, limK→∞ xc(K) =∞,

and limK→∞ xc(K)/K = B/r > 0. These implies limK→0+ f∗x(K) < 0. But
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the restriction of K, (22), it is required that f∗c (K̃) < 0. It is easy to see that
d1
e1
M1+ d2

e2
M2 >

d1
e1
M1(1− λ1

λ2
) which is the restriction of r to guarantee the existence

of Ec in (23), so we assume r > d1
e1
M1 + d2

e2
M2. A necessary condition for the

occurrence of Hopf bifurcation is limK→∞ f∗x(K) > 0. Easy computation shows
that

lim
k→∞

f∗c (K) = −r +
d1M1

e1
+
d2M2

e2
+

m1M1

(1 + b1M1)2
+

m2M2

(1 + b2M2)2
.

Hence we assume

(H4): 0 < r − d1

e1
M1 −

d2

e2
M2 <

m1M1

(1 + b1M1)2
+

m2M2

(1 + b2M2)2
.

Proposition 4. Assume the assumption (H4) holds and

(i) b1e1 ≥ 1 and b2e2 ≥ 1,
(ii) there is a K∗ > 0 such that α1(K∗)α2(K∗) = α3(K∗) and

d

dK

∣∣∣
K=K∗

α1(K)α2(K) <
d

dK

∣∣∣
K=K∗

α3(K),

then the positive equilibrium Ec is locally stable when K < K∗ and loses its stability
when K = K∗. When K > K∗, Ec becomes unstable and a family of periodic
solutions bifurcates from Ec.

3. Global stability of coexistence state; extinction. Using the Lyapunov
function constructed in Hsu [10, 11] we give sufficient conditions for the global
stability of the positive equilibrium Ec.

First we note that

Lemma 3.1. The solutions of (1) are positive and bounded for t ≥ 0. Furthermore,
for any ε > 0, there exists T0 > 0 such that

x(t) ≤ K + ε,

x(t) +
1

e1
y1(t) +

1

e2
y2(t) ≤ (

r

dmin
+ 1)(K + ε)

for t ≥ T0 where dmin = min{d1, d2}.

Proof. From (1) it followings that

x′(t) +
1

e1
y′1(t)+

1

e2
y′2(t) = rx(1− x

K
)− d1

e1
y1 −

d2

e2
y2

≤ rx− d1

e1
y1 −

d2

e2
y2

≤ (r + dmin)x− dmin(x+
1

e1
y1 +

1

e2
y2).

Obviously from the first equation of (1) and differential inequality, we have

x(t) ≤ K + ε for all t ≥ T0, for some T0.

Then (
x+

1

e1
y1 +

1

e2
y2

)′
≤ (r + dmin)(K + ε)− dmin(x+

1

e1
y1 +

1

e2
y2)
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Then we have

x(t)+
1

e1
y1(t) +

1

e2
y2(t) ≤ (

r

dmin
+ 1)(K + ε) for t ≥ T0.

Theorem 3.2. Let the assumption (H3) hold. Assume Ec exists, i.e., (22) and
(23) hold. If

K <
1

max{1/a1, 1/a2}
+ xc (25)

then the positive equilibrium Ec is globally stable.

Proof. Choose a Lyapunov function as follows

V (x, y1, y2) =

∫ x

xc

ξ − xc
ξ

dξ + α

∫ y1

y1c

ξ − y1c

ξ
dξ + β

∫ y2

y2c

ξ − y2c

ξ
dξ ,

where α and β are positive constants to be determined. Along the trajectories of
the system (1) we have

dV

dt
= (x− xc)

(
r(1− x

K
)− m1y1

a1 + x+ b1y1
− m2y2

a2 + x+ b2y2

)
+ α(y1 − y1c)

( m1e1x

a1 + x+ b1y1
− d1

)
+ β(y2 − y2c)

( m2e2x

a2 + x+ b2y2
− d2

)
= (x− xc)

{
− r

K
(x− xc)−

( m1y1

a1 + x+ b1y1
− m1y1c

a1 + xc + b1y1c

)
−( m2y2

a2 + x+ b2y2
− m2y2c

a2 + xc + b2y2c

)}
+ α(y1 − y1c)

( m1e1x

a1 + x+ b1y1
− m1e1xc
a1 + xc + b1y1c

)
+ β(y2 − y2c)

( m2e2x

a2 + x+ b2y2
− m2e2xc
a2 + xc + b2y2c

)
= (x− xc)

{
− r

K
(x− xc)−

m1

(
(a1 + xc)(y1 − y1c)− y1c(x− xc)

)
(a1 + x+ b1y1)(a1 + xc + b1y1c)

−
m2

(
(a2 + xc)(y2 − y2c)− y2c(x− xc)

)
(a2 + x+ b2y2)(a2 + xc + b2y2c)

}
+ α(y1 − y1c)

m1e1

(
(a1 + b1y1c)(x− xc)− b1xc(y1 − y1c)

)
(a1 + x+ b1y1)(a1 + xc + b1y1c)

+ β(y2 − y2c)
m2e2

(
(a2 + b2y2c)(x− xc)− b2xc(y2 − y2c)

)
(a2 + x+ b2y2)(a2 + xc + b2y2c)

.

Choose α = a1+xc

e1(a1+b1y1c) and β = a2+xc

e2(a2+b2y2c) . Therefore,

dV

dt
= (x− xc)2

{
− r

K
+

m1y1c

(a1 + x+ b1y1)(a1 + xc + b1y1c)

+
m2y2c

(a2 + x+ b2y1)(a2 + xc + b2y2c)

}
− αb1xc(y1 − y1c)

2

(a1 + x+ b1y1)(a1 + xc + b1y1c)
− βb2xc(y2 − y2c)

2

(a2 + x+ b2y2)(a2 + xc + b2y2c)
.
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The coefficients of (y1−y1c)
2 and (y2−y2c)

2 are negative. The coefficient of (x−xc)2

is

− r

K
+

m1y1c

(a1 + x+ b1y1)(a1 + xc + b1y1c)
+

m2y2c

(a2 + x+ b2y1)(a2 + xc + b2y2c)

≤ − r

K
+

m1y1c

a1(a1 + xc + b1y1c)
+

m2y2c

a2(a2 + xc + b2y2c)

≤ − r

K
+ max{ 1

a1
,

1

a2
}r(1− xc

K
)

= − r

K

(
1−max{ 1

a1
,

1

a2
}(K − xc)

)
.

If (25) is satisfied, then dV/dt ≤ 0 and dV/dt = 0 if and only if x = xc, y1 = y1c,
and y2 = y2c. The largest invariant set of {dV/dt = 0} is {(xc, y1c, y2c)}. There-
fore, Lemma 3.1 and LaSalle’s Invariant Principle imply that Ec = (xc, y1c, y2c) is
globally stable. Thus we complete the proof.

Remark 3. Under the assumption (H2) and (22), (23), Ec exists and xc > λ2. Let

K̃ = λ2(1− 1
reλ2

me1−d1
b1

(λ2 − λ1))−1. If r is sufficient large then

K̃ <
1

max{1/a1, 1/a2}
+ λ2 <

1

max{1/a1, 1/a2}
+ xc .

Thus the condition (25) is feasible when r is sufficiently large.

The following extinction result for system (1) is similar to Lemma 4.3 [12] and
Theorem 3.6 [14] of Hsu, Hubbell and Waltman for system (2).

Theorem 3.3. Let the assumption (H3) hold.

(i) If a1 ≥ a2 or
(ii) if a1 < a2 but δ1 ≥ δ2 where δi = miei/di, i = 1, 2 or

(iii) if a1 < a2, δ1 < δ2 but K < a2δ1−a1δ2
δ2−δ1

then limt→∞ y2(t) = 0 for any b1 > 0 and b2 > 0 sufficiently small.

Proof. Let ξ > 0. Then

ξ
y′2(t)

y2(t)
− y′1(t)

y1(t)
= ξ[

e1m1x

a1 + x+ b1y1
− d1]− [

e2m2x

a2 + x+ b2y2
− d2]

≤ ξ[e1m1x

a1 + x
− d1]− [

e2m2x

a2 + x
− d2] + [

e2m2x

a2 + x
− e2m2x

a2 + x+ b2y2
] (26)

Let

Pξ(x) =ξ[
e1m1x

a1 + x
− d1]− [

e2m2x

a2 + x
− d2]

=ξ(e1m1 − d1)
(x− λ1)

a1 + x
− (e2m2 − d2)

x− λ2

a2 + x
.

Under the assumption (H3) and (i) or (ii), from Lemma 4.3 [12], we can choose
ξ∗ > 0 such that

Pξ∗(x) ≤ −ζ < 0 for all 0 ≤ x ≤ K + ε, for some ζ > 0.
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Consider the third term in (26)

0 <
e2m2x

a2 + x
− e2m2x

a2 + x+ b2y2

=
e2m2xb2y2

(a2 + x)(a2 + x+ b2y2)

=b2
e2m2x

a2 + x

y2

a2 + x+ b2y2

<b2
e2m2(K + ε)

a2 + (K + ε)
· 1

a2
(y2)max < b2∆

where ∆ =
e22m2(K+ε)2

a2(a2+K+ε) ( r
dmin

+ 1). We note that from the bound in Lemma 3.1 ∆

is independent of b2. Hence for b2 > 0 sufficiently small satisfying b2∆− ζ < 0, we
have

ξ∗
y′2(t)

y2(t)
− y′1(t)

y1(t)
≤ b2∆− ζ < 0.

Then y2(t)→ 0 as t→∞.
If (H3) and (iii) hold then

y′2(t)

d2y2(t)
− y′1(t)

d1y1(t)
=

δ1x

a1 + x+ b1y1
− δ2x

a2 + x+ b2y2

≤ δ1x

a1 + x
− δ2x

a2 + x
+
( δ2x

a2 + x
− δ2x

a2 + x+ b2y2

)
.

Let P (x) = δ1x
a1+x −

δ2x
a2+x . Then from (iii) and the proof of Theorem 3.6 in [14],

P (x) ≤ −ζ < 0, for all 0 ≤ x ≤ K + ε for some ζ > 0.

Similarly,

0 <
δ2x

a2 + x
− δ2x

a2 + x+ b2y2
< b2∆̃

where ∆̃ = δ2e2(K+ε)2

a2(a2+K+ε)

(
r

dmin
+ 1
)
. Then the similar arguments as above yields

lim
t→∞

y2(t) = 0.

This completes the proof.

4. Competition of two identical species with different interference effects.
In this section we consider two identical predators competing for a shared prey with
difference in predator interference effects b1 6= b2. The equations are the following:

x′ = rx(1− x

K
)− mxy1

a+ x+ b1y1
− mxy2

a+ x+ b2y2
,

y1
′ = (

emx

a+ x+ b1y1
− d)y1 , (27)

y2
′ = (

emx

a+ x+ b2y2
− d)y2 ,

with initial conditions x(0) > 0, y1(0) > 0, y2(0) > 0. Let

K > λ1 = λ2 = a/(
em

d
− 1). (28)
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Assume b2 > b1. Then

y1
′ = (

emx

a+ x+ b1y1
− d)y1

> (
emx

a+ x+ b2y1
− d)y1 .

Thus, if y1(0) ≥ y2(0) then y1(t) > y2(t) for all t ≥ 0. If y1(0) < y2(0) then either
there exists t0 > 0 such that y1(t0) = y2(t0) or y1(t) < y2(t) for all t ≥ 0. If
y1(t0) = y2(t0) then

y1(t) > y2(t) for all t ≥ t0. (29)

If y1(t) < y2(t) for all t ≥ 0 then

y1
′

y1
=

emx

a+ x+ b1y1
− d > emx

a+ x+ b2y2
− d =

y2
′

y2
.

We have

y1(t)

y1(0)
>
y2(t)

y2(0)
. (30)

Thus, we have either y1(t0) > y2(t0) for some t0 > 0 or y2(0)y1(t) > y1(0)y2(t) for
all t ≥ 0. If y1(t) → 0 as t → ∞ then y2(t) → 0 as t → ∞. Hence we obtain a
contradiction to the assumption (28). Hence

lim sup
t→∞

y1(t) > 0. (31)

On the other hand, assume y2(t) → 0 as t → ∞. Let Case A1 hold. Then
x(t)→ x̄1 and y1(t)→ ȳ1 as t→∞ and emx̄1

a+x̄1+b1ȳ1
= d. Thus

emx̄1

a+ x̄1
− d > 0 . (32)

Let Case A3 hold. Then (x(t), y1(t))→ (φ1(t), ψ1(t)) as t→∞ and∫ ω1

0

( emφ1(t)

a+ φ1(t) + b1ψ1(t)
− d
)
dt = 0.

Hence ∫ ω1

0

( emφ1(t)

a+ φ1(t)
− d
)
dt > 0 . (33)

However, (32) and (33) imply that E1 and EΓ1
are unstable in the y2-axis direction

respectively. Thus the assumption y2(t) → 0 as t → ∞ leads to a contradiction.
Hence we have the following results.

Theorem 4.1. For system (27), if (28) holds then lim supt→∞ y1(t) > 0 and
lim supt→∞ y2(t) > 0.

5. Relaxation oscillations. Consider system (1) with a large prey intrinsic growth
rate, i.e., r � 1. Let ε = 1/r. Then 0 < ε� 1, With the scaling:

x→ x/K, a1 → a1/K, a2 → a2/K, y1 = y1/(Kr), y2 = y2/(Kr),
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system (1) becomes

εx′ = x(1− x)− m1xy1

a1 + x+ ( b1ε )y1

− m2xy2

a2 + x+ ( b2ε )y2

y1
′ = (

e1m1x

a1 + x+ ( b1ε )y1

− d1)y1 (34)

y2
′ = (

e2m2x

a2 + x+ ( b2ε )y2

− d2)y2

Assume b1 = b1(ε), b2 = b2(ε) such that

bi(ε) = O(ε1+µi) as ε→ 0 (35)

for some µi > 0, i = 1, 2. Under the assumption (35) we apply the geometric
singular perturbation method as in Liu, Xiao, and Yi [19] to prove the existence of
periodic solutions.

Setting ε = 0 in (34) results in the so-called limiting slow system

xF (x, y1, y2) = x
(
1− x− m1y1

a1 + x
− m2y2

a2 + x

)
,

y1
′ = (

e1m1x

a1 + x
− d1)y1, (36)

y2
′ = (

e2m2x

a2 + x
− d2)y2,

which is generally defined on the slow manifold S0 = {(x, y1, y2) : xF (x, y1, y2) =
0, x ≥ 0, y1 ≥ 0, y2 ≥ 0}. Orbits or parts of orbits of the system (36) on S0 are
called the slow orbits of system (34) and the variables y1, y2 are called slow variables.
For system (36), the slow manifold S0 consists of two portions S1 and S2, where
S1 = {(x, y, z) ∈ S0 : x = 0}, S2 = {(x, y1, y2) : F (x, y1, y2) = 0}.

In term of the fast time scale τ = t/ε, system (34) becomes

dy1

dτ
= εy1(

e1m1x

a1 + x+ ( b1ε )y1

− d1),

dy2

dτ
= εy2(

e2m2x

a2 + x+ ( b2ε )y2

− d2), (37)

dx

dτ
= x

(
1− x− m1y1

a1 + x+ ( b1ε )y1

− m2y2

a2 + x+ ( b2ε )y2

)
.

The system (38) is referred to as the fast system. Its limit, the limiting fast system,
is obtained by setting ε = 0:

dy1

dτ
= 0,

dy2

dτ
= 0,

dx

dτ
= xF (x, y1, y2). (38)

The orbits of system (38) are parallel to the x-axis and their directions are charac-
terized by the sign of xF (x, y1, y2). We refer to these orbits as fast orbits of system
(34) and the variable x is the fast variable.

A continuous and piecewise smooth curve is said to be a limiting orbit of system
(34) if it is the union of a finitely many fast and slow orbits with compatible ori-
entations. A limiting orbit is called a limiting periodic orbit if it is a simple closed
curve and contains no equilibrium of system (34). A periodic orbit of system (34)
is called a relaxation oscillation if its limiting as ε → 0 is a limiting periodic orbit
consisting of both fast and slow orbits.
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Table 4. Parameter Values in the General Case.

r = 2.0 a1 = 3 b1 = 0.6 d1 = 0.4 e1 = 0.6 m1 = 1.5
K = ∗ a2 = 6 b2 = 2.0 d2 = 0.45 e2 = 0.7 m2 = 1.5

Table 5. Parameter Values for the Case with Interference.

r = 20 · ln 2 a1 = 200 d1 = ln 2/2 e1 = 0.1 m1 = 10 · ln 2
K = 1100 a2 = 500 d2 = ln 2 e2 = 1.4 m2 = 2 · ln 2

.

In the following theorem, we first prove that under the assumption (35) there is
no positive equilibrium for system (34). Then following the methods in Liu, Xiao,
and Yi [19] we construct a limiting periodic orbit consisting of both fast and slow
orbits. By the theorem of geometric singular perturbation method, there exists a
stable relaxation oscillation.

Theorem 5.1. Let (H3) and (35) hold. Assume that the relaxation cycle Γε1 on the
(x, y1)-plane is unstable in the y2-axis direction and the relaxation cycle Γε2 on the
(x, y2)-plane is unstable in the y1-axis direction. Then there is at least one stable
relaxation oscillation in the positive octant of R3.

Proof. If Eεc = (xεc, y
ε
1c, y

ε
2c) exists then from (18) and (35), yε1c → ∞ as ε → 0.

Thus the equilibrium Eεc is not on the surface S0 and the limiting periodic orbit
does not contain Eεc . From Theorem 3.4 in [19], there exists a stable relaxation
oscillation in the positive octant of R3. We complete the proof.

6. Numerical simulations. Choose the values of parameters as in Table 4 and
calculate the values λ1 = a1d1

e1m1−d1 = 2.4 and λ2 = a2d2
e2m2−d2 = 4.5. Now, using K

(the carrying capacity of the resource) as a bifurcation parameter, increase K from
4.5 to 80 and calculate f∗x(K) as a function of K in (24). We can see that f∗x is
monotonically increasing from negative to positive (see the first graph of Figure 1).
The values of functions α1, α3, and α1α2−α3 are also calculated (see the 2nd - 4th
graphs of Figure 1). The dynamics of solutions with respect to the capacity K are
illustrated in Figure 2:(a)-(d).

(i) 0 < K = 2 < λ1. The semi-trivial equilibrium EK is globally asymptotically
stable, (see Figure 2:(a))

(ii) λ1 < K = 3 < λ2. The semi-trivial equilibrium E1 is globally asymptotically
stable, (see Figure 2:(b))

(iii) λ2 < K = 10. The solution converges to the positive equilibrium Ec as t→∞.
We can see that the positive equilibrium is asymptotically stable, (see Figure
2:(c))

(iv) K = 75. The positive equilibrium Ec loses its stability and a periodic solution
bifurcates from it. (see Figure 2:(d))

Next, we do some numerical simulations of system (1) with interference effects,
i.e., b1 6= 0 and b2 6= 0. In order to compare the differences of solutions of system
(1) with or without interference effects, we choose the same parameters as those
in Fig. 3 of [13] in Table 5. We plot limit cycles of the population of predator 1
against that of predator 2 in Figure 3. Figure 3:(a) is for b1 = 0, b2 = 0, (b) is for
b1 = 0, b2 = 1, and (c) is for b1 = 1, b2 = 0. All above three limit cycles are plotted
in a graph showed in (d). With the same parameters, we compute the numerical
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Figure 1. The graphs of f∗x(K), α1(K), α3(K) and
α1(K)α2(K) − α3(K) in terms of K as K increases from
4.5 to 80.

solutions of (1) with various parameters b1 and b2. Figure 3:(e) shows the numerical
results where b1, b2 are varied from 0 to 1 with step-size 0.01 in (e). The white
region represents that the solutions are periodic and the black region means that
the solutions approach a positive equilibrium.

7. Discussion. In this paper we have studied the competition system (1) of two
predators competing for a renewable resource (the prey) with functional responses
of Beddington-DeAngelis Type. In the governing equations (1) the parameters bi
(i = 1, 2), measuring the effect of interference, is the intra-specific competition
coefficient among the population of the ith predator. The purpose of this paper
is to determine the outcome of competition for system (1), namely, under what
conditions the competitive exclusion holds and under what conditions coexistence
of two competing species occurs.

In [16, 17], Hwang gave a complete classification for the behavior of the solutions
of the predator-prey system with Beddington-DeAngelis functional response (3).
The trajectory of the solution of (3) either converges to a positive equilibrium or
approaches a unique limit cycle (see Table 1). We note that (3) is a subsystem of
(1). A complete understanding of the predator-prey system (3) will help us to study
the behavior of the solutions of the competition system (1).

Without the interference effects, that is, bi = 0, i = 1, 2, system (1) reduces to
system (2), the classical model of two competing predators for a renewable resource
with Holling-type II functional responses [13, 14]. In this paper we want to explore
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Figure 2. The parameters are given in Table 4. In Figure 2:(a),
K = 2, EK = (K, 0, 0) is globally asymptotically stable. In Figure
2:(b), K = 3, E1 = (x̄1, ȳ1, 0) is globally asymptotically stable. In
Figure 2:(c), K = 10, Ec = (xc, y1c, y2c) is globally asymptotically
stable. In Figure 2:(d), K = 75, the periodic solution exist. Hopf
bifurcation occurs between K = 70 and K = 75.

the differences between systems (1) and (2). For system (2), Hsu, Hubbell and
Waltman [14] gave some analytic results about the competitive exclusion of the two
competitors. In [13] they did extensive numerical simulations to indicate the possi-
bility of coexistence of two competing predators and interpreted the results by the
r-strategy and K-strategy. Note that Butler and Waltman [5] proved a coexistence
result by using the bifurcation technique from a limit cycle in the (x, y1) plane.
However, their result is only local (not global) and the system is not uniformly
persistent. Liu, Xiao, and Yi [19] and Muratori and Rinaldi [20] considered the
case where the intrinsic growth rate of the prey is large and used geometric singular
perturbation method to establish the coexistence of two predators in the form of
stable relaxation oscillations. When the intrinsic growth rate of the prey is not
large, the problem of coexistence remains open.

In this paper, based on the knowledge on the predator-prey subsystem (3), we
first proved some uniform persistent results in Theorem 2.2. We may interpret the
persistent results as the invasion of another species to the subsystem (3) which is
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in the form of equilibrium or limit cycle. In order to compare systems (1) and (2),
our basic assumption is (H3) which states the species 1 has a smaller break-even
population density. The major difference between systems (1) and (2) is that system
(2) has no interior equilibrium while system (1) may or may not have an interior
equilibrium. A necessary and sufficient condition is given in (22) for the existence
and uniqueness of the interior equilibrium Ec for system (1). The condition (22)
holds when the carrying capacity K is sufficient large and the intrinsic growth
rate r is sufficient large (see (23)). When the interior equilibrium Ec exists, in
Proposition 4 we proved that under some condition (H4) Hopf bifurcation occurs
at some carrying capacity K∗ and a family of periodic solutions bifurcates from
Ec. This indicates the possibility of coexistence. In Theorem 3.2, under condition
(25) , we presented a result for the global stability of Ec. The condition (25) holds
when the intrinsic growth rate r is sufficient large. In Theorem 3.3, we presented
an extinction result for system (1), which is a generalization of the extinction result
in [14] for system (2). The result states that under assumption (H3), if species 2
has larger half saturation constant then for any interference measure b2 > 0 and
for sufficient small b1 > 0, species 2 becomes extinct as time goes to infinity. In
Section 4 we proposed a question: if two predators are identical except having
different interference effects, what do we anticipate for the competition outcomes?
In Theorem 4.1 we proved that two species must coexist. Assume species 2 has
larger interference effect among its population, i.e. b2 > b1. Intuitively species 1
is a better competitor. However species 2 is identical to species 1 in every aspect,
thus species 2 is able to invade the subsystem of predator 1 and prey. Hence it is
impossible for species to become extinct and we have coexistence.

The above discussion explores the difference between system (1) and (2). When
system (1) has no interior equilibrium, we conjecture that system (1) should be
similar to system (2). In Section 5, we proved that if the interference effects b1 and
b2 are smaller in comparison with the inverse of intrinsic growth rate r which is
very large (see condition (35)), then species 1 and 2 coexist in the form of stable
relaxation oscillations. In Section 6 we presented some numerical results. Our first
numerical results (Figure 2) showed that Hopf bifurcation occurs at some carrying
capacity K∗. If K < K∗ the interior equilibrium is global asymptotically stable.
When K > K∗, the two species coexists in the form of periodic oscillations. In
the second numerical study we assumed that the two species coexist when there
is no interference effects, i.e. b1 = b2 = 0. Then we considered the effect of
the interference. The study shows that solutions converge either to an interior
equilibrium or to a periodic orbit. Therefore, interference effects seem not to change
the outcome of competition.
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Figure 3. The parameters are given in Table 5. The graphs of
(a), (b), (c) are the limit cycle solutions of system (1) projected in
(y1, y2)-plane with b1 = b2 = 0 in (a), b1 = 0, b2 = 1 in (b), b1 = 1,
b2 = 0 in (c), respectively. We put (a), (b), (c) in the same graph
in (d). In (e), with the b1-b2 parameter region 0 ≤ b1, b2 ≤ 1, the
white region represents that the numerical solutions are periodic
and the gray region represents that the numerical solutions are
equilibrium solutions.
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