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Abstract

The issue of how to incorporate time-delays into a mathematical model in which

individuals are moving around requires careful consideration. Any time-delay term

must also involve a weighted spatial averaging to account for movement of individuals

during the time-delay period. Most of the current literature on this subject is on reac-

tion–diffusion equations and concentrates on the simplest case when the spatial domain

is infinite. In this paper we consider what changes arise when the domain is finite.

Spatial averaging kernels are computed explicitly for the case of a finite, one-dimen-

sional domain. To illustrate the ideas we concentrate on a diffusive nutrient-plankton

model. The model is analysed in terms of the local stability of the steady states and

bifurcations. The results of some numerical simulations are also presented.
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1. Introduction

In recent years there has been a great deal of interest in ordinary differential

equations and reaction–diffusion equations modelling the evolution of a

plankton population feeding on nutrient that is supplied at a constant rate and

which is partially recycled through bacterial decomposition of the dead

plankton. One of the earliest mathematical models was due to Nisbet and

Gurney [1] who incorporated the nutrient recycling into their model as an

instantaneous term. However, in nature nutrient recycling takes time. It hap-

pens more quickly at high temperatures than at low temperatures [2] but al-
ways takes a certain amount of time, and therefore in the model equations

there needs to be a time-delay to account for this. In 1990, Beretta et al. [3]

proposed a chemostat-type model in which nutrient recycling was modelled by

using a distributed delay term. Bischi [4] analysed the same model from the

point of view of the effect of the delay on resilience.

The time-delay due to nutrient recycling is not the only delay effect present.

Experiments have shown that, in addition to the delays involved in the de-

composition of dead organisms, there is also a delay in the growth response of
the species to nutrient uptake [5]. To account for this, Ruan [6] modified the

model of Beretta et al. [3] by incorporating a discrete delay in the species� growth
response, retaining also the distributed delay term used to model the nutrient

recycling. Increasing the discrete delay caused the model to undergo a Hopf

bifurcation to a limit cycle solution. Beretta and Takeuchi [7,8] modelled both

of the two delay effects using distributed delay terms and studied the global

asymptotic stability of the positive equilibrium by using Lyapunov functionals.

See also the works of He et al. [9,10] where other related results are proved.
All of the above models are purely time dependent ODEs with delays; that is

to say, spatial effects are ignored. However, in the lakes and oceans it is clear

that spatial effects will be very important. Plankton can move around subject to

many factors including diffusion and currents. The simplest way to incorporate

diffusion of the plankton is to use reaction–diffusion equations [11,12]. Reac-

tion–diffusion equations incorporating time-delays are more difficult to study

although considerable progress has been made in recent years. Ruan [13]

proposed and studied the following reaction–diffusion system to account for
spatial dispersal of both the nutrient N and the plankton P.
oN
ot

¼ d1r2N þ DðN 0 � NÞ � aUðNÞP þ c1

Z t

�1
f1ðt � sÞP ðx; sÞds;

oP
ot

¼ d2r2P þ P �ðc þ DÞ þ a1

Z t

�1
f2ðt � sÞUðNðx; sÞÞds

� �
:

ð1:1Þ
This system generalises the models described thus far by the addition of dif-
fusion. Also, both of the two delay effects are modelled by using distributed

delays. Ruan obtained results on the linear stability of the positive equilibrium
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together with theorems on the possible bifurcations from this equilibrium,

which include periodic travelling waves (wave trains).
It has become recognised in recent years that, while systems such as the

above may yield a great deal of insight into the role of time-delay in a diffusive

model, there is a certain problem associated with simply adding diffusion terms

to a time-delay ODE, or simply inserting a time-delay into a reaction–diffusion

system. The problem is that, at previous times, individuals have not necessarily

been at the same point in space. They could, in fact, have been anywhere in the

spatial domain, since a further well-known fact about simple Fickian diffusion

leading to a Laplacian term, is that it implies that the underlying propagation
speed is infinite. This problem has been addressed in several papers in recent

years; see Britton [14], Gourley and Britton [15], and Thieme and Zhao [16] for

descriptions of how the delays may be correctly incorporated into the reaction–

diffusion setting. Other papers which discuss this modelling issue, in the context

of patch models, are those of Madras et al. [17] and So et al. [18].

In the reaction–diffusion setting, the research described in the above men-

tioned papers has shown that, on an infinite spatial domain, one can address

the complication of the individuals moving around during the time-delay pe-
riod by including in any delay term an integration in space or, to be more

precise, a weighted spatial averaging to account for the drift of individuals to

their present position from all their possible positions at previous times. The

weighted spatial averaging is derived using probabilistic arguments and, on an

infinite domain, one concludes that the averaging is weighted according to the

fundamental solution of the heat equation, with the diffusivity chosen to match

that of the species under consideration. Boushaba and Ruan [19] have dem-

onstrated that on a large finite domain, the infinite domain approach to
modelling the time-delay term also appears to work satisfactorily in an ap-

proximate sense.

But on a finite domain there is a further complication in that the individuals,

as well as having been moving around during the time-delay period, may also

have been interacting with the domain�s boundaries. Indeed, such interactions
are only to be expected especially if the domain is a small one and clearly the

infinite domain formulation of the spatial averaging will break down, since it

cannot account for such interactions. Our aim in this paper is to correctly
derive the spatial averaging kernels for a finite domain situation (we concen-

trate on a one-dimensional domain for simplicity). As we shall see, the kernels

(the functions G1 and G2 in the system (1.2) below) are again chosen to be

appropriately normalised solutions of the heat equation, but are now subject to

whatever boundary conditions are being applied to the problem itself (which in

this paper will be of the homogeneous Neumann kind). In the one-dimensional

domain we use here, the averaging kernels can still be computed explicitly. In

their model, Boushaba and Ruan [19] retained the formulation of the delay
term that is appropriate for the infinite domain case, and they supplemented
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their model with homogeneous Neumann boundary conditions. They had to

assume their domain was a large one. Our approach works for a finite domain
of any size because we derive an averaging kernel that allows for interactions

with the domain�s boundaries. Thus in our approach the boundary conditions
are not merely conditions supplemented to the governing PDEs but also play a

role in the derivation of the time-delay terms themselves.

Thus, the main aim of the present paper is to improve the models referred to

thus far to include spatio-temporal delays which correctly account for the in-

teraction of delay with diffusion in a finite domain. We shall study the system
oN
ot

¼ d1
o2N
ox2

þ DðN 0 � NÞ � aUðNÞP

þ c1

Z t

�1

Z p

0

G1ðx; y; t � sÞf1ðt � sÞP ðy; sÞdy ds;

oP
ot

¼ d2
o2P
ox2

þ P �ðc þ DÞ
�

þ a1

Z t

�1

Z p

0

G2ðx; y; t � sÞf2ðt � sÞUðNðy; sÞÞdy ds
�

ð1:2Þ
for x 2 ½0; p
. All the ideas carry over to n-dimensions; our choice of the one-
dimensional domain ½0; p
 is purely for notational simplicity. There is no loss of
generality in having the domain being of length p since the diffusivities d1 and
d2 are both kept general. The equations are to be solved for t > 0 and require

initial data to be prescribed for all t6 0 and all x 2 ½0; p
. For boundary con-
ditions, we shall consider the biologically realistic homogeneous Neumann

problem, so the boundary conditions are
oP
ox

¼ oN
ox

¼ 0 at x ¼ 0; p:
We shall now explain why the time-delay terms in (1.2) assume the particular

form we have taken. We discuss only the term in the first equation:
Z t

�1

Z p

0

G1ðx; y; t � sÞf1ðt � sÞP ðy; sÞdy ds: ð1:3Þ
The distributed time-delay, the integral over s from �1 to t, weighted by the

function f1, follows a long tradition of using distributed delays to model time-
lags and in this respect our formulation is consistent with the distributed time-

delays found in the earlier papers described in our introductory paragraphs.

The function f1ðtÞ is called the delay kernel. It will always be assumed to satisfy
f1ðtÞP 0 for all tP 0 together with a normalisation condition also satisfied by

f2ðtÞ, i.e., we assume that
Z 1

0

fiðtÞdt ¼ 1; i ¼ 1; 2; ð1:4Þ
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which ensures that the spatially uniform steady states are unaffected by the

delay. The kernel f1ðtÞ is, by definition, the weight given to the population t
time units ago. The difference between the distributed delay terms in (1.1), and

the formulation (1.3), is that the latter also involves an averaging in space,

weighted by the kernel Gðx; y; tÞ. This is to account for the modelling difficulties
inherent in trying to incorporate time-delays into a diffusive model. At a typical

time s < t the density P is first multiplied by the weight given to densities at this
time, which is f1ðt � sÞ by the way f1 is defined. Now, the individuals which are
at point x at time t could have been anywhere at the earlier time s. The idea is

to calculate the probability of an individual having been at point y at the earlier
time s, given that it is at point x at the current time t. We then sum over all

possible previous positions y, and this explains the integral over y. The kernel

G1 is therefore essentially a probability density function. The detailed proba-

bilistic arguments are explained in [14] for the case of an infinite one-dimen-

sional domain, and in that scenario the kernel G1 turns out to be the

fundamental solution of the heat equation. In our situation the domain is finite

with homogeneous Neumann boundary conditions, and the difference here is

that G1 must be chosen, in our case, to satisfy
oG1

ot
¼ d2

o2G1

oy2
ð1:5Þ
subject to
oG1

oy
¼ 0 at y ¼ 0; p; and G1ðx; y; 0Þ ¼ dðx� yÞ:
The reason why the diffusivity in (1.5) has been taken as d2 is that this is the
diffusivity of the plankton P which is the quantity in the delay term we are

discussing. Solving the above problem, we find that
G1ðx; y; tÞ ¼
1

p
þ 2

p

X1
n¼1

e�d2n2t cos nx cos ny: ð1:6Þ
In a similar way we shall find that the spatial averaging kernel G2 in the delay

term of the second equation in (1.2) is
G2ðx; y; tÞ ¼
1

p
þ 2

p

X1
n¼1

e�d1n2t cos nx cos ny ð1:7Þ
which involves d1, the diffusivity of the nutrient N.
If in (1.6) and (1.7) the cos nx cos ny terms are replaced by
1

2
ðcos nðxþ yÞ þ cos nðx� yÞÞ
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then one easily sees that each individual term in the summation in (1.6) or (1.7)

is accounting for an interaction with one or more of the boundaries x ¼ 0 and p
of our domain ½0; p
.
Throughout the whole of this paper, G1ðx; y; tÞ and G2ðx; y; tÞ always assume

the expressions given by (1.6) and (1.7). However, unless we state otherwise,

the delay kernels f1 and f2 are just arbitrary non-negative functions satisfy-
ing the normalisation condition (1.4). We shall aim to obtain results which hold

for relatively arbitrary kernels f1 and f2 satisfying these conditions only, but in
the literature certain particular cases are frequently considered because they

facilitate analytic study and/or numerical simulation. Dropping subscripts for
the moment, these cases are
f ðtÞ ¼ dðt � sÞ; f ðtÞ ¼ 1

s
e�t=s and f ðtÞ ¼ t

s2
e�t=s: ð1:8Þ
The first of these kernels gives rise to a model having a discrete time-delay. For

example, if f1 assumes this expression then the delay term (1.3) becomes
Z p

0

1

p

(
þ 2

p

X1
n¼1

e�d2n2s cos nx cos ny

)
P ðy; t � sÞdy ð1:9Þ
and the idea of spatial averaging arising because of the delay becomes clearer.

If s is set to zero then the curly bracketed part becomes dðx� yÞ and the whole
expression simply reduces to P ðx; tÞ. If s is very small then the curly bracketed
part is close to dðx� yÞ, reflecting the idea that most of the individuals that are
at x at time t will not have been far away at the recent past time t � s. On the
other hand if s is very large the curly bracketed part approximates to 1=p,
reflecting the idea that these individuals will have been uniformly distributed
throughout the domain a long time ago.

The other two kernels in (1.8) are called weak and strong generic delay

kernels. The ‘‘weak’’ case f ðtÞ ¼ ð1=sÞe�t=s reflects the idea that the importance

of the past decreases exponentially the further one looks into the past. The

‘‘strong’’ case f ðtÞ ¼ ðt=s2Þe�t=s can be regarded as a smoothed out version of

the discrete delay case f ðtÞ ¼ dðt � sÞ. This strong kernel has a maximum at

t ¼ s and this means that the population density s time units ago is more

important than any other (the delta function simply singles out the density at
this particular time only).

Following Macdonald [20] we introduce the average time-lags, or mean

delays, which are defined as
Tf1 ¼
Z 1

0

tf1ðtÞdt and Tf2 ¼
Z 1

0

tf2ðtÞdt: ð1:10Þ
For the three kernels (1.8) the mean delays are s; s and 2s respectively.
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We now discuss the various parameters in (1.2). They have the following

interpretations:

a maximum uptake of nutrient by the plankton

N 0 input concentration of the nutrient

D washout rate of the nutrient

c plankton mortality rate

c1 nutrient recycle rate after the death of the plankton

a1 maximal conversion rate of the nutrient into planktonic biomass

For biological realism we need to assume that
c16 c and a16 a: ð1:11Þ

The function UðNÞ describes the nutrient uptake rate of plankton. It will be
assumed to be a differentiable function satisfying
Uð0Þ ¼ 0;
dU
dN

> 0 and lim
N!1

UðNÞ ¼ 1: ð1:12Þ
We shall allow U to be any function satisfying (1.12) except where otherwise

stated, but a biologically reasonable choice would be the Michaelis–Menten

function
UðNÞ ¼ N
k þ N

:

In the next section we shall show how the system (1.2) may be linearised

about its spatially uniform steady states and we shall obtain various results on

the linear stability of the equilibria of the system. Then we shall examine under

what circumstances the interior equilibrium may be driven unstable. Finally we
present the results of some numerical simulations.
2. Stability of the uniform equilibria

First note that the spatial averaging kernels G1 and G2 both satisfy
Z p

0

Giðx; y; tÞdy ¼ 1; i ¼ 1; 2:
This fact, together with the fact that the delay kernels fi satisfy
R1
0

fiðtÞdt ¼ 1,

implies that the non-local delay terms have no effect on the spatially uniform
steady state solutions. It follows that these solutions are given by ðN �; P �Þ ¼
ðN 0; 0Þ and
ðN �; P �Þ ¼ U�1 c þ D
a1

� 	
;
DðN 0 � N �Þ
aUðN �Þ � c1

� 	
: ð2:1Þ
The latter is biologically relevant only if
c þ D < a1 and N � < N 0: ð2:2Þ
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If c þ DP a1 then ðN 0; 0Þ is the only biologically relevant equilibrium, and
it can be shown that under these circumstances ðN 0; 0Þ is linearly stable
independently of the delays. The analysis is similar to, but considerably simpler

than, the analysis for the equilibrium (2.1) because the dispersion relation

arising from the linearisation about ðN 0; 0Þ does not involve the kernels fi. In
the remainder of this section we shall concentrate on the interior equilibrium

(2.1) and we shall therefore assume henceforth that the parameters of the

model satisfy (2.2), in addition to (1.11). Note that these conditions assure us

that the denominator in the expression for P � is positive.

To investigate the linearised stability of (2.1), we set N ¼ N � þ u, P ¼ P � þ v,
substitute into (1.2) and retain only linear terms in u and v, giving
ou
ot

¼ d1
o2u
ox2

� ðDþ aP �U 0ðN �ÞÞu� aUðN �Þv

þ c1

Z t

�1

Z p

0

G1ðx; y; t � sÞf1ðt � sÞvðy; sÞdy ds;

ov
ot

¼ d2
o2v
ox2

þ a1P �U 0ðN �Þ
Z t

�1

Z p

0

G2ðx; y; t � sÞf2ðt � sÞuðy; sÞdy ds:

ð2:3Þ
Since the boundary conditions are homogeneous Neumann on the domain

½0; p
 the appropriate trial solution is
ðu; vÞ ¼ ðc1; c2Þert cosmx; m ¼ 0; 1; 2; . . . ð2:4Þ
Note the effect that the non-local terms have upon such a trial solution.

Dropping subscripts for the moment, we find that
Z t

�1

Z p

0

Gðx; y; t � sÞf ðt � sÞers cosmy dy ds
is equal to
Z t

�1
ersf ðt � sÞ

Z p

0

cosmy
1

p

(
þ 2

p

X1
n¼1

e�dn2ðt�sÞ cos nx cos ny

)
dy ds
which, after some algebra, gives
�ff ðr þ dm2Þert cosmx
for any m ¼ 0; 1; 2; . . . ; using the orthogonality of fcosmxg1m¼0 over ½0; p
. Here,
�ff denotes the Laplace transform of f. Substitution of the trial solution (2.4) we

find that, in order to have non-trivial solutions, r must satisfy Uðr;mÞ ¼ 0

where
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Uðr;mÞ :¼ ½r þ d1m2 þ Dþ aP �U 0ðN �Þ
ðr þ d2m2Þ
þ a1P �U 0ðN �Þ�ff2ðr þ d1m2Þ½aUðN �Þ � c1�ff1ðr þ d2m2Þ
: ð2:5Þ
The equation Uðr;mÞ ¼ 0 is called the dispersion relation or eigenvalue equa-

tion, and the function Uðr;mÞ will be referred to as the eigenvalue function. The
steady state (2.1) will be linearly stable if all the roots r of Uðr;mÞ ¼ 0 are

strictly in the left half of the complex plane for every integer m ¼ 0; 1; 2; . . .
We shall analyse the eigenvalue equation mainly by using the principle of the

argument. It is, in general, a transcendental equation since r occurs inside the
arguments of the Laplace transforms of the delay kernels. It is easily seen that

the Laplace transforms �ff1ðrÞ and �ff2ðrÞ both converge for Re r P 0. Since
Laplace transforms are analytic in their half plane of convergence, this means

that the function Uðr;mÞ is analytic for Re rP 0. As a consequence, a well

known result in complex variable theory states that for any given

m ¼ 0; 1; 2; . . . the number of roots of Uðr;mÞ ¼ 0 in the right half of the

complex plane is given by the formula
lim
R!1

1

2pi

Z
cðRÞ

U0ðr;mÞ
Uðr;mÞ dr
where cðRÞ is the closed semicircular contour of radius R that is centered at the
origin and contained in Re rP 0. It can be shown, using methods similar to

those described in Gourley and Bartuccelli [21], that the above integral equals
1� 1

p
lim
R!1

argUðiR;mÞ ð2:6Þ
so this is the formula we shall study. For linear stability of the uniform state
(2.1) the above formula would have to yield a value 0 for each wave number

m ¼ 0; 1; 2; . . .
The use of formula (2.6) involves calculating the total change in the argu-

ment of the complex number UðiR;mÞ as its parameter R goes from 0 to in-

finity. To compute this we need to study the graph of ImUðiR;mÞ against
ReUðiR;mÞ for R 2 ½0;1Þ. The precise graph depends, of course, on the delay
kernels f1 and f2 which are unspecified. However, regardless of what these

kernels may be, we can show that as far as formula (2.6) is concerned the
precise possibilities are all easily enumerated, and all but one of them gives us

instability of the steady state (2.1). To see this, first note that we can write
�ff1ðiRþ d2m2Þ ¼
Z 1

0

f1ðtÞe�ðiRþd2m2Þt dt ¼ C1ðR;mÞ � iS1ðR;mÞ
and, similarly, �ff2ðiRþ d1m2Þ ¼ C2ðR;mÞ � iS2ðR;mÞ where
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C1ðR;mÞ ¼
Z 1

0

f1ðtÞe�d2m2t cosRtdt;

S1ðR;mÞ ¼
Z 1

0

f1ðtÞe�d2m2t sinRtdt;

C2ðR;mÞ ¼
Z 1

0

f2ðtÞe�d1m2t cosRtdt;

S2ðR;mÞ ¼
Z 1

0

f2ðtÞe�d1m2t sinRtdt:
It is obvious that
jCjðR;mÞj6 1 and jSjðR;mÞj6 1
for j ¼ 1; 2 and each integer m ¼ 0; 1; 2; . . . Also in the proofs of certain of our
theorems we shall need the following estimate, which uses the inequality
j sin xj6 x for xP 0:
jS1ðR;mÞj6
Z 1

0

f1ðtÞe�d2m2tj sinRtjdt6
Z 1

0

f1ðtÞe�d2m2tRtdt

6R
Z 1

0

tf1ðtÞdt ¼ RTf1 :
Similarly, we have jS2ðR;mÞj6RTf2 . We are trying to calculate the total change
in arg UðiR;mÞ as R goes from 0 to infinity. Now
UðiR;mÞ ¼ ½iRþ d1m2 þ Dþ aP �U 0ðN �Þ
ðiRþ d2m2Þ þ a1P �U 0ðN �Þ
� ½C2ðR;mÞ � iS2ðR;mÞ
faUðN �Þ � c1½C1ðR;mÞ � iS1ðR;mÞ
g:

ð2:7Þ
In view of the bounds jCjðR;mÞj6 1 and jSjðR;mÞj6 1 for j ¼ 1; 2 one easily
concludes from expression (2.7) that, for large values of R,
ReUðiR;mÞ � �R2

ImUðiR;mÞ � ðpositive constantÞR:
Also,
Uð0;mÞ ¼ ½d1m2 þ Dþ aP �U 0ðN �Þ
d2m2 þ a1P �U 0ðN �ÞC2ð0;mÞ
� ½aUðN �Þ � c1C1ð0;mÞ
: ð2:8Þ
But
C2ð0;mÞ ¼
Z 1

0

f2ðtÞe�d1m2t dt > 0
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and also
F

aUðN �Þ � c1C1ð0;mÞP aUðN �Þ � c1 ¼ a
c þ D
a1

� 	
� c1 P c þ D� c1 > 0
by assumption (1.11). It follows from this that Uð0;mÞ > 0 for any m ¼ 0;
1; 2; . . .
In view of the above facts, we see that the complex number UðiR;mÞ starts,

when R ¼ 0, on the positive real axis, and always ends up in the second

quadrant as R ! 1. And the fact that ReUðiR;mÞ � �R2 while the imaginary
part only grows like R enables us to conclude that limR!1 arg UðiR;mÞ must be
one of the values p, �p, �3p, etc. Fig. 1 shows some qualitative sketches of
graphs that would correspond to each of these three cases. Note that only the

first case is consistent with stability, since formula (2.6) then tells us that the

eigenvalue equation Uðr;mÞ ¼ 0 has no roots in the right half of the complex
plane. Any other case corresponds to having a positive (even) number of such

roots. Note also that the structure of formula (2.6) also tells us that the curve

traced out by UðiR;mÞ for R 2 ½0;1Þ cannot possibly encircle the origin in the
anticlockwise sense, otherwise a negative value would be yielded for the

number of roots.

In obtaining theorems which are sufficient for stability of the uniform

equilibrium state (2.1) we are essentially interested in finding out under what

circumstances it will be true that
lim
R!1

argUðiR;mÞ ¼ p for every m ¼ 0; 1; 2; . . .
While the following is not an exhaustive list of circumstances under which the

above conclusion follows, we can certainly state that the conclusion holds if,

for every m ¼ 0; 1; 2; . . . , either (i) ImUðiR;mÞ > 0 for all R > 0, or (ii)

ImUðiR;mÞ > 0 whenever ReUðiR;mÞ ¼ 0. The latter works by preventing the

curve UðiR;mÞ from crossing the negative imaginary axis.

Having now set up these ideas, certain theorems follow. Our first theorem;

the only one we shall prove for the full two-delay model, guarantees the linear

stability of (2.1) for sufficiently small mean delays.
ig. 1. Possible qualitative sketches of ImUðiR;mÞ against ReUðiR;mÞ for R 2 ½0;1Þ.
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Theorem 1. In the system (1.2) suppose that the parameters satisfy (1.11) and
(2.2) and that the delay kernels f1 and f2 have mean delays Tf1 and Tf2 satisfying
a1P �U 0ðN �Þðc1Tf1 þ ðc1 þ aUðN �ÞÞTf2Þ < Dþ aP �U 0ðN �Þ:
Then the steady state (2.1) of (1.2) is stable to arbitrary small perturbations.

Proof.We aim to show that ImUðiR;mÞ > 0 for all R > 0 and all m ¼ 0; 1; 2; . . .
From (2.7), we have
ImUðiR;mÞ ¼ R½d1m2 þ d2m2 þ Dþ aP �U 0ðN �Þ
 þ a1P �U 0ðN �Þ
� ½�aUðN �ÞS2ðR;mÞ þ c1C2ðR;mÞS1ðR;mÞ

þ c1C1ðR;mÞS2ðR;mÞ
:
Using the various bounds on the CjðR;mÞ and SjðR;mÞ for j ¼ 1; 2 we can
conclude that
ImUðiR;mÞPRðDþ aP �U 0ðN �ÞÞ � a1P �U 0ðN �Þ½aUðN �ÞRTf2 þ c1RTf1
þ c1RTf2 

and this is positive for all R > 0 under the condition on Tf1 and Tf2 stated in the
theorem. Therefore, limR!1 arg UðiR;mÞ ¼ p and so the eigenvalue equation

Uðr;mÞ ¼ 0 has no roots in the right half complex plane. Since this is true for

any value of the wave number m ¼ 0; 1; 2; . . . the result follows and the proof is
complete. �

2.1. Delay in nutrient recycling only

In this subsection we shall consider the case when the growth response of the

species to nutrient uptake is instantaneous. Such a model can be considered as

an approximation to the case when this particular time-scale is negligible to

that on which the dead plankton decompose. This submodel can be extracted

as a particular case of the general model (1.2) by setting f2ðtÞ ¼ dðtÞ, the Dirac
delta function, under which (1.2) reduces to
oN
ot

¼ d1
o2N
ox2

þ DðN 0 � NÞ � aUðNÞP

þ c1

Z t

�1

Z p

0

G1ðx; y; t � sÞf1ðt � sÞP ðy; sÞdy ds;

oP
ot

¼ d2
o2P
ox2

þ P ½�ðc þ DÞ þ a1UðNðx; tÞÞ
:

ð2:9Þ
This can be regarded as the diffusive version of the model studied by Beretta

et al. [3]. Of course, it still has the uniform steady state (2.1). The simplification

of having only one delay term enables us to obtain more information on the
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stability of this steady state. Our first theorem on this is simply a corollary of

Theorem 1 arising by taking f2ðtÞ ¼ dðtÞ, so that Tf2 ¼ 0.

Theorem 2. In the system (2.9) suppose that the parameters satisfy (1.11) and
(2.2) and that the delay kernel f1 has mean delay Tf1 satisfying
Tf1 <
Dþ aP �U 0ðN �Þ
a1c1P �U 0ðN �Þ :
Then the steady state (2.1) of (2.9) is stable to arbitrary small perturbations.

Our next theorem gives a condition on the various coefficients of the model

and the function U, under which the uniform state will be stable for any

normalised delay kernel f1ðtÞ. If the hypotheses of this theorem are satisfied

then the delay is said to be harmless, meaning that it is incapable of desta-
bilising the steady state whatever the form of the kernel f1ðtÞ.

Theorem 3. In the system (2.9) suppose that the parameters satisfy (1.11) and
(2.2) together with
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a1P �U 0ðN �ÞðaUðN �Þ � c1Þ
p

ðDþ aP �U 0ðN �ÞÞ > a1c1P
�U 0ðN �Þ:
Then the steady state (2.1) of (2.9) is stable to arbitrary small perturbations.

Proof. We use the second of the two strategies enumerated earlier and aim to

show that ImUðiR;mÞ > 0 whenever ReUðiR;mÞ ¼ 0. We need an expression

for UðiR;mÞ for our submodel. The expression is the particular case of (2.7)
when f2ðtÞ ¼ dðtÞ (giving C2ðR;mÞ ¼ 1 and S2ðR;mÞ ¼ 0) so that
UðiR;mÞ ¼ ðiRþ d1m2 þ Dþ aP �U 0ðN �ÞÞðiRþ d2m2Þ
þ a1P �U 0ðN �ÞðaUðN �Þ � c1ðC1ðR;mÞ � iS1ðR;mÞÞÞ: ð2:10Þ
Let R0 be a value of R such that ReUðiR0;mÞ ¼ 0. Then, from (2.10),
R20 ¼ d2m2ðd1m2 þ Dþ aP �U 0ðN �ÞÞ þ a1P �U 0ðN �ÞðaUðN �Þ � c1C1ðR0;mÞÞ
and so, since C1ðR0;mÞ6 1, any such value R0 must satisfy
R20 P a1P �U 0ðN �ÞðaUðN �Þ � c1Þ:
Thus
ImUðiR0;mÞ ¼ R0ðd1m2 þ d2m2 þ Dþ aP �U 0ðN �ÞÞ
þ a1c1P

�U 0ðN �ÞS1ðR0;mÞPR0ðDþ aP �U 0ðN �ÞÞ
� a1c1P

�U 0ðN �ÞP
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a1P �U 0ðN �ÞðaUðN �Þ � c1Þ

p
� ðDþ aP �U 0ðN �ÞÞ � a1c1P

�U 0ðN �Þ
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which is positive under the assumptions of the theorem. We conclude that

limR!1 arg UðiR;mÞ ¼ p. This is true for all m ¼ 0; 1; 2 . . . and the proof is
complete.

We now prove a theorem concerning the linear stability of (2.1), as a so-

lution of (2.9), when the kernel f1 is one of the two generic delay kernels given
by the second two kernels in (1.8). In fact, we shall consider the more general

family of kernels
f1ðtÞ ¼
tp

p!spþ1
e�t=s; p ¼ 0; 1; 2; . . . ð2:11Þ
of which the weak and strong generic delay kernels are the particular cases

p ¼ 0 and p ¼ 1. For these two cases we shall show that the uniform state (2.1)

of (2.9) is linearly stable for any s > 0. More generally, a condition on p is
needed. For this more general kernel the mean delay Tf1 ¼ ðp þ 1Þs. �
Theorem 4. In the system (2.9) suppose that the parameters satisfy (1.11) and
(2.2) and that the delay kernel is given by (2.11). Suppose also that
ðp þ 1Þ tan�1 sR�
6 p; where R� ¼ a1c1P

�U 0ðN �Þ
Dþ aP �U 0ðN �Þ :
Then the steady state (2.1) of (2.9) is stable to arbitrary small perturbations.
Proof.We aim to show that ImUðiR;mÞ > 0 for all R > 0 and all m ¼ 0; 1; 2; . . .
Let m be fixed. It is necessary to consider separately the cases R > R� and
0 < R6R� where R� is the quantity defined in the statement of the theorem.

The expression for ImUðiR;mÞ can be found in the proof of the previous

theorem. For R > R�, we have, using S1ðR;mÞP�1,
ImUðiR;mÞ ¼ Rðd1m2 þ d2m2 þ Dþ aP �U 0ðN �ÞÞ
þ a1c1P

�U 0ðN �ÞS1ðR;mÞPRðDþ aP �U 0ðN �ÞÞ
� a1c1P

�U 0ðN �Þ
> R�ðDþ aP �U 0ðN �ÞÞ � a1c1P

�U 0ðN �Þ ¼ 0:
For 0 < R6R� proceed as follows. The kernel (2.11) has Laplace transform
�ff1ðrÞ ¼
1

ð1þ rsÞpþ1
:

Introduce /ðR;mÞ: ½0;1Þ ! ½0; p=2Þ, defined by
tan/ðR;mÞ ¼ sR
1þ sd2m2

; 06/ðR;mÞ < p=2:
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Then
S1ðR;mÞ ¼ �Im �ff1ðiRþ d2m2Þ ¼ sinððp þ 1Þ/ðR;mÞÞ
ðð1þ sd2m2Þ2 þ s2R2Þðpþ1Þ=2

:

Now, if 0 < R6R� then, since /ðR;mÞ is an increasing function of R,
/ðR;mÞ6 tan�1
sR�

1þ sd2m2

� 	
:

Hence
ðp þ 1Þ/ðR;mÞ6 ðp þ 1Þ tan�1 sR�

1þ sd2m2

� 	
6 ðp þ 1Þ tan�1 sR�

6 p
by hypothesis. It follows that S1ðR;mÞP 0 and hence, also, ImUðiR;mÞ > 0 for

0 < R6R� as desired. This all holds independently of the wave number m and

so the proof is complete.

Remark. Since tan�1 sR� < p=2 the hypotheses of the theorem are obviously

satisfied when p ¼ 0 and 1. It follows that for the weak and strong generic

delay kernels we have stability independently of s.

2.2. Delay in growth response to nutrient uptake

The second submodel we shall consider is the case when the delay involved

in the decomposition of the dead plankton is zero, or very small compared to

the delay in the growth response of the plankton to nutrient uptake. This

submodel is a particular case of the general model when f1ðtÞ ¼ dðtÞ. The
model (1.2) becomes, in this case,
oN
ot

¼ d1
o2N
ox2

þ DðN 0 � NÞ � aUðNÞP þ c1Pðx; tÞ;

oP
ot

¼ d2
o2P
ox2

þ P �ðc þ DÞ þ a1

Z t

�1

Z p

0

G2ðx; y; t � sÞf2ðt � sÞUðNðy; sÞÞdy ds
� �

:

ð2:12Þ

In this section we shall demonstrate that the equilibrium (2.1) can be driven

unstable for sufficiently small diffusivities d1, d2 when the delay kernel f2ðtÞ
assumes the form
f2ðtÞ ¼
1

s
e�t=s
the Laplace transform of which is �ff2ðsÞ ¼ 1=ð1þ ssÞ. In this case the general
eigenvalue equation (2.5) can be rearranged after some algebra into a cubic

equation for r:
r3 þ a1ðs;mÞr2 þ a2ðs;mÞr þ a3ðs;mÞ ¼ 0 ð2:13Þ
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with coefficients aiðs;mÞ given by
a1ðs;mÞ ¼
1

s
þ ð2d1 þ d2Þm2 þ Dþ aP �U 0ðN �Þ;

a2ðs;mÞ ¼ d1ðd1 þ 2d2Þm4 þ ðd1 þ d2Þ

� 1

s

�
þ Dþ aP �U 0ðN �Þ

	
m2 þ 1

s
ðDþ aP �U 0ðN �ÞÞ;

a3ðs;mÞ ¼ d2m2 1

s

�
þ d1m2

	
ðd1m2 þ Dþ aP �U 0ðN �ÞÞ

þ 1

s
a1P �U 0ðN �ÞðaUðN �Þ � c1Þ:
Note that all three of these coefficients are positive for all parameter combi-

nations. If, additionally,
a1ðs;mÞa2ðs;mÞ > a3ðs;mÞ; for all m ¼ 0; 1; 2; . . . ;
then, by the Routh Hurwitz criteria, the equilibrium (2.1) is locally stable. We

can demonstrate that the equilibrium can be driven unstable for sufficiently
small diffusivities under a further condition on the parameters. To keep the

algebra as simple as possible we let m ¼ 0; continuity arguments imply that the

same general conclusions will hold for any given m 6¼ 0 provide the diffusivities

are both sufficiently small. Thinking of the delay s as bifurcation parameter, we
may anticipate a Hopf bifurcation (implying the appearance of time-periodic

oscillations) if there exists some value of s for which
a1ðs; 0Þa2ðs; 0Þ ¼ a3ðs; 0Þ: ð2:14Þ
If this is so then (2.13) has a pair of purely imaginary roots r ¼ �ix where

x > 0 satisfies
x2 ¼ a2ðs; 0Þ ¼
1

s
ðDþ aP �U 0ðN �ÞÞ: ð2:15Þ
Eq. (2.14) yields that s satisfies
1

s
ðDþ aP �U 0ðN �ÞÞ ¼ a1P �U 0ðN �ÞðaUðN �Þ � c1Þ � ðDþ aP �U 0ðN �ÞÞ2

ð2:16Þ
and thus a Hopf bifurcation occurs if and only if
a1P �U 0ðN �ÞðaUðN �Þ � c1Þ > ðDþ aP �U 0ðN �ÞÞ2: ð2:17Þ
It is not immediately clear that (2.17) can be satisfied by any parameter
combination especially since N � and P � depend on the other parameters and

since conditions (1.11) and (2.2) must hold. Therefore, to investigate further

whether (2.17) can hold we shall work with the Michaelis–Menten function
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UðNÞ ¼ N=ðk þ NÞ and compute the equilibrium components ðN �; P �Þ explic-
itly. For this choice of the uptake function UðNÞ, inequality (2.17) can be put
into the form
ða1 � c � DÞ2

ka1
N 0

�
� kðc þ DÞ
a1 � c � D

	

> D 1

0@ þ
aða1 � c � DÞ2 N 0 � kðcþDÞ

a1�c�D

� �
ka21

a
a1
ðc þ DÞ � c1

� �
1A2

: ð2:18Þ
It is clear that, all other parameters being fixed, inequality (2.18) will be sat-

isfied for D sufficiently small. The value of s at which the bifurcation occurs is
then given by (2.16).

The algebra is considerably more difficult for m > 0. The reader will find, for

example, that the equation for s no longer has the structure of (2.16) but be-
comes instead a quadratic equation. However by continuity arguments we can

still anticipate the same general conclusions holding if d1 and d2 are both
sufficiently small. Note, however, that for all m sufficiently large (or m > 0 fixed

and d1, d2 both sufficiently large) we necessarily have
a1ðs;mÞa2ðs;mÞ > a3ðs;mÞ
and thus large diffusivities are stabilising.

In the remainder of this subsection we present the results of some numerical

simulations of the system (2.12). The simulations were carried out for the case

when f2ðtÞ ¼ ð1=sÞe�t=s. The use of this particular delay kernel enables us to

reformulate system (2.12) as a reaction–diffusion system without delay terms

(the delay parameter s appears as a coefficient in the reformulated system). This
is particularly useful for the purposes of numerical simulation. Define
Qðx; tÞ ¼
Z t

�1

Z p

0

G2ðx; y; t � sÞ 1
s
e�ðt�sÞ=sUðNðy; sÞÞdy ds: ð2:19Þ
Next, note that although G2ðx; y; tÞ is defined by being the solution of
oG2

ot
¼ d1

o2G2

oy2
;

oG2

oy
¼ 0 at y ¼ 0; p; G2ðx; y; 0Þ ¼ dðx� yÞ;
it actually also satisfies
oG2

ot
¼ d1

o2G2

ox2
;

oG2

ox
¼ 0 at x ¼ 0; p; G2ðx; y; 0Þ ¼ dðx� yÞ:
In view of this fact, if we differentiate (2.19) with respect to t the result is
oQ
ot

¼ d1
o2Q
ox2

þ 1

s
ðUðNÞ � QÞ:
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It is also easily seen that oQ=ox ¼ 0 at x ¼ 0, p. In view of these facts, we assert
that system (2.12), in the case when f2ðtÞ ¼ ð1=sÞe�t=s, can be replaced by
oN
ot

¼ d1
o2N
ox2

þ DðN 0 � NÞ � aUðNÞP þ c1P ðx; tÞ;

oP
ot

¼ d2
o2P
ox2

þ Pð�ðc þ DÞ þ a1QÞ;

oQ
ot

¼ d1
o2Q
ox2

þ 1

s
ðUðNÞ � QÞ

ð2:20Þ
with homogeneous Neumann boundary conditions for each component. In

fact, the solution set of (2.12) is not quite the same as that of (2.20). Indeed,

(2.19) requires that the N and Q components of the initial data be related by
Qðx; 0Þ ¼
Z 0

�1

Z p

0

G2ðx; y;�sÞ 1
s
es=sUðNðy; sÞÞdy ds ð2:21Þ
so the two systems are equivalent only for initial data such that (2.21) holds.

However, if we solve the third equation of (2.20) independently of the others

the result is
Qðx; tÞ ¼ eQQðx; tÞ þ
Z t

�1

Z p

0

G2ðx; y; t � sÞ 1
s
e�ðt�sÞ=sUðNðy; sÞÞdy ds;
where eQQðx; tÞ satisfies
oeQQ
ot

¼ d1
o2 eQQ
ox2

� 1

s
eQQ; eQQx ¼ 0 at x ¼ 0; p ð2:22Þ
so that eQQðx; tÞ ! 0 as t ! 1. Therefore, we are assured that the use of initial

data not satisfying (2.21) has only a transient effect on the solution dynamics.

This is important since Qðx; 0Þ cannot in practice be calculated from (2.21) for

any non-homogeneous initial data, even in the simplest reasonable case when

UðNÞ ¼ N=ðk þ NÞ. Our initial data were always taken to be small sinusoidal
perturbations from the equilibrium values; in this way (2.21) will be approxi-
mately satisfied.

Our numerical simulations were carried out using the NAG routine

D03PCF. The Michaelis–Menten function UðNÞ ¼ N=ðk þ NÞ was used. The
parameter values are taken from [13] and are: k ¼ 5:85, D ¼ 0:08, N 0 ¼ 3:66,
a ¼ 4:25, a1 ¼ 3:45, c ¼ 0:58 and c1 ¼ 0:12. The values for the delay s and the
diffusivities are shown in the captions. Only the solution for the plankton,

P ðx; tÞ, is plotted. For these parameter values the equilibrium P � ¼ 0:263, and
numerical computation indicates that inequality (2.18) is satisfied for 0 <
D < 0:15955. Our value of D being within this range, a Hopf bifurcation can be
anticipated as s is increased, and (2.16) predicts this will occur at s ¼ 7:245.
The simulation shown in Fig. 2 is for s ¼ 2, showing rapid convergence of



Fig. 2. Numerical simulation of system (2.20) under homogeneous Neumann boundary conditions.

In this simulation the delay s ¼ 2 and we chose d1 ¼ 0:001 and d2 ¼ 0:002. Values for the other

parameters are stated in the text. Evolution of P ðx; tÞ is to the uniform steady state P � ¼ 0:263.

Fig. 3. Numerical simulation of system (2.20) under homogeneous Neumann boundary conditions.

In this simulation, s ¼ 7:4, d1 ¼ 0:1 and d2 ¼ 0:2. Evolution is to a time periodic, spatially uniform

solution.
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P ðx; tÞ to the equilibrium P �. The second simulation (shown without initial
transients in Fig. 3) is for s ¼ 7:4 and shows a purely time-periodic solution
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convergence toward which was slow. At the bifurcation the periodic solution

will have period 2p=x, with x given by (2.15) and s by (2.16), yielding a figure
for the parameter values we have used of about 37.367 at bifurcation. Our

value of s is slightly beyond the bifurcation. The numerically computed solu-
tion seems to have a period of about 38.5, suggesting a gradual increase in the

period as s is increased beyond the bifurcation.
3. Discussion

This paper has addressed the issue, in the context of a diffusive nutrient-

plankton model, of how to correctly incorporate time-delay effects into a

mathematical model of a diffusing population. This modelling issue is now

reasonably well understood for the case when the domain is infinite. Therefore

in this paper we have been concentrating on the more difficult case of a finite

spatial domain, which introduces additional difficulties in that interactions with

the domain�s boundaries during the time-delay period, when the individuals are
drifting to their current position from where they were previously, must be

taken into account in deriving the time delay terms. As a consequence of this

we find that the spatial averaging kernels are more complicated than for the

infinite domain case, but for a one-dimensional domain may still be computed

explicitly and in the homogeneous Neumann problem are Fourier cosine series.

This enables considerable analytic progress to be made in that dispersion re-

lations can be found for the linear stability problem, and that therefore the

linear stability analysis and local bifurcation structure can be computed ana-
lytically. In principle it should be possible to extend the ideas to n-dimensional
domains, especially since the heat equation can be solved explicitly in many

geometries.

An interesting and worthwhile, but highly non-trivial question remaining to

be addressed, is the extent to which these ideas can be carried over to other

kinds of diffusion. Of course, the kernels G1 and G2 will not be found by solving

the heat equation, they will be found by solving whatever diffusion equations

are describing the drift.
For the full general model (with both delays present) we showed that, under

certain reasonable assumptions on the parameters, if the mean delays are rel-

atively small, then the steady state of the model is stable under arbitrary small

perturbations. This agrees with the analyses on the plankton models with local

delays [9,10].

To study the effects of the two delays separately, we have considered two

special cases: when delay is present only in the nutrient recycling term, and

when delay is present only in the growth response term. We have shown that
the first of these submodels is always stable if the average delay is relatively

small, that under certain conditions the delays are completely incapable of
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destabilising the interior equilibrium and, rather interestingly, that the fre-

quently used weak and strong generic delay kernels are not capable of desta-
bilising this equilibrium state, for all ecologically relevant values of the other

parameters. This phenomenon has also been observed in plankton models with

local delays [6]. For our second submodel, with delay only in the growth

response term, we have shown that as the mean delay is increased a Hopf

bifurcation is possible to a time-periodic solution. Although our detailed

calculations were carried out only for zero diffusivities, or zero wave number

perturbation, continuity arguments mean that the Hopf bifurcation will also

occur for any non-zero wave number m ¼ 1; 2; 3; . . . provided the diffusivities
are both sufficiently small. These Hopf bifurcations are to spatially uniform

temporally periodic solutions (when m ¼ 0) and to standing wave solutions

(when m > 0). Numerical simulations confirm the analytical results and also

suggest that, in this particular model, purely temporal oscillations are the kind

most likely to be observed. Our analysis of the two submodels also suggests

that the delay in the growth response to nutrient uptake is much more likely to

be destabilising than the delay in nutrient recycling.

The system (1.1) was shown by Ruan [13] to possess non-constant stationary
solutions through the mechanism of diffusion-driven instability. Such solutions

do not seem to occur in the spatio-temporal delay model of the present paper,

at least not via bifurcation from a spatially uniform equilibrium. Thus it would

appear that the inclusion of spatial averaging in this system is in some sense

restricting the types of possible solutions, possibly due to the averaging playing

some kind of homogenising role. Of course, temporally periodic solutions

without spatial structure are not affected by spatial averaging. These obser-

vations may be useful in explaining and understanding planktonic patchiness
[12].
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