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Abstract. For reaction-diffusion equations with delay, the joint effects of dif-
fusion and delay are studied. In particular, for two-dimensional systems where
only the interaction between species is delayed, the interdependence of stability
against delay and against diffusion (Turing instability) can be clearly exhib-
ited. Turing instabilities occur largely independent of delay. But periodic
oscillations, constant in space or with low spatial frequency, can be achieved
via increasing the delay or changing the diffusion rates.

1. Introduction. There are several mechanisms leading to bifurcations and to the
emergence of spatio-temporal patterns in biological models. The most prominent
among these are the Turing diffusive instability, in other context called activa-
tor/inhibitor mechanism (see, e.g. Gierer and Meinhardt [7], Hadeler [8], Levin and
Segel [17], Murray [19], Okubo [20], Prigogine and Lefever [21], Ruan [22], Turing
[27], etc.), and the instability caused by a delayed feedback loop (see Diekmann
et al. [3], Hale and Verduyn Lunel [10] and the references therein, in particular
to the early work of R. Nussbaum). Recently, reaction-diffusion equations with
delay have been studied extensively. For example, Morita [18] and de Oliveira [4]
have performed thorough studies of periodic solutions of diffusion equations with
delay, Faria [5] and Freitas [6] investigate bifurcations in such problems. We refer
to the monograph of Wu [28] for an introduction of the fundamental theory of such
equations and related references on these equations.

The present note is devoted to the study, within the framework of linear or lin-
earized systems, of the joint effects of the Turing mechanism and a delayed feedback.

In Sections 2 and 3 we recall the essentials on stable matrices and Turing insta-
bility. In Section 4 we study general delay systems, and in Section 5 we introduce
a class of problems with delay restricted to the interaction of different species. In
connection with these systems we introduce a notion of strong stability with respect
to delay and discuss its relation to the Turing phenomenon. In Section 6 we study
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delayed diffusion equations, and in Section 7 we consider in detail delayed reaction-
diffusion systems with the special type of interaction just mentioned. For this class
of problems we get a complete scenario of possible instabilities. As an example, in
Section 8 we apply our results to a diffusive predator-prey system with delay.

2. Stable matrices. Turing instability in reaction-diffusion systems can be recast
in terms of matrix stability (see, for example, Cross [2], Hershkowitz [12], Satnoianu
et al. [24], Satnoianu and van den Driessche [25], etc.). In this section, we review
some results on stability of real matrices, which will be used throughout the paper.

Definition 1. Let A be a real n× n matrix.

(i): A is said to be stable if all eigenvalues of A are located in the open left
half-plane of the complex plane.

(ii): A is said to be strongly stable (with respect to diffusion) if A−D is stable
for any nonnegative diagonal matrix D.

(iii): A is said to be excitable (with respect to diffusion) if A is stable but not
strongly stable.

Of course a strongly stable matrix is also stable. Also, for an excitable matrix A
there is always a choice of D such that A−D is unstable.

The problem of characterizing all strongly stable matrices, for n ≥ 4, is yet
unsolved (in spite of Satnoianu et al. [24], see also Satnoianu and van den Driessche
[25]). A complete characterization, in terms of inequalities on the minors of A, has
been given by Cross [2] for n = 2 and n = 3. For n = 2, denote

A =

(

a11 a12

a21 a22

)

. (1)

There are the following results.

Lemma 1. The 2 × 2 matrix A defined in (1) is strongly stable if the following
conditions holds:

a11 + a22 < 0, (2)

a11a22 − a12a21 > 0, (3)

a11 ≤ 0, a22 ≤ 0. (4)

A is excitable if (2), (3) and

a11 > 0 or a22 > 0. (5)

Therefore, for n = 2, there are two possible sign patterns of excitable matrices

A1 =

(

+ −
+ −

)

, A2 =

(

+ +
− −

)

. (6)

3. Reaction-diffusion systems – Turing instability. In a Turing system there
are several species u = (u1, . . . , un) which interact according to some ordinary
differential equations

u̇ = f(u). (7)

We consider small deviations ū + u from a hyperbolic equilibrium ū. Linearizing
the equation at the equilibrium ū, we obtain

u̇ = Au, (8)
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where A = f ′(ū) is the Jacobian. The exponential stability of the equilibrium ū
of the nonlinear system (7) is equivalent to the exponential stability of the zero
solution of the linear system (8), which in turn is equivalent to the stability of the
matrix A.

Now assume that the species ui diffuses with a diffusion rate di > 0. Then we
have a system of coupled reaction-diffusion equations

ut = f(u) +D∆u, (9)

where D = (diδij) is the diagonal matrix of diffusion rates and ∆ is the Laplacian
acting componentwise on the vector u. Thus, the linearized system reads

ut = Au +D∆u. (10)

Now consider the case of space dimension n = 1 and a bounded interval [0, l] with
zero Neumann boundary conditions. A Fourier ansatz

u(t, x) = Re
∑

ûke
ikπx/l+λkt (11)

leads to the characteristic equation

det(A− µD − λI) = 0, (12)

where

µ =
k2π2

l2
. (13)

Thus, if A is strongly stable, then u = 0 is a stable solution of equation (10) for any
choice of D, l, and any mode k. If A is excitable, there is a choice of D and l such
that at least one mode k is unstable.

In the case when n = 2, the sign pattern of an excitable matrix A1 given in
(6) corresponds to an activator-inhibitor dynamics. The matrix D = (diδij) which
leads to destabilization can be characterized by an inequality for the quotient d2/d1

(see Hadeler [8] and Murray [19]),

d2

d1
>

1

a2
11

(
√

detA+
√
−a12a21)

2. (14)

Thus, the zero solution becomes unstable (for some l and k) if a short range activator
interacts with a long range inhibitor. This can be summarized as follows.

Proposition 2. Suppose that A, with n = 2, is excitable. If the diffusion matrix D
is chosen so that condition (14) is satisfied, then Turing instability occurs in system
(9) for modes µ in some open interval depending on the aij and the di.

In the sequel we consider, together with the matrix A, the matrix

Ã =

(

−a2
11 a2

12

a2
21 −a2

22

)

. (15)

Lemma 3. Let A be excitable with respect to diffusion. Then

trÃ < 0, det Ã < 0. (16)

Proof. a11 = a22 = 0 contradicts (2), hence trÃ < 0. In view of (2) and (5) we
have a11a22 < 0. From (3) it follows that a12a21 < 0, |a11a22| < |a12a21|, and thus

det Ã < 0.

On the other hand, det Ã > 0 does not hold for all strongly stable matrices.
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4. Delay systems – stability and bifurcation. In this section, we study the
dynamics of delay differential equations.

4.1. The general system. Consider the delay system

u̇(t) = g(u(t), u(t− τ)) (17)

with g : R
n×R

n → R
n at some stationary solution ū ∈ R

n; i.e., g(ū, ū) = 0. Assume
n = 1. Linearizing the equation and denoting ν = −∂g(u, v)/∂u, α = −∂g(u, v)/∂v
at this solution, we get the equation

u̇(t) = −νu(t) − αu(t− τ). (18)

An exponential ansatz leads to the characteristic equation

λ+ ν + αe−λτ = 0. (19)

The behavior of this characteristic equation, depending on three parameters α, ν, τ ,
has been described in detail (Hayes [11], Bellman and Cooke [1], Hadeler and Tomiuk
[9]). The stability domain is a curvilinear wedge bounded by two curves,

ν + α ≥ 0, τα ≤ ϕ(τν), (20)

where ϕ : [1,∞) → [−1,∞) is some function which increases from −1 to ∞. Sta-
bility can be lost by either leaving the stability domain through ν + α = 0 (one
characteristic root going through the origin) or by leaving the domain by violation
of τα ≤ ϕ(τν) (in which case two complex conjugate roots cross the imaginary
axis). This latter case can be interpreted as a Hopf bifurcation caused by a delayed
feedback control.

Now assume n ≥ 2. Linearizing the system (17) at some stationary solution
yields the standard linear problem (see Hale and Verduyn Lunel [10])

u̇(t) = Au(t) +Bu(t− τ), (21)

where A and B are constant quadratic matrices of order n. The characteristic equa-
tion is

det(A+Be−λτ − λI) = 0 (22)

whereA,B are matrices of order n. The characteristic equation has not been studied
in general. Special cases are mostly related to scalar second order differential delay
equations. One general statement is related to positivity: Let A = 0 and let B
generate a positive semigroup (bij ≥ 0 for i 6= j). If the zero solution is stable for
τ = 0, then it is stable for τ > 0. A similar result holds even in infinite dimensions
(see Kerscher and Nagel [14, 15]).

4.2. A system of two equations. We specialize to a case where something more
concrete can be said. We assume that the interactions within a species are instan-
taneous but that interactions between species are delayed. We consider (21) with
n = 2, A = (aij), B = (bij), and

a12 = a21 = 0, b11 = b22 = 0. (23)

Notice that if we restrict to this case of only two species, then the case of distinct
delays is formally equivalent to the case of equal delays. Indeed,

(

u̇1(t)
u̇2(t)

)

=

(

a11 0
0 a22

) (

u1(t)
u2(t)

)

+

(

0 b12
b21 0

) (

u1(t− τ1)
u2(t− τ2)

)

leads to the characteristic equation

λ2 − (a11 + a22)λ + a11a22 − b12b21e
−λτ = 0 (24)
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with τ = τ1 + τ2. We introduce the matrix

C = A+B =

(

a11 b12
b21 a22

)

, (25)

which plays the role of the matrix A in (8).

Definition 2. Let C be a 2 × 2 matrix as in (25) and let C be stable. The
matrix is called strongly stable with respect to delay if for all τ ≥ 0 all roots λ of the
characteristic equation (24) have strictly negative real parts. The matrix C is called
excitable with respect to delay if it is stable but not strongly stable with respect to
delay.

Proposition 4. Assume a matrix C = A + B as in (25). The following are
equivalent:

(i): C is strongly stable with respect to delay.
(ii): C is stable and

|a11a22| ≥ |b12b21|. (26)

Proof. For τ = 0 all roots of the characteristic equation (24) have negative real
parts. By continuity and Rouché’s theorem, the following are equivalent,

i): For all τ ≥ 0, equation (24) has only roots with negative real parts.
ii): For all τ ≥ 0, equation (24) has no purely imaginary roots.

Equation (24) has a pair of purely imaginary roots ±iω if and only if ω satisfies

−ω2 − i(a11 + a22)ω + a11a22 − b12b21(cos 2ωτ + i sin 2ωτ) = 0.

Separating the real and imaginary parts gives

ω2 − a11a22 = −b12b21 cos 2ωτ, (27)

(a11 + a22)ω = −b12b21 sin 2ωτ. (28)

Adding up the squares of both equations gives

ω4 + (a2
11 + a2

22)ω
2 + a2

11a
2
22 − b212b

2
21 = 0. (29)

Solving for ω2 in (29), we obtain two real roots ω2
1 ≥ ω2

2 , with ω2
2 ≤ 0,

ω2
1,2 =

1

2

[

− (a2
11 + a2

22) ±
√

(a2
11 + a2

22)
2 − 4(a2

11a
2
22 − b212b

2
21)

]

. (30)

Equation (29) has a positive real root ω if and only if ω2
1 > 0. In other words, if

(26) holds then both ω2
1 and ω2

2 are negative, equation (29) has no positive real
root. Hence all roots of equation (24) have negative real parts. The converse is now
evident.

Proposition 5. Let C be strongly stable with respect to delay. Then C is strongly
stable with respect to diffusion.

Proof. Take squares on both sides of (26) and apply Lemma 3.

Within the class of stable matrices introduce X = a11a22 and Y = b12b21. Then
stability with respect to diffusion corresponds to X ≥ 0 and stability with respect
to delay corresponds to |X | ≥ |Y |. These relations can be visualized as sectors in
an (X,Y ) plane as follows.

I=: {X > Y , X ≥ 0, X ≥ |Y |: strongly stable with respect to diffusion and
delay};
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II=: {X > Y , X ≥ 0, X < |Y |: strongly stable with respect to diffusion, but
excitable with respect to delay};

III=: {X > Y , X ≤ 0: excitable with respect to diffusion and delay};
IV=: {X ≤ Y : not stable}.
The next result shows in which manner the delay causes instability if the matrix

C is not strongly stable with respect to delay.

Proposition 6. Suppose that the matrix C is excitable with respect to delay. There
is a critical value τ0 > 0 for the delay,

τ0 =
1

2ω1
arccos

a11a22 − ω2
1

b12b21
, (31)

with ω2
1 given by (30), such that the zero solution of system (21) is asymptotically

stable when τ ∈ [0, τ0) and unstable when τ > τ0.

Proof. If C is excitable with respect to delay, according to Lemma 3, −(a2
11+a2

22) <
0, a2

11a
2
22−b212b212 < 0. Then ω2

1 is positive. Hence, equation (24) has a pair of purely
imaginary roots ±iω1 whenever the delay τ takes certain values, say τj > 0. These
critical values can be determined from equation (27) (or (28)) and are given by

τj =
1

2ω1
arccos

a11a22 − ω2
1

b12b21
+
jπ

ω1
, j = 0, 1, 2, ...

Let λ(τ) = α(τ) ± iω(τ) be the roots of equation (25) such that

α(τj) = 0, ω(τj) = ω1.

At each value τj we can verify the transversality condition

d

dτ
Reλ(τ)

∣

∣

τ=τj
=

d

dτ
α(τ)

∣

∣

τ=τj
> 0. (32)

By continuity and Rouché’s theorem, there are eigenvalues with positive real parts
whenever τ > τ0, and a Hopf bifurcation occurs at τ = τ0. This completes the
proof.

With appropriate conditions on the nonlinearity, the system of the form (17)
with linearization (21) undergoes a Hopf bifurcation at τ = τ0; that is, a family
of periodic solutions bifurcates from the zero solution when τ passes through the
critical value τ0.

5. Delayed reaction-diffusion systems. Now we join reaction, diffusion and
delay into one model (see Wu [28] for examples). This could be done in various
complicated fashions.

5.1. The general system. First we restrict ourselves to a single delay and assume
that the delay and diffusion act independently.

ut(t, x) = g(u(t, x), u(t− τ, x)) +Duxx(t, x). (33)

Then the linearized equation reads

ut(t, x) = Au(t, x) +Bu(t− τ, x) +Duxx(t, x). (34)

As before, we get a family of characteristic matrix eigenvalue problems

(A+Be−λτ − µD − λI)u = 0
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and the characteristic equation

det(A+Be−λτ − µD − λI) = 0. (35)

Here µ is the Fourier mode, as given in (13). If diffusion is absent, D = 0, then
we get (22). If the delay is absent, τ = 0, then we get (12) with A replaced by
C = A+B.

Even with this generality, something interesting can be observed. We keep the
matrices A and B fixed. We assume that the non-delayed well-stirred problem
(τ = 0, D = 0) is stable, i.e., the matrix A+B is stable. Suppose that by variation
of parameters D or τ a characteristic value passes through the origin of the complex
plane at some D = d0, τ = τ0. Then, we have a root λ = 0. But for λ = 0 equation
(35) reduces to

det(A+B − µD) = 0,

i.e., to the characteristic equation of the non-delayed problem. Therefore, the prob-
lem without delay also has an eigenvalue zero. Hence we have found:

Proposition 7. If, upon variation of the parameters, the delayed problem exhibits
a Turing instability, then the non-delayed problem shows a Turing instability for the
same set of parameters.

Thus, the matrix A + B must be excitable with respect to diffusion in order
that a Turing instability should occur for any value of τ . Of course, the system can,
upon variation of parameters, undergo a Hopf bifurcation before a Turing instability
occurs (see the following).

5.2. The system of two equations. Let n = 2 and A and B satisfy (23); i.e., we
consider a combination of the systems described above:

(

u1t(t)
u2t(t)

)

=

(

a11 0
0 a22

) (

u1(t)
u2(t)

)

+

(

0 b12
b21 0

) (

u1(t− τ1)
u2(t− τ2)

)

+

(

d1u1xx

d2u2xx

)

. (36)

Define, for fixed µ ≥ 0, the matrix

Ĉ =

(

â11 b12
b21 â22

)

(37)

with
â11 = a11 − µd1, â22 = a22 − µd2. (38)

We see that Ĉ = C − µD. The characteristic equation of (36) can be written as

λ2 − (â11 + â22)λ+ â11â22 − b12b21e
−λτ = 0, (39)

where τ = τ1 + τ2. Notice that if µ = 0, then Ĉ = C and equation (39) reduces to
equation (24).

5.2.1. C in sector I. Suppose the matrix C is strongly stable with respect to delay
(Sector I). Then C is strongly stable with respect to diffusion, and also the matrix

Ĉ is strongly stable with respect to diffusion according to Definition 1 (if any matrix

A has this property, then A−D as well). But we have a stronger property, since Ĉ
is also in Sector I.

Proposition 8. Suppose the matrix C defined by (24) is strongly stable with respect

to delay. Then the matrix Ĉ defined by (37) is strongly stable with respect to delay.

Proof. Lemma 3 says that C is strongly stable with respect to diffusion, hence
a11 ≤ 0, a22 ≤ 0. Therefore, â11â22 ≥ a11a22 ≥ |b11b22|.
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5.2.2. C in sector II. Now assume that C is strongly stable with respect to diffusion,
but excitable with respect to delay. Then b12b21 ≤ 0. Then Ĉ is still strongly stable
with respect to diffusion, but need not be strongly stable with respect to delay. For
large µ the matrix Ĉ is strongly stable with respect to delay.

Proposition 9. Assume C is strongly stable with respect to diffusion, but excitable
with respect to delay. Let d1 and d2 be fixed and let µ0 be the nonnegative root of
the equation

(a11 − µd1)(a22 − µd2) = |b12b21|. (40)

Then for µ ≥ µ0 the matrix Ĉ is strongly stable with respect to delay. For µ < µ0 the
matrix Ĉ is excitable with respect to delay and there is a critical value τ̂0 = τ̂0(µ),

τ̂0(µ) =
1

2ω̂1
arccos

â11â22 − ω̂2
1

b12b21
(41)

with

ω̂2
1 =

1

2

[

− (â2
11 + â2

22) +
√

(â2
11 + â2

22)
2 − 4(â2

11â
2
22 − b212b

2
21)

]

, (42)

such that the zero solution of system (34) is stable when τ ∈ [0, τ̂0) and unstable
when τ > τ̂0. A Hopf bifurcation occurs when τ = τ̂0.

Proof. The proof follows from Definition 2 and Proposition 6, applied to the matrix
Ĉ instead of C.

Of course, this Hopf bifurcation can also be obtained upon variation of µ rather
than of τ .

Proposition 9 says that a stable matrix of class II can lead to an oscillatory
instability which is either diffusion-driven or delay-induced.

5.2.3. C in sector III. If the matrix C is excitable with respect to diffusion, then
many different scenarios are possible.

Suppose the delay induces oscillations via Hopf bifurcation first and suppose
that the bifurcating periodic solutions are stable. Now the diffusion can drive the
spatially homogeneous stable periodic solutions to instability and the system could
exhibit spatio-temporal patterns via Hopf and Turing mechanisms. In fact, the
work of Morita [18] and de Oliveira [4] (see also Faria [5] and Freitas [6]) shows that
spatially homogeneous stable oscillations can undergo Turing-like bifurcations.

Suppose the system undergoes Turing instability for some modes k with a bifur-
cation curve, say T. Suppose the system also exhibits a Hopf bifurcation for some
parameter values τ with a bifurcation curve, say H. Then at the intersection points
of the two bifurcation curves T and H in the [k, τ ]−plane, the system can undergo
the so-called Turing-Hopf bifurcation (see Kidachi [16], Just et al. [13], Scheel [26])
and exhibit complex spatio-temporal patterns.

Of course these cannot be studied in the present framework and deserve further
investigation.

5.2.4. Remarks. Summarizing the analysis we can say that for the case of two re-
actants and the delay restricted to the interaction between the two reactants, the
possible bifurcation scenarios at a homogeneous equilibrium have been clarified.
The essential result is a hierarchy of notions of stability where strong stability with
respect to delay is the most restrictive assumption. Depending on the manner these
assumptions are relaxed, various bifurcations are possible. In loose terms one can
say that a Turing instability is there (or is not there) right from the onset of a delay.
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A Hopf bifurcation can occur even in strongly stable systems under the influence of
diffusion, but then it is restricted to lower modes.

6. A diffusive predator-prey model with delay. In this section, as an exam-
ple we consider a diffusive predator-prey system with a single delay in the predator
equation. Let Ω be an open bounded set in RN (N ≤ 3) with boundary ∂Ω. Let
u(t, x) and v(t, x) denote the densities of the prey and predator populations, re-
spectively, at the time t and location x. Consider

∂u

∂t
= d1∆u + u(t, x)g(u(t, x)) − v(t, x)p(u(t, x)), (43)

∂v

∂t
= d2∆v + v(t, x)[−d(v(t, x)) + cp(u(t− τ, x))] (44)

with the Neumann boundary value conditions

∂u

∂n
=
∂v

∂n
= 0 on ∂Ω (45)

and initial value conditions

u(θ, x) = φ(θ, x) ≥ 0, v(0, x) = ψ(x) ≥ 0, θ ∈ [−τ, 0), x ∈ Ω. (46)

We assume that the coefficient functions g, p, d are continuously differentiable and
that φ and ψ are continuous.

The function g(u) is the specific growth of the prey population in the absence
of predators, it satisfies g(0) > 0, g′(u) < 0 and there exists a K > 0 such that
g(K) = 0. A prototype is the logistic growth function g(u) = r(1 − u/K).
p(u) is the functional response function, it satisfies p(0) = 0, p′(u) > 0. An

example is the Michaelis-Menten or Holling type II function p(u) = mu/(a+ u).
d(v) is the death rate of the predator population with d(0) > 0, d′(v) > 0. The

function d(v) = d+ ev satisfies the assumptions.
If Ω = (0, l)N is a cube then we can argue as in (13). Denote the positive steady

state of system (43),(44) by E∗ = (u∗, v∗). The Jacobian C at E∗ takes the form
(25) with

a11 = g(u∗) + u∗g′(u∗) − v∗p′(u∗) > 0, (47)

b12 = −p(u∗) < 0, (48)

b21 = cv∗p′(u∗) > 0, (49)

a22 = −v∗d′(v∗) < 0. (50)

In a standard situation, its elements have the signs indicated in (47)-(50), and
a11 + a22 < 0, a11a22 − b12b21 > 0. Thus, C is excitable with respect to diffusion,
and it has the sign pattern of A1 in (6).

First we consider system (43),(44) with τ = 0. By the results of section 3, if the
matrix defined by (47) is excitable with respect to diffusion and if the diffusion rates
d1 and d2 are chosen so that (14), with a12 = b12 and a21 = b21, holds, then Turing
instability occurs in system (43),(44) with τ = 0 for modes µ in some open interval
depending on a11, a22, b12, b21, d1 and d2.

Now let d1, d2 and µ be fixed so that the matrix Ĉ is excitable with respect to
delay; that is, Ĉ is stable and

(a11 − µd1)
2(a22 − µd2)

2 < b212b
2
21.
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Then there is a critical value τ̂0 of the delay,

τ̂0(µ) =
1

ω̂1
arccos

â11â22 − ω̂2
1

b12b21

with ω̂2
1 given by (42), such that the steady state E∗ of system (43),(44) is asymp-

totically stable when τ ∈ [0, τ̂0) and unstable when τ > τ̂0. A Hopf bifurcation
occurs at the steady state E∗ when the delay τ passes through τ̂0.

On the other hand, one can show that a Hopf bifurcation can occur at the steady
state E∗ when the delay τ passes through a critical value τ0 while the diffusion
coefficients d1 = d2 = 0. Suppose the bifurcating periodic solutions are stable.
Following the techniques of Morita [18] and de Oliveira [4], one can also show
that the diffusion can induce Turing type instability for the spatially homogeneous
stable periodic solutions and the delayed diffusive predator-prey model (43)-(44)
can exhibit spatio-temporal patterns.

It would be very interesting to study the degenerate Turing-Hopf bifurcation in
the delayed diffusive predator-prey model (43)-(44), i.e., when the Turing instability
and Hopf bifurcation occur simultaneously.

Acknowledgements. The authors thank Thomas Hillen for helpful comments.
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