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Abstract. In this paper we consider a two-species competition model described by a reaction-
diffusion system with nonlocal delays. In the case of a general domain, we study the stability of the
equilibria of the system by using the energy function method. When the domain is one-dimensional
and infinite, by employing linear chain techniques and geometric singular perturbation theory, we
investigate the existence of travelling front solutions of the system.
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1. Introduction. Let R = (−∞,∞), and let Ω be some open bounded region
in RN , N ≤ 3, with a smooth boundary ∂Ω. Let ∂/∂n denote the outward normal
derivative on ∂Ω and let ∆ be the Laplacian operator. For 1 ≤ p ≤ ∞, let Lp(Ω)
denote the Banach space of measurable functions u on Ω satisfying

‖u‖p =


(∫

Ω
|u(x)|p dx

)1/p

< ∞ if 1 ≤ p < ∞,

ess supx∈Ω|u(x)| < ∞ if p =∞.

In particular, if p = 2, L2(Ω) becomes a Hilbert space with the usual inner product
〈·, ·〉 and ‖ · ‖2

2 = 〈·, ·〉. Also, let ||| · |||2 denote the norm in L2((0, T );L2(Ω;R)), i.e.,

|||u|||2 =
(∫ T

0

‖u(s)‖2
2 ds

)1/2

.

Let u1(t, x) and u2(t, x) denote the population densities of two competitors at
time t and location x, and let the diffusivities of the two competitors be d1 and d2,
respectively. This paper is concerned with the following two-species Lotka–Volterra
competition-diffusion model with distributed delays:

∂u1

∂t
= d1∆u1 + u1

(
r1 − a1u1 − b1

∫
Ω

∫ t

−∞
K1(x, y, t− s)u2(s, y) ds dy

)
,

∂u2

∂t
= d2∆u2 + u2

(
r2 − b2

∫
Ω

∫ t

−∞
K2(x, y, t− s)u1(s, y) ds dy − a2u2

)(1.1)
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NONLOCAL COMPETITION MODEL 807

for t > 0, x ∈ Ω, under the homogeneous Neumann boundary conditions
∂u1

∂n
=

∂u2

∂n
= 0, x ∈ ∂Ω,(1.2)

and initial conditions

u1(θ, x) = φ1(θ, x) ≥ 0, u2(θ, x) = φ2(θ, x) ≥ 0, (θ, x) ∈ (−∞, 0]× Ω,(1.3)

where φ1 and φ2 are continuous functions. The parameters ri, ai, and bi, i = 1, 2, are
all positive constants.

The kernelsKi(x, y, σ), i = 1, 2, are nonnegative functions which are continuous in
(x, y) ∈ Ω̄× Ω̄ for each σ ∈ [0,∞) and measurable in σ ∈ [0,∞) for each pair (x, y) ∈
Ω̄ × Ω̄. We assume that the kernels depend on both the spatial and the temporal
variables. The delays in this type of model formulation are called spatiotemporal
delays or nonlocal delays. This is a formulation that aims to account for the fact that,
at previous times, individuals have not necessarily been at the same point in space.
See Gourley and Britton [8] for a detailed discussion of this modelling issue on an
infinite spatial domain and Gourley and So [9], who more recently have treated the
finite domain case, explaining in detail why it leads to the type of delay term we are
using in (1.1). See also Yamada [16] and the references cited therein. Gourley and
So [9] concentrated on the one-dimensional domain [0, π] and showed that on this
domain a delayed variable u(t, x), representing a population with diffusivity d, should
be modelled in the equations by using a term of the form∫ π

0

∫ t

−∞
G(x, y, t− s)k(t− s)u(s, y) ds dy,

where k(t) is the weight given to the population t time units ago and, in the homo-
geneous Neumann problem,

G(x, y, t) =
1

π
+
2

π

∞∑
n=1

e−dn2t cosnx cosny.(1.4)

In our formulation we are, for convenience, absorbing the G and k of each delay term
into a single kernel Ki(x, y, t). Regarding these kernels Ki, we shall assume that∫

Ω

Ki(x, y, σ) dx =

∫
Ω

Ki(x, y, σ) dy = ki(σ), σ ≥ 0,(1.5)

and ∫ ∞

0

ki(σ) dσ = 1, σ ki(σ) ∈ L1((0,∞);R).(1.6)

Assumption (1.5), that integration of Ki(x, y, s) with respect to either x or y removes
both the x and the y dependence, is easily seen to be reasonable when we have in
mind that Ki(x, y, t) is a product of the form G(x, y, t)k(t), with G given by (1.4) or
the corresponding expression for whatever domain is under consideration.

The local existence of solutions (u1(t, x), u2(t, x)) to (1.1)–(1.3) follows from the
results in Yamada [17] or Ruan and Wu [11]. The comparison theorem for parabolic
differential equations implies that (u1(t, x), u2(t, x)) exists globally such that

0 ≤ u1(t, x) ≤ max

{
r1

a1
, supθ≤0 ‖φ1(θ, ·)‖C(Ω̄;R)

}
,

0 ≤ u2(t, x) ≤ max

{
r2

a2
, supθ≤0 ‖φ2(θ, ·)‖C(Ω̄;R)

}(1.7)
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for x ∈ Ω̄ and t ∈ R. Also, by the strong maximum principle, if φ1(0, x) �≡ 0 and
φ2(0, x) �≡ 0, then we have u1(t, x) > 0, u2(t, x) > 0 for all x ∈ Ω̄ and t > 0.

Notice that system (1.1) has a trivial equilibrium E0 = (0, 0), two semitrivial
spatially homogeneous equilibria

E1 =

(
r1

a1
, 0

)
, E2 =

(
0,

r2

a2

)
,

and a positive spatially homogeneous equilibrium

E∗ =
(
r1a2 − r2b1
a1a2 − b1b2

,
r2a1 − r1b2
a1a2 − b1b2

)
,(1.8)

provided that a1a2 �= b1b2 and either (i) r2b1 < r1a2 and r1b2 < r2a1 or (ii) r2b1 >
r1a2 and r1b2 > r2a1. The trivial equilibrium E0 is of no interest here. The stabil-
ity of the semitrivial equilibrium Ei means that the ith competitor (i = 1, 2) wins
the competition. These semitrivial equilibria are of considerable interest ecologically
because of the possibility of a transition between the two. In fact we shall prove in
this paper that, when the coexistence equilibrium E∗ is absent, a transition can occur
between E1 and E2 in the form of a travelling wave-front solution.

Various special cases of system (1.1) have been studied by many researchers.
When the delay kernels are independent of the spatial variable (i.e., when the de-
lays are local), Ruan and Wu [11] studied the stability of the equilibria. See also
Ruan and Zhao [12] for competition models with finite delays and Schiaffino and Te-
sei [13] for a nonlinear competition system. When there are no delays, the stability
of the competition-diffusion model was investigated by Zhou and Pao [18]. Delayed
competition models without diffusion have been studied by Cushing [2] and by Gopal-
samy [6], and the monograph by Wu [15] provides a very comprehensive description
of current research into delay-diffusion equations. When the domain Ω = (−∞,∞)
and there are no delays, Conley and Gardner [1], Gardner [4], Kan-on [10], and Tang
and Fife [14] have shown that the competition-diffusion model has travelling front
solutions connecting the boundary equilibria(

r1

a1
, 0

)
and

(
0,

r2

a2

)
.(1.9)

The existence of such solutions even for the nondelay problem is a highly nontriv-
ial matter because one is seeking a heteroclinic connection between equilibria in a
four-dimensional phase space. The introduction of delays increases the dimension to
eight (for the particular delays we consider). However, when the delays are small,
considerable progress can be achieved by the use of geometric singular perturbation
theory.

In this paper we shall first discuss the stability of the equilibria E1, E2, and E∗

by using the energy function method (see Yamada [16, 17]). Then, for the case when
Ω = (−∞,∞), we will study the existence of travelling front solutions of system (1.1)
connecting the two boundary equilibria E1 and E2.

2. Convergence. The main result of this section is a theorem on the global
stability of each of the equilibria. First, we shall derive an inequality that will be
needed in the proof of the main theorem. The hypotheses of this lemma are not
restricted to this application (see, in particular, Gourley and So [9]).
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Lemma 2.1. Let K(x, y, t) = G(x, y, t)k(t), x, y ∈ Ω ⊂ RN , where k(t) ≥ 0 and
G(x, y, t) is the solution of

∂G

∂t
= d∇2G,

∂G

∂n
= 0 on ∂Ω, G(x, y, 0) = δ(x− y).(2.1)

Then ∥∥∥∥
∫

Ω

∫ t

−∞
K(x, y, t− s)u(s, y) ds dy

∥∥∥∥
2

≤
∫ t

−∞
k(t− s)‖u(s)‖2 ds

for any function u(t, x) such that ∂u/∂n = 0 on ∂Ω.
Remark 2.2. Before we prove this lemma let us stress that x and y are both

vectors in RN here. For the purposes of computing G, ∇2 is calculated with respect
to either of these vectors (say x for definiteness) with the other one, y, held fixed. In
the case considered in detail in [9], Ω is one-dimensional, ∇2 = ∂2/∂x2, and G(x, y, t)
is given by (1.4).

Proof of Lemma 2.1. We have∥∥∥∥
∫

Ω

∫ t

−∞
K(x, y, t− s)u(s, y) ds dy

∥∥∥∥
2

=

∥∥∥∥
∫ t

−∞

∫
Ω

K(x, y, t− s)u(s, y) dy ds

∥∥∥∥
2

≤
∫ t

−∞

∥∥∥∥
∫

Ω

K(x, y, t− s)u(s, y) dy

∥∥∥∥
2

ds

=

∫ t

−∞
k(t− s)

∥∥∥∥
∫

Ω

G(x, y, t− s)u(s, y) dy

∥∥∥∥
2

ds.

Therefore, we want to show that∥∥∥∥
∫

Ω

G(x, y, t− s)u(s, y) dy

∥∥∥∥
2

≤ ‖u(s)‖2

for s ≤ t. Let λk, k = 0, 1, 2, . . ., be the eigenvalues of −d∇2 under homogeneous
Neumann boundary conditions, with corresponding normalized (in L2) eigenfunctions
φk(x) so that

−d∇2φk = λkφk,
∂φk

∂n
= 0 on ∂Ω.

Then λ0 = 0 with φ0 = constant, and λk > 0 for all other k. The solution G(x, y, t)
of (2.1) will be given by a Fourier series expansion in terms of these functions φ(x)
with coefficients depending on y. In fact,

G(x, y, t) =

∞∑
n=0

e−λntφn(x)φn(y).

Also, u(t, x) satisfies the boundary conditions and therefore can be expanded in terms
of the φn:

u(t, x) =

∞∑
n=0

an(t)φn(x).
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Therefore, since the φk are orthonormal,∫
Ω

G(x, y, t− s)u(s, y) dy =

∞∑
n=0

an(s)e
−λn(t−s)φn(x),

and hence, by Parseval’s identity,∥∥∥∥
∫

Ω

G(x, y, t− s)u(s, y) dy

∥∥∥∥
2

=

( ∞∑
n=0

a2
n(s)e

−2λn(t−s)

)1/2

≤
( ∞∑

n=0

a2
n(s)

)1/2

= ‖u(s)‖2

as desired. The proof is complete.
Next, we state our main theorem of this section.
Theorem 2.3. Let (u1(t, x), u2(t, x)) satisfy (1.1) with boundary conditions (1.2)

and initial conditions (1.3), with φ1(0, x) �≡ 0 and φ2(0, x) �≡ 0.
(i) If r1/r2 > a1/b2 > b1/a2, then limt→∞(u1(t, x), u2(t, x)) = (r1/a1, 0) uni-
formly for x ∈ Ω̄.

(ii) If r1/r2 < b1/a2 < a1/b2, then limt→∞(u1(t, x), u2(t, x)) = (0, r2/a2) uni-
formly for x ∈ Ω̄.

(iii) If b1/a2 < r1/r2 < a1/b2, then limt→∞(u1(t, x), u2(t, x)) = (u
∗
1, u

∗
2) uniformly

for x ∈ Ω̄, where u∗
1 and u∗

2 are the components of the equilibrium E∗ given
by (1.8).

Proof. We prove only (i); the proofs of (ii) and (iii) are similar. To study the
stability of the semitrivial equilibrium E1 = (r1/a1, 0), define

E(u1) =

∫
Ω

[
u1 − r1

a1
− r1

a1
log

u1

r1/a1

]
dx, F (u2) =

∫
Ω

u2 dx.(2.2)

Then E(u1) ≥ 0 and F (u2) ≥ 0. For some constant α > 0 to be found later, we have

d

dt
[αE(u1) + F (u2)]

= α

∫
Ω

∂u1

∂t

(
1− r1/a1

u1

)
dx+

∫
Ω

∂u2

∂t
dx

= −αd1
r1

a1

∫
Ω

|∇u1|2
u2

1

dx− αa1

∫
Ω

(
u1 − r1

a1

)2

dx

− αb1

∫
Ω

(∫
Ω

∫ t

−∞
K1(x, y, t− s)u2(s, y) ds dy

)(
u1 − r1

a1

)
dx− a2

∫
Ω

u2
2(t, x) dx

+ r2

∫
Ω

u2(t, x) dx− b2

∫
Ω

(∫
Ω

∫ t

−∞
K2(x, y, t− s)u1(s, y) ds dy

)
u2(t, x) dx

= −αd1
r1

a1

∫
Ω

|∇u1|2
u2

1

dx− αa1

∫
Ω

(
u1 − r1

a1

)2

dx

− αb1

∫
Ω

(∫
Ω

∫ t

−∞
K1(x, y, t− s)u2(s, y) ds dy

)(
u1 − r1

a1

)
dx− a2

∫
Ω

u2
2(t, x) dx

− b2

∫
Ω

(∫
Ω

∫ t

−∞
K2(x, y, t− s)

(
u1(s, y)− r2

b2

)
ds dy

)
u2(t, x) dx,
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where we have used (1.5) and (1.6). By hypothesis, r2/b2 < r1/a1, so

d

dt
[αE(u1) + F (u2)]

≤ −αd1
r1

a1

∫
Ω

|∇u1|2
u2

1

dx− αa1

∫
Ω

(
u1 − r1

a1

)2

dx

− αb1

∫
Ω

(∫
Ω

∫ t

−∞
K1(x, y, t− s)u2(s, y) ds dy

)(
u1 − r1

a1

)
dx− a2

∫
Ω

u2
2(t, x) dx

− b2

∫
Ω

(∫
Ω

∫ t

−∞
K2(x, y, t− s)

(
u1(s, y)− r1

a1

)
ds dy

)
u2(t, x) dx.

(2.3)

Let 〈·, ·〉 denote the standard inner product on L2(Ω;R), ‖ · ‖2
2 = 〈·, ·〉. Then we have

the following inequality:

d

dt
[αE(u1) + F (u2)] + αd1

r1

a1

∫
Ω

|∇u1|2
u2

1

dx+ αa1

∥∥∥∥u1 − r1

a1

∥∥∥∥2

2

+ a2‖u2‖2
2

≤ −αb1

〈∫
Ω

∫ t

−∞
K1(x, y, t− s)u2(s, y) ds dy, u1(t)− r1

a1

〉
−b2

〈∫
Ω

∫ t

−∞
K2(x, y, t− s)

(
u1(s, y)− r1

a1

)
ds dy, u2(t)

〉
.

(2.4)

By Lemma 2.1, we have∥∥∥∥
∫

Ω

∫ t

−∞
K1(x, y, t− s)u2(s, y) ds dy

∥∥∥∥
2

≤
∫ t

−∞
k1(t− s)‖u2(s)‖2 ds

≤ sups≤0 ‖u2(s)‖2

∫ ∞

t

k1(s) ds+

∫ t

0

k1(t− s)‖u2(s)‖2 ds

(2.5)

and∥∥∥∥
∫

Ω

∫ t

−∞
K2(x, y, t− s)

(
u1(s, y)− r1

a1

)
ds dy

∥∥∥∥
2

≤
∫ t

−∞
k2(t− s)

∥∥∥∥u1(s)− r1

a1

∥∥∥∥
2

ds

≤ sup
s≤0

∥∥∥∥u1(s)− r1

a1

∥∥∥∥
2

∫ ∞

t

k2(s) ds+

∫ t

0

k2(t− s)

∥∥∥∥u1(s)− r1

a1

∥∥∥∥
2

ds.

(2.6)

Thus, for any T > 0,∣∣∣∣
∫ T

0

〈∫
Ω

∫ t

−∞
K1(x, y, t− s)u2(s, y) ds dy, u1(t)− r1

a1

〉
dt

∣∣∣∣
≤
∫ T

0

∥∥∥∥u1(t)− r1

a1

∥∥∥∥
2

∥∥∥∥
∫

Ω

∫ t

−∞
K1(x, y, t− s)u2(s, y) ds dy

∥∥∥∥
2

dt

≤ sup
s≤0

‖u2(s)‖2 sup
0≤t≤T

∥∥∥∥u1(t)− r1

a1

∥∥∥∥
2

∫ ∞

0

s k1(s) ds

+

∫ T

0

∥∥∥∥u1(t)− r1

a1

∥∥∥∥
2

∫ t

0

k1(t− s)‖u2(s)‖2 ds dt.
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We now estimate the second term in the above as follows:∫ T

0

∥∥∥∥u1(t)− r1

a1

∥∥∥∥
2

∫ t

0

k1(t− s)‖u2(s)‖2 ds dt

≤
∣∣∣∣
∣∣∣∣
∣∣∣∣u1 − r1

a1

∣∣∣∣
∣∣∣∣
∣∣∣∣
2

(∫ T

0

(∫ t

0

k1(t− s)‖u2(s)‖2 ds

)2

dt

)1/2

≤
∣∣∣∣
∣∣∣∣
∣∣∣∣u1 − r1

a1

∣∣∣∣
∣∣∣∣
∣∣∣∣
2



∫ T

0



∫ t

0

k1(t− s) ds︸ ︷︷ ︸
≤1



(∫ t

0

k1(t− s)‖u2(s)‖2
2 ds

)
dt




1/2

≤
∣∣∣∣
∣∣∣∣
∣∣∣∣u1 − r1

a1

∣∣∣∣
∣∣∣∣
∣∣∣∣
2

(∫ T

0

∫ t

0

k1(t− s)‖u2(s)‖2
2 ds dt

)1/2

=

∣∣∣∣
∣∣∣∣
∣∣∣∣u1 − r1

a1

∣∣∣∣
∣∣∣∣
∣∣∣∣
2



∫ T

0

‖u2(s)‖2
2

∫ T

s

k1(t− s) dt︸ ︷︷ ︸
≤1

ds




1/2

≤
∣∣∣∣
∣∣∣∣
∣∣∣∣u1 − r1

a1

∣∣∣∣
∣∣∣∣
∣∣∣∣
2

|||u2|||2,

where ||| · |||2 denotes the norm in L2((0, T );L2(Ω;R)), i.e.,

|||u|||2 =
(∫ T

0

‖u(s)‖2
2 ds

)1/2

.

Therefore, for any T > 0,∣∣∣∣
∫ T

0

〈∫
Ω

∫ t

−∞
K1(x, y, t− s)u2(s, y) ds dy, u1(t)− r1

a1

〉
dt

∣∣∣∣
≤ sups≤0 ‖u2(s)‖2 sup0≤t≤T ‖u1(t)− r1

a1
‖2

∫ ∞

0

s k1(s) ds+

∣∣∣∣
∣∣∣∣
∣∣∣∣u1 − r1

a1

∣∣∣∣
∣∣∣∣
∣∣∣∣
2

|||u2|||2.

In a similar way, we have∣∣∣∣
∫ T

0

〈∫
Ω

∫ t

−∞
K2(x, y, t− s)

(
u1(s, y)− r1

a1

)
ds dy, u2(t)

〉
dt

∣∣∣∣
≤ sup

s≤0

∥∥∥∥u1(s)− r1

a1

∥∥∥∥
2

sup
0≤t≤T

‖u2(t)‖2

∫ ∞

0

s k2(s) ds+

∣∣∣∣
∣∣∣∣
∣∣∣∣u1 − r1

a1

∣∣∣∣
∣∣∣∣
∣∣∣∣
2

|||u2|||2.

(2.7)

Integrating (2.4) over [0, T ] and noting that sup0≤t≤T ‖u2(t)‖2 and sup0≤t≤T ‖u1(t)−
r1
a1
‖2 can be bounded independently of T (by (1.7)), we obtain that there exists a

positive constant C independent of T such that

αd1r1

a1

∣∣∣∣
∣∣∣∣
∣∣∣∣∇u1

u1

∣∣∣∣
∣∣∣∣
∣∣∣∣2
2

+ αa1

∣∣∣∣
∣∣∣∣
∣∣∣∣u1 − r1

a1

∣∣∣∣
∣∣∣∣
∣∣∣∣2
2

+ a2|||u2|||22 ≤ C + (αb1 + b2)

∣∣∣∣
∣∣∣∣
∣∣∣∣u1 − r1

a1

∣∣∣∣
∣∣∣∣
∣∣∣∣
2

|||u2|||2
(2.8)
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or, by using Young’s inequality,

αd1r1

a1

∣∣∣∣
∣∣∣∣
∣∣∣∣∇u1

u1

∣∣∣∣
∣∣∣∣
∣∣∣∣2
2

+ αa1

∣∣∣∣
∣∣∣∣
∣∣∣∣u1 − r1

a1

∣∣∣∣
∣∣∣∣
∣∣∣∣2
2

+ a2 |||u2|||22

≤ C + (αb1 + b2)

(
1

2
λ

∣∣∣∣
∣∣∣∣
∣∣∣∣u1 − r1

a1

∣∣∣∣
∣∣∣∣
∣∣∣∣2
2

+
1

2λ
|||u2|||22

)(2.9)

for any λ > 0. If we choose

λ =
αb1 + b2
2a2

,

then (2.9) reads as

αd1r1

a1

∣∣∣∣
∣∣∣∣
∣∣∣∣∇u1

u1

∣∣∣∣
∣∣∣∣
∣∣∣∣2
2

+ αa1

∣∣∣∣
∣∣∣∣
∣∣∣∣u1 − r1

a1

∣∣∣∣
∣∣∣∣
∣∣∣∣2
2

≤ C +
(αb1 + b2)

2

4a2

∣∣∣∣
∣∣∣∣
∣∣∣∣u1 − r1

a1

∣∣∣∣
∣∣∣∣
∣∣∣∣2
2

.(2.10)

From (2.10) we can conclude that ∣∣∣∣
∣∣∣∣
∣∣∣∣∇u1

u1

∣∣∣∣
∣∣∣∣
∣∣∣∣
2

≤ C1(2.11)

and ∣∣∣∣
∣∣∣∣
∣∣∣∣u1 − r1

a1

∣∣∣∣
∣∣∣∣
∣∣∣∣
2

≤ C2(2.12)

for some constants C1, C2 independent of T , provided that α > 0 can be chosen such
that

2
√
αa1a2 > αb1 + b2,

which is possible by the assumption a1a2 > b1b2.
Because of (1.7) we may deduce from (2.11) that, for some constant C3 indepen-

dent of T ,

|||∇u1|||2 ≤ C3.(2.13)

Since all this is for any T > 0, (2.13) and (2.12) imply that u1−r1/a1 ∈ L2((0,∞);W 1,2(Ω;R))
and thus

lim
t→∞

∥∥∥∥u1(t)− r1

a1

∥∥∥∥
W 1,2

= 0.(2.14)

Therefore,

lim
t→∞

∥∥∥∥u1(t)− r1

a1

∥∥∥∥
C(Ω̄;R)

= 0.

We deduce limt→∞ ‖u2(t)‖C(Ω̄;R) = 0 in a similar way (for example, λ in (2.9) would
be chosen differently). This completes the proof.

Remark 2.4. Theorem 2.3 indicates that if r1/r2 > a1/b2 > b1/a2, then the
competitor with density u1 wins the competition; if r1/r2 < b1/a2 < a1/b2, then the
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competitor with density u2 overcompetes the one with density u1; and if b1/a2 <
r1/r2 < a1/b2, then the two competing species coexist in the sense of existence and
stability of a positive steady state. Theorem 2.3 extends Propositions 7.5–7.7 in Ruan
andWu [11] on competition-diffusion systems with infinite time delays, Theorem 3.1 in
Zhou and Pao [18] on competition-diffusion systems, and the results in Gopalsamy [6]
on competition systems with finite delays.

Remark 2.5. It is known (see Yamada [16]) that in the case of the single-species
delay equation

∂u

∂t
= ∆u+ u

(
a− bu−

∫ t

−∞
f(t− s)u(x, s) ds

)

on homogeneous Neumann boundary conditions, where a and b are nonnegative con-
stants, bifurcations can occur from the nonzero homogeneous equilibrium state for
certain kernels and for suitable values of the parameters a and b, which include the
requirement that b be sufficiently small. However, in the competition model (1.1),
bifurcations to spatially patterned or to spatiotemporal structures are not expected
to occur from the equilibrium E∗, given by (1.8). Let us explain why this is so. A
standard linearized analysis about the boundary equilibrium (r1/a1, 0) shows that,
regardless of the delay kernels, this equilibrium is unstable to perturbations in which
u2 > 0 if r1/r2 < a1/b2. Similarly, the equilibrium (0, r2/a2) is unstable to perturba-
tions in which u1 > 0 if r1/r2 > b1/a2. Now, if the interior equilibrium E∗ were to
lose stability and bifurcate to a spatial or spatiotemporal structure, we would expect
that both boundary equilibria would remain unstable throughout this process so that
they act as repellers. Yet the conditions for both boundary equilibria to be linearly
unstable can be summarized as

b1
a2

<
r1

r2
<

a1

b2
,

which is precisely the condition for global convergence to E∗ given in (iii) of Theo-
rem 2.3. Hence, bifurcations from E∗ cannot occur if the boundary equilibria are to
remain unstable.

Remark 2.6. If we assume that, in the absence of the other competitor, each
competitor’s growth is governed by a Volterra integrodifferential equation with both
instantaneous and delay self-regulatory terms (see Cushing [2], Schiaffino and Te-
sei [13], and Yamada [17]), then we have a more general model of the following form:

∂u1

∂t
= d1∆u1 + u1

(
r1 − a1u1 − c1

∫
Ω

∫ t

−∞
H1(x, y, t− s)u2(s, y) ds dy

−b1

∫
Ω

∫ t

−∞
K1(x, y, t− s)u2(s, y) ds dy

)
,

∂u2

∂t
= d2∆u2 + u2

(
r2 − b2

∫
Ω

∫ t

−∞
K2(x, y, t− s)u1(s, y) ds dy

−a2u2 − c2

∫
Ω

∫ t

−∞
H2(x, y, t− s)u1(s, y) ds dy

)
,

(2.15)

where ai ≥ 0, bi > 0, ci ≥ 0, i = 1, 2, are constants and the kernels Hi, i = 1, 2,
satisfy similar properties as the Ki of (1.1). Notice that system (1.1) is a special
case of (2.15) with ci = 0. When ai = 0, even when there is no diffusion (i.e., the
ordinary delay competition model), both stability (see Gomatam and MacDonald [5])
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and bifurcation (see Gopalsamy and Aggarwala [7]) are possible. We anticipate that
system (2.15) will exhibit more complex dynamics, such as Hopf bifurcations, and we
leave this for future consideration.

3. Travelling front solutions. In this section we discuss the modifications
necessary to system (1.1) for the case of an infinite one-dimensional domain Ω =
(−∞,∞), and travelling front solutions of the resulting system. The infinite domain
case is in some respects slightly simpler from a modelling point of view since there are
no boundaries for individuals to interact with as they drift from their past to their
present positions. Because of this, in contrast to the finite domain case, the nonlocal
averaging associated with the delay takes the form of a spatial convolution, so that
the model assumes the form

∂u1

∂t
= d1

∂2u1

∂x2
+ u1

(
r1 − a1u1 − b1

∫ ∞

−∞

∫ t

−∞
G1(x− y, t− s)k1(t− s)u2(s, y) ds dy

)
,

∂u2

∂t
= d2

∂2u2

∂x2
+ u2

(
r2 − b2

∫ ∞

−∞

∫ t

−∞
G2(x− y, t− s)k2(t− s)u1(s, y) ds dy − a2u2

)
,

(3.1)

where the ki satisfy
∫∞
0

ki(s) ds = 1, i = 1, 2, and the Gi satisfy diffusion equations
as in Lemma 2.1 but without the boundary conditions. To be more precise, G1 is a
weighting function describing the distribution at past times of the individuals of the
species u2 who are at position x at time t. The u2 individuals diffuse at diffusivity
d2; thus G1 must satisfy

∂G1

∂t
= d2

∂2G1

∂x2
, G1(x, 0) = δ(x),

and similarly, G2 satisfies

∂G2

∂t
= d1

∂2G2

∂x2
, G2(x, 0) = δ(x),

so that G1, G2 are both fundamental solutions of heat equations. With these assump-
tions, system (3.1) still preserves the same equilibria E0, E1, E2, and (possibly) E∗

enumerated earlier.
Our interest in this section is in the possibility of a transition between the bound-

ary equilibria E1 and E2 in the form of a travelling wave-front solution. This is of
ecological interest since it corresponds to a situation where an environment is initially
inhabited only by the weaker of the two competitors at its carrying capacity, and some
of the stronger competitor are introduced and then invade the domain, dominate, and
drive the weaker to extinction so that the end result is that only the stronger species
is present, at its carrying capacity.

In this section the assumptions we shall make on the parameters are those which
ensure that the corresponding system without diffusion and without delay (removal
of delay can be effected by setting each ki(t) = δ(t) in (3.1)) has E1 unstable and
E2 asymptotically stable. Elementary analysis shows that the conditions for this to
happen are

r1b2 < r2a1 and r1a2 < r2b1.(3.2)
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Note that if (3.2) is satisfied, then the coexistence equilibrium E∗ is absent. In
the two-dimensional (u1, u2) phase plane, the diffusionless undelayed ODEs possess
a heteroclinic connection from E1 to E2. It is known from the papers referred to
in the introduction that under these circumstances the (undelayed) reaction-diffusion
system has travelling-front solutions connecting these equilibria. Our intention now
is to prove, for certain choices of the kernels ki, that these travelling fronts persist
under the introduction of delay, at least for small delays.

We shall consider the situation when the kernels ki are given by

k1(t) =
1

τ1
e−t/τ1 , k2(t) =

1

τ2
e−t/τ2 ,(3.3)

where the delays τ1, τ2 > 0, and we shall prove the following.
Theorem 3.1. Let k1 and k2 be given by (3.3) and assume that (3.2) holds. Then,

for sufficiently small delays τ1, τ2, system (3.1) possesses travelling front solutions
connecting the semitrivial equilibria E1 = (r1/a1, 0) and E2 = (0, r2/a2).

Proof. With the kernels given by (3.3), it is straightforward to see that sys-
tem (3.1) is equivalent to

∂u1

∂t
= d1

∂2u1

∂x2
+ u1(r1 − a1u1 − b1w1),

∂u2

∂t
= d2

∂2u2

∂x2
+ u2(r2 − b2w2 − a2u2),

∂w1

∂t
= d2

∂2w1

∂x2
+
1

τ1
u2 − 1

τ1
w1,

∂w2

∂t
= d1

∂2w2

∂x2
+
1

τ2
u1 − 1

τ2
w2.

(3.4)

Converting to travelling wave form, by writing

u1(t, x) = u1(z), z = x+ ct,

and similarly for the other state variables, gives

cu′
1 = d1u

′′
1 + u1(r1 − a1u1 − b1w1),

cu′
2 = d2u

′′
2 + u2(r2 − b2w2 − a2u2),

cw′
1 = d2w

′′
1 +

1

τ1
u2 − 1

τ1
w1,

cw′
2 = d1w

′′
2 +

1

τ2
u1 − 1

τ2
w2,

where prime denotes differentiation with respect to z. Let us introduce

v1 = d1u
′
1, v2 = d2u

′
2, v3 = d2w

′
1, v4 = d1w

′
2.

Also, we shall replace τ1 and τ2 with ε2τ1 and ε2τ2, respectively, since we are interested
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in the situation when the delays are small. The system becomes

u′
1 =

1

d1
v1,

v′1 =
c

d1
v1 − u1(r1 − a1u1 − b1w1),

u′
2 =

1

d2
v2,

v′2 =
c

d2
v2 − u2(r2 − b2w2 − a2u2),

w′
1 =

1

d2
v3,

ε2v′3 =
ε2c

d2
v3 − 1

τ1
u2 +

1

τ1
w1,

w′
2 =

1

d1
v4,

ε2v′4 =
ε2c

d1
v4 − 1

τ2
u1 +

1

τ2
w2.

(3.5)

If we introduce the new state variables

ũ1 = u1, ṽ1 = v1, ũ2 = u2, ṽ2 = v2, w̃1 = w1, ṽ3 = εv3, w̃2 = w2, ṽ4 = εv4

and then drop the tildes, we have

u′
1 =

1

d1
v1,

v′1 =
c

d1
v1 − u1(r1 − a1u1 − b1w1),

u′
2 =

1

d2
v2,

v′2 =
c

d2
v2 − u2(r2 − b2w2 − a2u2),

εw′
1 =

1

d2
v3,

εv′3 =
εc

d2
v3 − 1

τ1
u2 +

1

τ1
w1,

εw′
2 =

1

d1
v4,

εv′4 =
εc

d1
v4 − 1

τ2
u1 +

1

τ2
w2.

(3.6)

When ε = 0, system (3.6) reduces to the equations satisfied by travelling wave solu-
tions of the undelayed problem studied by previous investigators [1, 4, 10, 14]. In this
degenerate case the system is four-dimensional, but for ε > 0 (i.e., delay is present),
existence of a travelling front solution of (3.1) between E1 and E2 is equivalent to
existence of a heteroclinic connection between the equilibrium points of the eight-
dimensional system (3.6) that correspond to E1 and E2 of (3.1). We shall still denote
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these equilibria by E1 and E2; for system (3.6) they are given by

E1 =

(
r1

a1
, 0, 0, 0, 0, 0,

r1

a1
, 0

)
, E2 =

(
0, 0,

r2

a2
, 0,

r2

a2
, 0, 0, 0

)
.(3.7)

Our intention is to apply the geometric singular perturbation theory described in [3],
in particular, Theorem 9.1 of that paper. System (3.6) above will henceforth be
referred to as the slow system. By introducing a new independent variable η defined
by

z = εη,

system (3.6) transforms into

u̇1 =
ε

d1
v1,

v̇1 = ε

(
c

d1
v1 − u1(r1 − a1u1 − b1w1)

)
,

u̇2 =
ε

d2
v2,

v̇2 = ε

(
c

d2
v2 − u2(r2 − b2w2 − a2u2)

)
,

ẇ1 =
1

d2
v3,

v̇3 =
εc

d2
v3 − 1

τ1
u2 +

1

τ1
w1,

ẇ2 =
1

d1
v4,

v̇4 =
εc

d1
v4 − 1

τ2
u1 +

1

τ2
w2,

(3.8)

where dots denote differentiation with respect to η. System (3.8) is called the fast
system. Geometric singular perturbation theory uses both the slow and the fast
systems. The two are equivalent when ε > 0, but when ε = 0, the slow system (3.6)
does not define a dynamical system in the whole of R8 but rather the dynamics takes
place only on

M0 = {(u1, v1, u2, v2, w1, v3, w2, v4) ∈ R8 : v3 = 0, v4 = 0, w1 = u2, w2 = u1},
(3.9)

which is a four-dimensional submanifold ofR8. Note thatM0 consists of the equilibria
of the fast system when ε = 0. IfM0 is normally hyperbolic then, for sufficiently small
ε > 0, Theorem 9.1 in [3] provides us with a four-dimensional invariant manifold Mε
for the system (3.6). It will be shown that the equilibrium points E1 and E2 lie on
Mε. By studying the system (3.6) reduced to this manifold, the dimensionality is
reduced back to four and the existence of the heteroclinic connection we are seeking
can be established.

To verify normal hyperbolicity it is necessary to use the fast system (3.8). We need
to verify that the linearization of (3.8), restricted to M0, has exactly four (= dimM0)
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eigenvalues on the imaginary axis with the remainder of the spectrum hyperbolic.
The linearization of the fast system, when ε = 0, is given by




0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 0 0 0 0
1

d2
0 0

0 0 − 1

τ1
0

1

τ1
0 0 0

0 0 0 0 0 0 0
1

d1

− 1

τ2
0 0 0 0 0

1

τ2
0




,

which has eigenvalues {0, 0, 0, 0,±1/√τ2d1,±1/
√
τ1d2}. Thus, normal hyperbolicity

is verified and there exists an invariant manifold Mε, close to M0, for the perturbed
system (3.6) for ε > 0 sufficiently small. In fact, Mε can be expressed in the form

Mε =
{
(u1, v1, u2, v2, w1, v3, w2, v4) ∈ R8 : v3 = h1(u1, v1, u2, v2; ε),
v4 = h2(u1, v1, u2, v2; ε), w1 = u2 + h3(u1, v1, u2, v2; ε),

w2 = u1 + h4(u1, v1, u2, v2; ε)}
(3.10)

with hi(u1, v1, u2, v2; 0) = 0 for i = 1, 2, 3, 4. The hi can be computed by substitution
into (3.6).

The slow system (3.6), restricted to Mε, is

u′
1 =

1

d1
v1,

v′1 =
c

d1
v1 − u1(r1 − a1u1 − b1u2 − b1 h3(u1, v1, u2, v2; ε)),

u′
2 =

1

d2
v2,

v′2 =
c

d2
v2 − u2(r2 − a2u2 − b2u1 − b2 h4(u1, v1, u2, v2; ε)).

(3.11)

When ε = 0 (i.e., no delay), system (3.11) again reduces to the system satisfied by
travelling wave solutions of the undelayed equations, which has been studied previ-
ously. What we now claim is that, for ε > 0 sufficiently small, system (3.11) still
possesses as equilibrium points

E1 =

(
r1

a1
, 0, 0, 0

)
, E2 =

(
0, 0,

r2

a2
, 0

)
(3.12)

and that it falls within the class of systems studied by Gardner [4]. Neither is imme-
diately clear. Indeed, Gardner studied competition systems of the form

∂u1/∂t = d1∂
2u1/∂x

2 + u1M(u1, u2),
∂u2/∂t = d2∂

2u2/∂x
2 + u2N(u1, u2),
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which, in travelling wave form, read as

u′
1 =

1

d1
v1,

v′1 =
c

d1
v1 − u1M(u1, u2),

u′
2 =

1

d2
v2,

v′2 =
c

d2
v2 − u2N(u1, u2).

(3.13)

Comparing (3.11) with (3.13) we see that, for Gardner’s results to be applicable, the
functions h3 and h4 in (3.11) would need to involve u1 and u2 only. We shall now
show that this is indeed the case, up to order ε2.

Indeed, straightforward but tedious calculations, utilizing the fact that Mε is an
invariant manifold for (3.6), yield that the hi satisfy

ε

[
1

d2
v2 +

1

d1
v1

∂h3

∂u1
+

∂h3

∂v1

(
c

d1
v1 − u1(r1 − a1u1 − b1u2 − b1h3)

)

+
1

d2
v2

∂h3

∂u2
+

∂h3

∂v2

(
c

d2
v2 − u2(r2 − a2u2 − b2u1 − b2h4)

)]
=
1

d2
h1

together with three other similar equations. Attempting solutions of the equations in
the form

h1(u1, v1, u2, v2; ε) = εh
(1)
1 (u1, v1, u2, v2) + ε2h

(2)
1 (u1, v1, u2, v2) + · · · ,

and similarly for the other hi, yields, after some further algebra, that

h
(1)
1 = v2, h

(1)
2 = v1, h

(1)
3 = 0, h

(1)
4 = 0

and

h
(2)
1 = 0, h

(2)
2 = 0,

h
(2)
3 = −τ1u2(r2 − a2u2 − b2u1),

h
(2)
4 = −τ2u1(r1 − a1u1 − b1u2).

Thus, system (3.11) becomes, to order ε2,

u′
1 =

1

d1
v1,

v′1 =
c

d1
v1 − u1(r1 − a1u1 − b1u2 + ε2b1τ1u2(r2 − a2u2 − b2u1)),

u′
2 =

1

d2
v2,

v′2 =
c

d2
v2 − u2(r2 − a2u2 − b2u1 + ε2b2τ2u1(r1 − a1u1 − b1u2)),

(3.14)

which has the structure of the system (3.13). Also, note that E1 and E2, given
by (3.12), are indeed equilibria of (3.14). Therefore, the results in [4] are applicable,
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yielding a heteroclinic connection between the equilibria E1 and E2 of (3.14). We
have shown that travelling fronts exist for system (3.1) when the kernels k1 and k2

are given by (3.3), so the proof of Theorem 3.1 is complete.
Remark 3.2. Let us briefly discuss the role of the terms of order ε2. If the

system (3.14) is linearized about the equilibrium E2, we find that the eigenvalues λ
of the linearization satisfy an equation that does not involve ε, namely

(d2λ
2 − cλ− r2)(d1a2λ

2 − ca2λ+ r1a2 − r2b1) = 0.(3.15)

About the equilibrium E1, the eigenvalue equation becomes

(d1λ
2 − cλ− r1)(d2a1λ

2 − ca1λ+ r2a1 − r1b2) = 0,(3.16)

which again does not involve ε. These observations suggest that the manner in which
the front approaches the equilibria E1 and E2 as z → −∞ and z → ∞, respectively, is
independent of ε for ε > 0 sufficiently small and therefore that the front’s qualitative
profile is not sensitive to the delays, provided they are both sufficiently small. Of
course, system (3.14) is itself the result of a perturbation analysis for small ε, and
therefore no conclusions can be drawn for larger ε. In conclusion, we may state
that the travelling front solutions of the corresponding undelayed competition model
appear to be very robust, not only in the sense that they persist under the introduction
of delays, but also in that they are not sensitive to small delays in the sense that, if
the delays are small, they look qualitatively the same as they do with no delay at all.
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