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A MULTIPATCH MALARIA MODEL WITH LOGISTIC GROWTH
POPULATIONS∗
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Abstract. In this paper, we propose a multipatch model to study the effects of population
dispersal on the spatial spread of malaria between patches. The basic reproduction number R0 is
derived, and it is shown that the disease-free equilibrium is locally asymptotically stable if R0 < 1
and unstable if R0 > 1. Bounds on the disease-free equilibrium and R0 are given. A sufficient
condition for the existence of an endemic equilibrium when R0 > 1 is obtained. For the two-patch
submodel, the dependence of R0 on the movement of exposed, infectious, and recovered humans
between the two patches is investigated. Numerical simulations indicate that travel can help the
disease to become endemic in both patches, even though the disease dies out in each isolated patch.
However, if travel rates are continuously increased, the disease may die out again in both patches.
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1. Introduction. Malaria is a parasitic vector-borne disease caused by the Plas-
modium, which is transmitted to people via the bites of infected female mosquitoes
of the genus Anopheles. People with malaria often experience fever, chills, and flu-
like illness. If not treated promptly or effectively, an infected individual may develop
severe complications and die. Vaccines for malaria are under development, with no
approved vaccine yet available. About half of the world’s population is at risk of
malaria. This leads to an estimated 225 million malaria cases and nearly 781,000
deaths worldwide in 2008, the vast majority are children under five in Africa region
(WHO [48]).

Following the pioneering work of Ross [35] and Macdonald [24, 25, 26], mathe-
matical modeling of malaria transmission has been developed rapidly. Among these,
we would like to mention Dietz, Molineaux, and Thomas [12], Aron and May [4],
Nedelman [30], Koella [22], Gupta, Swinton, and Anderson [16], Ngwa and Shu [33],
Ngwa [32], Chitnis, Cushing, and Hyman [7], Chitnis, Hyman, and Cushing [8], Ruan,
Xiao, and Beier [36], Lou and Zhao [23], and the references cited therein.

In [33] (also Ngwa [32]), Ngwa and Shu introduced a compartmental model de-
scribed by ordinary differential equations (ODEs) for the spread of malaria involving
variable human and mosquito populations, in which the human population is classi-
fied as susceptible, exposed, infectious, and recovered, and the mosquito population is
divided into classes containing susceptible, exposed, and infectious individuals. They
established a threshold below which the disease-free equilibrium is stable and above
which the disease can persist. Chitnis, Cushing, and Hyman [7] and Chitnis, Hyman,
and Cushing [8] extended the model in Ngwa and Shu [33] and Ngwa [32] to generalize
the mosquito biting rate, include human immigration, and exclude direct infectious-
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820 DAOZHOU GAO AND SHIGUI RUAN

to-susceptible human recovery. They presented a bifurcation analysis in [7], defined a
reproductive number, and showed the existence and stability of the disease-free and
endemic equilibria. To determine the relative importance of model parameters in dis-
ease transmission and prevalence, sensitivity indices of the reproductive number and
the endemic equilibrium were computed in [8].

Malaria varies greatly among different regions in the vectors that transmit it,
in the species causing the disease, and in the level of intensity. It can be easily
transmitted from one region to another due to extensive travel and migration (Martens
and Hall [27], Tatem, Hay, and Rogers [41]). This leads to new outbreaks in some
former malaria-free or lower transmission areas. For instance, even though malaria
has been eliminated in the United States since the 1950’s, about 1,500 malaria cases
are diagnosed every year in this country, of which approximately 60% are among U.S.
travelers (Newman et al. [31]). Thus it is necessary to distinguish the regions and
understand the influence of population dispersal on the propagation of the disease
between regions, which may improve malaria control programs.

Multipatch models have been developed to study the spatial spread of infec-
tious diseases by many researchers over the past three decades. In particular, mod-
els of malaria in this direction include Dye and Hasibeder [13], Hasibeder and Dye
[17], Torres-Sorando and Rodriguez [44], Rodriguez and Torres-Sorando [34], Smith,
Dushoff, and McKenzie [38], Auger et al. [5], Cosner et al. [9], Arino, Ducrot, and
Zongo [3], etc. For references on general epidemic models in a patchy environment,
we refer the reader to two review articles by Wang [46] and Arino [2]. Most of these
studies focus on evaluating the basic reproduction number R0 and establishing the
existence and stability of the disease-free and endemic equilibria. One of the goals in
considering multipatch epidemic models is to study how the dispersal of individuals,
in particular of exposed and infectious individuals, contributes to the spread of dis-
eases from region to region. Mathematically, one way to investigate this problem is
to determine how R0 depends on model parameters, especially those describing the
movement of exposed and infectious individuals. This indeed is a very interesting and
challenging problem and there are very few results on this aspect (see Theorem 4.2
in Hsieh, van den Driessche, and Wang [20] and Lemma 3.4 in Allen et al. [1]). The
reason is that for a multipatch model R0 usually cannot be expressed analytically in
terms of model parameters and the monotone dependence of R0 on model parameters
is very complicated.

In this paper, based on the model of Ngwa and Shu [33] (also Ngwa [32], Chitnis,
Cushing, and Hyman [7], and Chitnis, Hyman, and Cushing [8]), we propose a mul-
tipatch model to examine how population dispersal affects malaria spread between
patches. This paper is organized as follows. In next section, we describe our model
in detail. The basic reproduction number R0 is derived and shown to be a threshold
in section 3. In section 4, we analyze the dependence of R0 on the model parameters,
in particular on the travel rates of exposed, infectious, and recovered humans, for the
two-patch submodel using the matrix theory. In section 5, numerical simulations are
performed to investigate the effects of human movement on disease dynamics. Section
6 gives a brief discussion of main results and future work.

2. Model formulation. We model the transmission dynamics of malaria be-
tween humans and mosquitoes within a patch and the spatial dispersal between n
patches. Within a single patch, our model is based on that of Ngwa and Shu [33]
(also Ngwa [32], Chitnis, Cushing, and Hyman [7], and Chitnis, Hyman, and Cush-
ing [8]) with a susceptible-exposed-infectious-recovered (SEIR) structure for humans
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and a susceptible-exposed-infectious (SEI) structure for mosquitoes. Hereafter, the
subscript i refers to patch i and the superscript h/v refers to humans/mosquitoes.
Let Sh

i (t), E
h
i (t), I

h
i (t), and Rh

i (t) denote, respectively, the number of susceptible,
exposed, infectious, and recovered humans in patch i at time t. The total human
population in patch i at time t is Nh

i (t) = Sh
i (t)+E

h
i (t)+I

h
i (t)+R

h
i (t). Similarly, let

Sv
i (t), E

v
i (t), and I

v
i (t) denote, respectively, the number of susceptible, exposed, and

infectious mosquitoes in patch i at time t. The total mosquito population in patch i
at time t is Nv

i (t) = Sv
i (t)+E

v
i (t)+ I

v
i (t). The mosquito population has no recovered

class since we assume that the mosquito’s infective period ends with its death.

Fig. 1. Flow diagram of the mosquito-borne model in patch i.

For patch i, all newborns in both populations are assumed to fall into the suscep-
tible class (no vertical transmission). Susceptible humans, Sh

i , may become exposed
when they are bitten by infectious mosquitoes. The exposed humans, Eh

i , become
infectious as the incubation period ends. Infectious humans, Ihi , either reenter the
susceptible class or recover in the immune compartment, Rh

i , where they remain for
the period of their immunity before returning to the susceptible class. Susceptible
mosquitoes, Sv

i , can be infected when they bite infectious or recovered humans and
once infected they progress through the exposed, Ev

i , and infectious, Ivi , classes.
Both human and mosquito populations follow a logistic growth and migrate between
patches, with humans having additional disease-induced death. The flowchart of
malaria transmission for patch i omitting density-dependent death and travel is il-
lustrated in Figure 1. Solid arrows denote within-species progression while dotted
arrows denote interspecies transmission.

The interactions between humans and mosquitoes in patch i (with i = 1, 2, . . . , n)
based on the above assumptions are then described by the following differential equa-
tions with nonnegative initial conditions satisfying Nh

i (0) > 0:

dSh
i

dt
= λhi N

h
i + βh

i R
h
i + rhi I

h
i − cvhi avi I

v
i

Nh
i

Sh
i − fh

i (N
h
i )S

h
i +

n∑
j=1

ϕS
ijS

h
j ,

dEh
i

dt
=
cvhi avi I

v
i

Nh
i

Sh
i − (νhi + fh

i (N
h
i ))E

h
i +

n∑
j=1

ϕE
ijE

h
j ,
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dIhi
dt

= νhi E
h
i − (rhi + αh

i + γhi + fh
i (N

h
i ))I

h
i +

n∑
j=1

ϕI
ijI

h
j ,

dRh
i

dt
= αh

i I
h
i − (βh

i + fh
i (N

h
i ))R

h
i +

n∑
j=1

ϕR
ijR

h
j ,(2.1)

dSv
i

dt
= λviN

v
i − chvi avi I

h
i

Nh
i

Sv
i − dhvi aviR

h
i

Nh
i

Sv
i − fv

i (N
v
i )S

v
i +

n∑
j=1

ψS
ijS

v
j ,

dEv
i

dt
=
chvi avi I

h
i

Nh
i

Sv
i +

dhvi aviR
h
i

Nh
i

Sv
i − (νvi + fv

i (N
v
i ))E

v
i +

n∑
j=1

ψE
ijE

v
j ,

dIvi
dt

= νvi E
v
i − fv

i (N
v
i )I

v
i +

n∑
j=1

ψI
ijI

v
j ,

where

fh
i (N

h
i ) = μh

i + ρhiN
h
i is the density-dependent death rate for humans;

fv
i (N

v
i ) = μv

i + ρviN
v
i is the density-dependent death rate for mosquitoes;

λhi is the birth rate of humans;
λvi is the birth rate of mosquitoes;
avi is the mosquito biting rate;
cvhi is the probability that a bite by an infectious mosquito on a susceptible

human will transfer the infection to the human;
chvi is the probability that a bite by a susceptible mosquito on an infectious

human will transfer the infection to the mosquito;
dhvi is the probability that a bite by a susceptible mosquito on a recovered

human will transfer the infection to the mosquito;
νhi is the progression rate that exposed humans become infectious;
νvi is the progression rate that exposed mosquitoes become infectious;
rhi is the recovery rate that infectious humans become susceptible;
αh
i is the recovery rate that infectious humans become recovered;
γhi is the disease-induced death rate for humans;
βh
i is the rate of loss of immunity for humans;
ϕK
ij ≥ 0 for K = S,E, I, R is the immigration rate from patch j to patch i for i �=

j of susceptible, exposed, infectious, and recovered humans, respectively;
ψL
ij ≥ 0 for L = S,E, I is the immigration rate from patch j to patch i for i �= j

of susceptible, exposed, and infectious mosquitoes, respectively;
−ϕK

ii ≥ 0 for K = S,E, I, R is the emigration rate of susceptible, exposed,
infectious, and recovered humans in patch i, respectively;

−ψL
ii ≥ 0 for L = S,E, I, is the emigration rate of susceptible, exposed, and

infectious mosquitoes in patch i, respectively.
For simplicity, death rates and birth rates of the individuals during travel are

ignored. Thus, we have

ϕK
ii = −

n∑
j=1
j �=i

ϕK
ji , K = S,E, I, R and ψL

ii = −
n∑

j=1
j �=i

ψL
ji, L = S,E, I, 1 ≤ i ≤ n.

Unless otherwise indicated, the travel rate matrices (ϕK
ij )n×n for K = S,E, I, R and

(ψL
ij)n×n for L = S,E, I are assumed to be irreducible. Here the movement of humans
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and mosquitoes between patches is governed by the Eulerian approach (Cosner et al.
[9]), that is, humans and mosquitoes change their residences when they move from
one patch to another. It is worth noting that they may have different spatial scales
because humans can travel much longer distances than mosquitoes.

In the absence of disease and dispersal, both human and mosquito populations
in each patch are modeled by logistic growth. For the persistence of the dispersal
system, we assume that

s(((λhi − μh
i )δij + ϕS

ij)n×n) > 0 and s(((λvi − μv
i )δij + ψS

ij)n×n) > 0,

where s denotes the spectral bound of a matrix, which is the largest real part of any
eigenvalue of the matrix, and δij denotes the Kronecker delta (i.e., 1 when i = j and
0 otherwise), or else they will die out in all patches. This implies that λhi > μh

i and
λvj > μv

j for some i and j.

Furthermore, it is assumed that all parameters in the model are strictly positive
with the exception of the travel rates.

Let Nh(t) =
∑n

i=1N
h
i (t) and Nv(t) =

∑n
i=1N

v
i (t). The following theorem

demonstrates that model (2.1) is mathematically well posed and epidemiologically
reasonable.

Theorem 2.1. Consider model (2.1) with nonnegative initial conditions satisfy-
ing Nh

i (0) > 0 for i = 1, . . . , n. Then the system has a unique solution and all disease
state variables remain nonnegative for all time t ≥ 0. Moreover, both the total human
population Nh(t) and the total mosquito population Nv(t) are bounded.

Proof. The vector field defined by (2.1) is continuously differentiable, so the initial
value problem has a unique solution which exists for all t ≥ 0. The nonnegative
property of state variables can be easily verified.

Denote χv = max1≤i≤n(λ
v
i − μv

i ) > 0 and ρv = min1≤i≤n ρ
v
i . Then

dNv

dt
=

n∑
i=1

(λviN
v
i − fv

i (N
v
i )N

v
i ) =

n∑
i=1

((λvi − μv
i )N

v
i − ρvi (N

v
i )

2)

≤ χv
n∑

i=1

Nv
i − ρv

n∑
i=1

(Nv
i )

2 ≤ χv
n∑

i=1

Nv
i − ρv

(
n∑

i=1

Nv
i

)2

/n

= χvNv − ρv(Nv)2/n = (χv − ρvNv/n)Nv.

Hence, by a comparison theorem,Nv(t) is bounded from above by max{nχv/ρv, Nv(0)}.
Similarly, we can find an upper bound for Nh(t). The proof is complete.

3. Threshold dynamics. We first show the existence of a disease-free equilib-
rium (DFE) for (2.1), then calculate the basic reproduction number R0 and give an
estimate of it. Uniform persistence of the disease and the existence of an endemic
equilibrium are discussed at the end of this section.

3.1. Disease-free equilibrium. A disease-free equilibrium is a steady state
solution of system (2.1) where there is no disease, namely, Sh

i = Sh∗
i > 0, Sv

i = Sv∗
i >

0, and all other variables Eh
i , E

v
i , I

h
i , I

v
i , R

h
i = 0 for i = 1, 2, . . . , n. The partially

immune human, Rh
i , is regarded as infected because individuals in this status are still

infective to susceptible mosquitoes. Mathematically, if Eh
i = Ev

i = Ihi = Ivi = 0 for
all i at a steady state, then by summing the fourth equation of (2.1) up from 1 to n,
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we have

−
n∑

i=1

(βh
i +f

h
i (N

h
i ))R

h
i +

n∑
i=1

n∑
j=1

ϕR
ijR

h
j = −

n∑
i=1

(βh
i +f

h
i (N

h
i ))R

h
i +

n∑
i=1

n∑
j=1

ϕR
jiR

h
i = 0.

Hence, −∑n
i=1(β

h
i + fh

i (N
h
i ))R

h
i = 0. This implies Rh

i = 0 for i = 1, 2, . . . , n.
Let Sh∗ = (Sh∗

1 , Sh∗
2 , . . . , Sh∗

n ) and let Sv∗ = (Sv∗
1 , Sv∗

2 , . . . , Sv∗
n ). Thus there is a

DFE for (2.1) if and only if Sh∗ and Sv∗ are positive equilibria to the subsystems

(3.1)
dSh

i

dt
= λhi S

h
i − fh

i (S
h
i )S

h
i +

n∑
j=1

ϕS
ijS

h
j , 1 ≤ i ≤ n

and

(3.2)
dSv

i

dt
= λvi S

v
i − fv

i (S
v
i )S

v
i +

n∑
j=1

ψS
ijS

v
j , 1 ≤ i ≤ n,

respectively. They are guaranteed by the following lemma.
Lemma 3.1. Let IntRn

+ be the interior of Rn
+. For system (3.1), there is a unique

nonzero equilibrium Sh∗ ∈ IntRn
+ which is globally asymptotically stable with respect

to R
n
+\{0}. Moreover, if λhi > μh

i for 1 ≤ i ≤ n, we have

P h ≡ min
1≤i≤n

Kh
i

Lh
i

· Lh ≤ Sh∗ ≤ Qh ≡ max
1≤i≤n

Kh
i

Lh
i

· Lh,

where Kh
i =

λh
i −μh

i

ρh
i

for 1 ≤ i ≤ n, and Lh = (Lh
1 , . . . , L

h
n−1, L

h
n) is the unique solution

to
n∑

j=1

ϕS
ijS

h
j = 0, i = 1, . . . , n, and Sh

n = 1

with Lh
i > 0 for 1 ≤ i ≤ n− 1 and Lh

n = 1. A similar result holds for system (3.2).
Proof. It is easy to see that system (3.1) is cooperative and irreducible. The ex-

istence, uniqueness, and global asymptotic stability of Sh∗ can be proved by applying
Theorem 6.1 in Hirsch [18] or Corollary 3.2 in Zhao and Jing [50].

Let Lh = (Lh
1 , . . . , L

h
n−1, L

h
n) be the right eigenvector of the irreducible matrix

(ϕS
ij)n×n corresponding to the principal eigenvalue 0 normalized so that its last entry

equals 1. The existence, uniqueness, and positivity of Lh is proved in Lemma 1 of
Cosner et al. [9] or Lemma 2.1 of Guo, Li, and Shuai [15]. We denote by fh the
vector field defined by (3.1) and let φht denote the corresponding flow. Then the ith
component of fh evaluated at mLh satisfies

λhi (mL
h
i )− fh

i (mL
h
i ) ·mLh

i +

n∑
j=1

ϕS
ijmL

h
j = λhi (mL

h
i )− fh

i (mL
h
i ) ·mLh

i

= m((λhi − μh
i )− ρhimL

h
i )L

h
i = mρhi L

h
i

(
λhi − μh

i

ρhi L
h
i

−m

)
Lh
i = mρhi L

h
i

(
Kh

i

Lh
i

−m

)
Lh
i

form > 0 and i = 1, . . . , n. Thus fh(mLh) ≥ 0 form ≤ min1≤i≤n
Kh

i

Lh
i

and fh(mLh) ≤
0 for m ≥ max1≤i≤n

Kh
i

Lh
i

. In particular, fh(P h) ≥ 0 and fh(Qh) ≤ 0. It follows from

the theory of monotone dynamical systems (Smith [39]) that φht (P
h) is nondecreasing

and φht (Q
h) is nonincreasing for t ≥ 0. Since both φht (P

h) and φht (Q
h) converge to

Sh∗, we have P h ≤ Sh∗ ≤ Qh.
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3.2. The basic reproduction number. To derive the basic reproduction num-
ber R0 for (2.1), we order the infected variables first by disease state, then by patch,
i.e.,

Eh
1 , E

h
2 , . . . , E

h
n , E

v
1 , E

v
2 , . . . , E

v
n, I

h
1 , I

h
2 , . . . , I

h
n , I

v
1 , I

v
2 , . . . , I

v
n, R

h
1 , R

h
2 , . . . , R

h
n,

and follow the recipe from van den Driessche and Watmough [45] to obtain

F =

⎡
⎢⎢⎢⎢⎣

0 0 0 A64 0
0 0 A73 0 A75

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦ and V =

⎡
⎢⎢⎢⎢⎣

A11

0 A22

−A31 0 A33

0 −A42 0 A44

0 0 −A53 0 A55

⎤
⎥⎥⎥⎥⎦ ,

where

A11 = (δij(ν
h
i + fh

i (S
h∗
i ))− ϕE

ij)n×n = (δij(ν
h
i + μh

i + ρhi S
h∗
i )− ϕE

ij)n×n,

A22 = (δij(ν
v
i + fv

i (S
v∗
i ))− ψE

ij)n×n = (δij(ν
v
i + μv

i + ρvi S
v∗
i )− ψE

ij)n×n,

A31 = (δijν
h
i )n×n = diag{νh1 , νh2 , . . . , νhn},

A33 = (δij(r
h
i + αh

i + γhi + fh
i (S

h∗
i ))− ϕI

ij)n×n

= (δij(r
h
i + αh

i + γhi + μh
i + ρhi S

h∗
i )− ϕI

ij)n×n,

A42 = (δijν
v
i )n×n = diag{νv1 , νv2 , . . . , νvn},

A44 = (δijf
v
i (S

v∗
i )− ψI

ij)n×n = (δij(μ
v
i + ρvi S

v∗
i )− ψI

ij)n×n,

A53 = (δijα
h
i )n×n = diag{αh

1 , α
h
2 , . . . , α

h
n},

A55 = (δij(β
h
i + fh

i (S
h∗
i ))− ϕR

ij)n×n = (δij(β
h
i + μh

i + ρhi S
h∗
i )− ϕR

ij)n×n,

A64 = (δijc
vh
i avi )n×n = diag{cvh1 av1, c

vh
2 av2 , . . . , c

vh
n avn},

A73 = (δijc
hv
i avi S

v∗
i /Sh∗

i )n×n,

A75 = (δijd
hv
i avi S

v∗
i /Sh∗

i )n×n.

The terms A64, A73, and A75 are named after the partial derivatives of the vec-
tor fields of susceptible humans to infectious mosquitoes, susceptible mosquitoes to
infectious humans, and susceptible mosquitoes to recovered humans, respectively.

Since Aii for i = 1, . . . , 5, is a strictly diagonally dominant matrix, by the Gersh-
gorin circle theorem, the real parts of its eigenvalues are positive and therefore A−1

ii

exists. So the inverse of V exists and equals

V −1 =

⎡
⎢⎢⎢⎢⎣

A−1
11

0 A−1
22

A−1
33 A31A

−1
11 0 A−1

33

0 A−1
44 A42A

−1
22 0 A−1

44

A−1
55 A53A

−1
33 A31A

−1
11 0 A−1

55 A53A
−1
33 0 A−1

55

⎤
⎥⎥⎥⎥⎦ .

Thus, the next generation matrix (see Diekmann, Heesterbeek, and Metz [11]) is

FV −1 =

⎡
⎢⎢⎢⎢⎣

0 Mvh 0 A64A
−1
44 0

Mhv 0 (A73 +A75A
−1
55 A53)A

−1
33 0 A75A

−1
55

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦ ,

whereMvh = A64A
−1
44 A42A

−1
22 andMhv = (A73+A75A

−1
55 A53)A

−1
33 A31A

−1
11 . Note that

Mvh and Mhv account for new human infections due to each infectious mosquito and
new mosquito infections due to each infectious or recovered human, respectively.
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By calculating (FV −1)2, we find the basic reproduction number

R0 =
√
ρ(M),

where ρ denotes the spectral radius and M is the product of Mvh and Mhv, i.e.,

M =MvhMhv = A64A
−1
44 A42A

−1
22 (A73 +A75A

−1
55 A53)A

−1
33 A31A

−1
11

= A64A
−1
44 A42A

−1
22 A73A

−1
33 A31A

−1
11 +A64A

−1
44 A42A

−1
22 A75A

−1
55 A53A

−1
33 A31A

−1
11 .

The first term in M represents infections related to infectious humans, while the
second describes infections related to recovered humans who survive the infectious
class and acquire partial immunity.

Theorem 3.2. The disease-free equilibrium of (2.1) is locally asymptotically
stable if R0 < 1 and unstable if R0 > 1.

Proof. To prove the stability of DFE, we need to check the hypotheses (A1)–(A5)
in van den Driessche and Watmough [45]. Hypotheses (A1)–(A4) are easily verified
while (A5) is satisfied if all eigenvalues of the 7n× 7n matrix

J =

[ −V 0
J3 J4

]

have negative real parts. Here J3 is a 2n × 5n matrix and J4 = diag{Dfh(Sh∗),
Dfv(Sv∗)} where fv denotes the vector field defined by (3.2). By Lemma 3.1, s(J4) <
0. So is s(J).

Remark 3.3. The basic reproduction number for the ith patch in isolation (i.e.,
there is no travel between patch i and other patches) is given by

(3.3) R(i)
0 =

√
cvhi (avi )

2νvi (c
hv
i (βh

i + λhi ) + dhvi αh
i )ν

h
i (λ

v
i − μv

i )ρ
h
i

λvi (ν
v
i + λvi )(r

h
i + αh

i + γhi + λhi )(β
h
i + λhi )(ν

h
i + λhi )(λ

h
i − μh

i )ρ
v
i

.

This is slightly different from Ngwa and Shu’s [33], which is (R(i)
0 )2.

It is easy to see that in calculating R0, the matrix M is a positive matrix (all
entries are positive) and hence ρ(M) is an eigenvalue of M and it is simple. In fact,
it follows from Corollary 3.2 in Smith [39] that A−1

ii , i = 1, . . . , 5, is a positive matrix.
Moreover, as a consequence of Theorem 2.5.4 in Horn and Johnson [19], we know the
determinants of both A−1

ii for i = 1, . . . , 5 and A73 + A75A
−1
55 A53 are positive. So is

M . In particular, M has two distinct positive eigenvalues when n = 2. This fact will
be used later.

Similar to Theorem 2.3 in Salmani and van den Driessche [37] and Theorem 3.2
in Hsieh, van den Driessche, and Wang [20], we have the following result which gives
bounds on the basic reproduction number.

Theorem 3.4. max1≤i≤n(R̃(i)
0 )2 ≤ R2

0 ≤ max1≤i≤n(R̂(i)
01 )

2 + max1≤i≤n(R̂(i)
02 )

2,
where

(R̃(i)
0 )2 = cvhi avi (μ

v
i + ρvi S

v∗
i − ψI

ii)
−1νvi (ν

v
i + μv

i + ρvi S
v∗
i − ψE

ii )
−1

·
(
chvi avi S

v∗
i

Sh∗
i

+
dhvi avi S

v∗
i

Sh∗
i

(βh
i + μh

i + ρhi S
h∗
i − ϕR

ii)
−1αh

i

)
· (rhi + αh

i + γhi + μh
i + ρhi S

h∗
i − ϕI

ii)
−1νhi (ν

h
i + μh

i + ρhi S
h∗
i − ϕE

ii )
−1
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and

(R̂(i)
01 )

2 = cvhi avi (μ
v
i + ρvi S

v∗
i )−1νvi (ν

v
i + μv

i + ρvi S
v∗
i )−1 c

hv
i avi S

v∗
i

Sh∗
i

· (rhi + αh
i + γhi + μh

i + ρhi S
h∗
i )−1νhi (ν

h
i + μh

i + ρhi S
h∗
i )−1,

(R̂(i)
02 )

2 = cvhi avi (μ
v
i + ρvi S

v∗
i )−1νvi (ν

v
i + μv

i + ρvi S
v∗
i )−1 d

hv
i avi S

v∗
i

Sh∗
i

(βh
i + μh

i + ρhi S
h∗
i )−1

· αh
i (r

h
i + αh

i + γhi + μh
i + ρhi S

h∗
i )−1νhi (ν

h
i + μh

i + ρhi S
h∗
i )−1.

Proof. The lower bound can be proved by applying Fischer’s inequality (see
Theorem 2.5.4(e), Horn and Johnson [19]) to estimate the diagonal entries of matrix
A−1

ii , i = 1, . . . , 5. In fact, for example, let A11 = (aij)n×n and A−1
11 = (αij)n×n; then

1/aii ≤ αii for i = 1, . . . , n and therefore

0 ≤ diag{1/a11, . . . , 1/ann} ≤ diag{α11, . . . , αnn} ≤ A−1
11 .

To establish the upper bound of R0, observe that, for example,

1(A44B
−1
44 ) = 1 ⇒ 1(B44A

−1
44 ) = 1,

where 1 = (1, 1, . . . , 1)1×n and B44 = A44 + (ψI
ij)n×n = diag{fv

1 (S
v∗
1 ) . . . , fv

n(S
v∗
n )}.

This implies that the spectral radius of B44A
−1
44 is 1 and hence

ρ(A−1
44 ) = ρ(B−1

44 B44A
−1
44 ) ≤ ρ(B−1

44 )ρ(B44A
−1
44 ) = ρ(B−1

44 ).

Finally, the proof is complete with the properties ρ(M1M2) = ρ(M2M1) and ρ(M1 +
M2) ≤ ρ(M1) + ρ(M2) for any square matrices M1,M2 with the same order.

Remark 3.5. The trick in finding an upper bound for the basic reproduction
number seems very useful for general epidemic patch models. With such a trick, one
can prove the upper bound in Theorem 2.3 of Salmani and van den Driessche [37]
without any additional restriction on the parameters, which is a nice improvement.
Also, the trick can be used to prove the upper bound in Theorem 3.2 of Hsieh, van
den Driessche, and Wang [20] without assuming that di = d for i = 1, 2, . . . , n.

Remark 3.6. When λhi > μh
i and λvi > μv

i for 1 ≤ i ≤ n, a combination of
Lemma 3.1 and Theorem 3.4 yields an estimation of R0 which depends only on model
parameters. However, this result might have little use, because we omitted some
terms in the process of estimation.

3.3. Uniform persistence and the endemic equilibrium. Under certain
conditions, we can use the techniques of persistence theory (Freedman, Ruan, and
Tang [14], Thieme [43], Cantrell and Cosner [6], Smith and Thieme [40]) to show the
uniform persistence of the disease and the existence of at least one endemic equi-
librium when R0 > 1. The proof is similar to Theorem 2.3 in Wang and Zhao
[47] and Theorem 3.2 in Lou and Zhao [23]. For convenience, we denote the vector
(Sh

1 (t), . . . , S
h
n(t)) by Sh(t) for t ≥ 0. Eh(t), Ih(t), Rh(t), Sv(t), Ev(t), and Iv(t) can

be introduced similarly.
Theorem 3.7. Let E11 denote the disease-free equilibrium of (2.1), let W s(E11)

be the stable manifold of E11, and let X0 be R
n
+× IntR3n

+ ×R
n
+× IntR2n

+ . Suppose that
R0 > 1; then we have W s(E11) ∩X0 = ∅. If, in addition, assume that

(i) λhi − μh
i − γhi > 0 for i = 1, 2, . . . , n;

(ii) ϕK
ij > 0 for K = S,E, I, R, i, j = 1, 2, . . . , n, i �= j;
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(iii) λvi − μv
i > 0 for i = 1, 2, . . . , n (or ψS

ij = ψE
ij = ψI

ij for i, j = 1, 2, . . . , n).
Then the disease is uniformly persistent among patches, i.e., there is a constant κ >
0 such that each solution Φt(x0) ≡ (Sh(t), Eh(t), Ih(t), Rh(t), Sv(t), Ev(t), Iv(t)) of
system (2.1) with x0 ≡ (Sh(0), Eh(0), Ih(0), Rh(0), Sv(0), Ev(0), Iv(0)) ∈ X0 satisfies

lim inf
t→∞ (Eh(t), Ih(t), Rh(t), Ev(t), Iv(t)) > (κ, κ, . . . , κ)1×5n,

and (2.1) admits at least one endemic equilibrium.
Proof. We show first that W s(E11) ∩X0 = ∅ whenever R0 > 1. Define

Δ =

⎡
⎢⎢⎢⎢⎣

(δijρ
h
i )n×n 0 0 (δijc

vh
i avi )n×n 0

0 (δijρ
v
i )n×n (δijc

hv
i avi )n×n 0 (δijd

hv
i avi )n×n

0 0 (δijρ
h
i )n×n 0 0

0 0 0 (δijρ
v
i )n×n 0

0 0 0 0 (δijρ
h
i )n×n

⎤
⎥⎥⎥⎥⎦

andMε = F−V −εΔ. It follows from Theorem 2 in van den Driessche and Watmough
[45] that R0 > 1 if and only if s(F − V ) > 0. Thus, there exists an ε1 > 0 such that
s(Mε) > 0 for ε ∈ [0, ε1]. Let | · | be the Euclidean norm in R

7n. Choose η small
enough such that

Sv
i (0)

Nh
i (0)

≥ Sv∗
i

Sh∗
i

− ε1,
Sh
i (0)

Nh
i (0)

≥ 1− ε1, Nh
i (0) ≤ Sh∗

i + ε1, and N
v
i (0) ≤ Sv∗

i + ε1

for i = 1, 2, . . . , n, |x0 − E11| ≤ η. We now show that

lim sup
t→∞

|Φt(x0)− E11| > η for x0 ∈ X0.

Suppose, by contradiction, that there is a T > 0 such that |Φt(x0) − E11| ≤ η for
t ≥ T . Pick ΦT (x0) ∈ X0 as new x0; then |Φt(x0)− E11| ≤ η for t ≥ 0 and

dEh
i

dt
≥ cvhi avi I

v
i (1− ε1)− (νhi + fh

i (S
h∗
i + ε1))E

h
i +

n∑
j=1

ϕE
ijE

h
j ,

dEv
i

dt
≥ chvi avi I

h
i

(
Sv∗
i

Sh∗
i

− ε1

)
+ dhvi aviR

h
i

(
Sv∗
i

Sh∗
i

− ε1

)

−(νvi + fv
i (S

v∗
i + ε1))E

v
i +

n∑
j=1

ψE
ijE

v
j ,

dIhi
dt

≥ νhi E
h
i − (rhi + αh

i + γhi + fh
i (S

h∗
i + ε1))I

h
i +

n∑
j=1

ϕI
ijI

h
j ,

dIvi
dt

≥ νvi E
v
i − fv

i (S
v∗
i + ε1)I

v
i +

n∑
j=1

ψI
ijI

v
j ,

dRh
i

dt
≥ αh

i I
h
i − (βh

i + fh
i (S

h∗
i + ε1))R

h
i +

n∑
j=1

ϕR
ijR

h
j .

Consider an auxiliary system

(3.4)
dω(t)

dt
=Mε1ω(t).
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Note thatMε1 is an irreducible, cooperative matrix for sufficiently small ε1. Using the
Perron–Frobenius theorem, s(Mε1) > 0 is a simple eigenvalue associated to a positive
eigenvector. It then follows that any solution of (3.4) with positive initial value goes
to infinity as t→ ∞. By the comparison theorem, we have

lim
t→∞(Eh

i (t), E
v
i (t), I

h
i (t), I

v
i (t), R

h
i (t)) = (∞,∞,∞,∞,∞), i = 1, 2, . . . , n.

Suppose (i) and (ii) hold. Let X = {x0 ∈ R
7n
+ : Nh

i (0) > 0 for i = 1, 2, . . . , n}.
We now claim that there exist n+ 1 positive constants ζ1, ζ2, . . . , ζn and Λ such that

X̃ = {x0 ∈ X : Nh
i (0) ≥ ζi for i = 1, 2, . . . , n and Nh(0) ≥ Λ}

is closed positively invariant and each orbit of (2.1) starting in X eventually enters
into X̃ . The proof of this claim is straightforward, but tedious; we refer to Theorem
2 of Cui and Chen [10] for the approach.

Let X̃0 = {x0 ∈ X̃ : Eh
i (0), I

h
i (0), R

h
i (0), E

v
i (0), I

v
i (0) > 0 for i = 1, 2, . . . , n} and

∂X̃0 = X̃\X̃0. It is sufficient to prove that system (2.1) is uniformly persistent with
respect to (X̃0, ∂X̃0).

Obviously, X̃0 is relatively open in X̃. It is easy to check that X̃0 is positively
invariant. Theorem 2.1 implies that system (2.1) is point dissipative. Define

M∂ = {x0 ∈ ∂X̃0 : Φt(x0) ∈ ∂X̃0∀t ≥ 0},
D1 = {x0 ∈ X̃ : Eh

i (0) = Ihi (0) = Rh
i (0) = Ev

i (0) = Ivi (0) = 0∀i ∈ {1, 2, . . . , n}},
D2 = {x0 ∈ X̃ : Sv

i (0) = Ev
i (0) = Ivi (0) = 0∀i ∈ {1, 2, . . . , n}}.

We claim that M∂ = D1 ∪ D2. Clearly, D1 ∪ D2 ⊂ M∂ . It suffices to show that
M∂ ⊂ D1∪D2. For any x0 ∈ ∂X̃0\(D1∪D2), we have N

h
i (0) > 0, i = 1, 2, . . . , n, and

n∑
i=1

(Eh
i (0) + Ihi (0) +Rh

i (0) + Ev
i (0) + Ivi (0)) > 0,

n∑
i=1

(Sv
i (0) + Ev

i (0) + Ivi (0)) > 0.

By the form of (2.1) and the irreducibility of travel rate matrices, it follows that
Φt(x0) ∈ X̃0 for t > 0. Hence x0 �∈M∂ and the claim is proved.

Let 0 = (0, 0, . . . , 0)1×n. It is easy to verify that there are exactly two equilibria
in M∂ , i.e., E10 = (Sh∗, 0, 0, 0, 0, 0, 0) and E11 = (Sh∗, 0, 0, 0, Sv∗, 0, 0). Clearly, the
total mosquito population Nv(t) is permanent with respect to X0 provided that (iii)
holds, and hence there is a δ > 0 such that

lim sup
t→∞

|Φt(x0)− E10| ≥ δ for x0 ∈ X0.

Consequently, both {E10} and {E11} are isolated invariant sets in X , W s(E10) ∩
X0 = ∅ andW s(E11)∩X0 = ∅. Notice that every trajectory in M∂ converges to either
E10 or E11, and {E10} and {E11} are acyclic in M∂ . It follows from Theorem 4.6 in
Thieme [43] that system (2.1) is uniformly persistent with respect to (X̃0, ∂X̃0).

A well-known result in uniform persistence theory says that a bounded and uni-
formly persistent system has at least one interior equilibrium (see Hutson and Schmitt
[21] or Theorem 2.4 in Zhao [49]). Since system (2.1) is bounded and uniformly per-
sistent, we conclude that it has an equilibrium Ẽ ≡ (S̃h, Ẽh, Ĩh, R̃h, S̃v, Ẽv, Ĩv) ∈ X̃0.
By the first and fifth equations of (2.1), we find that S̃h ∈ IntRn

+ and S̃v ∈ IntRn
+,

which indicates that Ẽ is an endemic equilibrium of (2.1).
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Remark 3.8. For n = 1, the theorem is an improvement of Proposition 3.3 of
Ngwa and Shu [33]. By using the method in this proof, one can get similar or better
results for some other epidemic metapopulation models such as those in Hsieh, van
den Driessche, and Wang [20] and Salmani and van den Driessche [37].

4. The dependence of R0 on parameters. In an epidemic model, once the
basic reproduction number is calculated and shown to be a threshold for the dy-
namics of the disease, a natural question about disease control is how the repro-
duction number depends on the model parameters. Is the dependence in a mono-
tone way (Müller and Hadeler [29])? For a very special case of a two-patch epi-
demic model, Hsieh, van den Driessche, and Wang [20] showed (Theorem 4.2) that
R0 decreases when the travel rate of infected individuals increases. See also Allen
et al. [1] (Lemma 3.4). In general there are very few results on this aspect. For
model (2.1), it is easy to see that all parameters are directly or indirectly contained
in R0. Obviously, R0 is increasing with respect to cvhi , chvi , dhvi , or avi . By The-
orem 2.5.4 in Horn and Johnson [19], an increase in βh

i , r
h
i , or γhi will decrease

R0. The dependence of R0 on other parameters is more complicated. For exam-
ple, unlike in the single patch model, the following result indicates that in a multi-
patch model the parameters νhi or νvi can decrease or increase R0, and even more
complicated dependence may exist. Recall that R2

0 = ρ(M), where ρ denotes the
spectral radius and M = A64A

−1
44 A42A

−1
22 (A73 + A75A

−1
55 A53)A

−1
33 A31A

−1
11 . Only A31

and A11 contain νhi , while only A42 and A22 contain νvi . Then we have ρ(M) =
ρ(AhA31A

−1
11 ) = ρ(AvA42A

−1
22 ), where A

h = A64A
−1
44 A42A

−1
22 (A73 + A75A

−1
55 A53)A

−1
33

and Av = (A73 +A75A
−1
55 A53)A

−1
33 A31A

−1
11 A64A

−1
44 are positive matrices with positive

determinants. For n = 2, that is, for the two-patch submodel, the question is reduced
to a matrix problem.

Proposition 4.1. Let A = [ eg
f
h ][

v1
v2
][ v1+a1+k1

−k1

−k2

v2+a2+k2
]−1, where all involving

parameters are positive and satisfy eh > fg. Then ρ(A) is decreasing in v1 if((
1 +

a2
v2

)
(e + g)− f − h

)
k21 +

(
e− h+ 2g +

a2 + k2
v2

(e+ g) +
a2
v2
g

)
a1k1

+

(
1 +

a2 + k2
v2

)
a21g < 0

and increasing otherwise.
Proof. The matrix A is the product of three matrices which correspond to Ah, A31,

and A−1
11 (or Av, A42, and A

−1
22 ) in M , respectively. So here vi represents ν

h
i (or νvi )

and ki represents ϕ
E
ji (or ψ

E
ji) for i, j = 1, 2 and i �= j.

Note that A has two distinct positive eigenvalues and the inverses of the eigen-
values of A are the eigenvalues of A−1. Thus it suffices to consider the monotonicity
of the smaller eigenvalue λ1 = 1/ρ(A) of A−1 on v1.

Let ā1 = a1 + k1 and ā2 = a2 + k2, and let [ x
−z

−y
w ] = [ eg

f
h ]

−1; then x, y, z, w > 0

and xw > yz. The characteristic equation of matrix A−1 is λ2 − Pλ+Q = 0, where

P = tr(A−1) = x(v1 + ā1)/v1 + yk1/v1 + zk2/v2 + w(v2 + ā2)/v2,

Q = det(A−1) = (xw − yz)((v1 + ā1)(v2 + ā2)− k1k2)/(v1v2).

Thus, λ1 = (P−√P2 − 4Q)/2 and ∂λ1/∂v1 = (Ṗ − (PṖ −2Q̇)/
√P2 − 4Q)/2, where

Ṗ = ∂P/∂v1 = −(xā1 + yk1)/v
2
1 < 0 and Q̇ = ∂Q/∂v1 = −(xw − yz)(ā1(v2 + ā2)−

k1k2)/(v
2
1v2) < 0. Then

∂λ1/∂v1 > 0 ⇔ PṖ − 2Q̇ < 0 and (Ṗ)2Q+ (Q̇)2 − PṖQ̇ > 0.
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The second inequality is equivalent to

(4.1) (yv2 + wk2)k
2
1 + (xv2 + zk2)ā1k1 > (zā1 + wk1)(v2 + ā2)ā1.

Claim. Equation (4.1) implies PṖ − 2Q̇ < 0. In fact, we have

−PṖv21 = (x(1 + ā1/v1) + yk1/v1 + zk2/v2 + w(1 + ā2/v2))(xā1 + yk1)

> (x+ zk2/v2 + w(1 + ā2/v2))(xā1 + yk1)

= ((xv2 + zk2) + w(v2 + ā2))(ā1k1 + yk21/x)x/(k1v2)

> ((yv2 + wk2)k
2
1 + (xv2 + zk2)ā1k1 − wk2k

2
1 + w(v2 + ā2)ā1k1)x/(k1v2)

> ((zā1 + wk1)(v2 + ā2)ā1 − wk2k
2
1 + w(v2 + ā2)ā1k1)x/(k1v2) by (4.1)

> (2w(v2 + ā2)ā1k1 − wk2k
2
1)x/(k1v2) = (2xwā1(v2 + ā2)− xwk1k2)/v2

> 2(xw − yz)(ā1(v2 + ā2)− k1k2)/v2 = −2Q̇v21 .

The proof is complete by substituting ā1 = a1+ k1 and ā2 = a2+ k2 into (4.1).
Remark 4.2. The biological interpretation of the inequality in Proposition 4.1 is

not easy. However, if the emigration rate k1 = 0, then the inequality is always failed
and ρ(A) is consistently increasing in v1. So, the decreasing phenomenon is due to
the emigration of the corresponding exposed class, and shortening the exposed period
(1/v1) makes them migrate less to the other patch.

In the rest of this section, we will study the dependence of R0 on the move-
ment of exposed, infectious, and recovered humans for the two-patch case. As far
as we know, there are very few results on this topic (Theorem 4.2 in Hsieh, van den
Driessche, and Wang [20]; see also Allen et al. [1]). Note that only A11 contains ϕE

ij

and only A33 contains ϕI
ij . We know ρ(M) = ρ(AEA−1

11 ) = ρ(AIA−1
33 ), where A

E =

A64A
−1
44 A42A

−1
22 (A73 + A75A

−1
55 A53)A

−1
33 A31 and AI = A31A

−1
11 A64A

−1
44 A42A

−1
22 (A73 +

A75A
−1
55 A53) are positive matrices with positive determinants. We first consider the

case when the travel rates of exposed, infectious, and recovered humans from one
patch to the other depend on both the residence and disease status. The question
then becomes a matrix problem as follows.

Proposition 4.3. Let A = [ eg
f
h ][

a1+k1

−k1

−k2

a2+k2
]−1, where all involving parameters

are positive and satisfy eh > fg. Then ρ(A) is decreasing in k1 if (e + g)/a1 >
(f + h)/a2 and increasing otherwise.

Proof. The matrix A is the product of two matrices which correspond to AE and
A−1

11 (or AI and A−1
33 ) in M , respectively. Here ki represents ϕ

E
ji (or ϕ

I
ji) for i, j = 1, 2

and i �= j.
It suffices to consider the monotonicity of the smaller eigenvalue λ1 = 1/ρ(A) of

A−1 on k1.
Let [ x

−z
−y
w ] = [ eg

f
h ]

−1. Then x, y, z, w > 0 and xw > yz. The characteristic

equation of matrix A−1 is λ2 − Pλ+Q = 0, where

P = tr(A−1) = x(a1 + k1) + yk1 + zk2 + w(a2 + k2),

Q = det(A−1) = (xw − yz)((a1 + k1)(a2 + k2)− k1k2).

Thus, λ1 = (P−√P2 − 4Q)/2. Direct calculation yields ∂λ1/∂k1 = (Ṗ −(PṖ−2Q̇)/√P2 − 4Q)/2, where Ṗ = ∂P/∂k1 = x+ y and Q̇ = ∂Q/∂k1 = (xw − yz)a2. Then

∂λ1/∂k1 > 0 ⇔ PṖ − 2Q̇ ≤ 0 or (Ṗ)2Q+ (Q̇)2 − PṖQ̇ < 0,
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which is equivalent to

(4.2) (x(a1 + k1) + yk1 + zk2 + w(a2 + k2))(x + y)− 2(xw − yz)a2 ≤ 0

or

(4.3) (xk2 + y(a2 + k2))((x + y)a1 − (z + w)a2)(xw − yz) < 0.

Since xk2 + y(a2 + k2) > 0 and xw > yz, (4.3) is reduced to (x+ y)a1 < (z+w)a2. It
is easy to verify that (4.2) implies (4.3). Therefore, when (x+ y)a1 < (z +w)a2, i.e.,
(f + h)/a2 < (e+ g)/a1, ρ(A) is decreasing in k1.

Remark 4.4. The conclusion in Proposition 4.3 still holds if e, h, a1, a2 > 0,
f, g, k1, k2 ≥ 0, eh > fg, and hk2 + f(a2 + k2) > 0 (namely, k2 > 0 or f > 0,
which implies that there is also infected (exposed, infectious, or recovered) human or
infected mosquito migration from patch 2 to patch 1). In particular, when only the
two classes associated to k1 and k2 travel between patches, ρ(A) is decreasing in k1

if (g + e)/a1 = e/a1 = R(1)
0 > (f + h)/a2 = h/a2 = R(2)

0 . Biologically, this means
that the disease outbreak becomes less severe if more people migrate from the high
transmission area to the low transmission area.

Remark 4.5. If hk2 + f(a2 + k2) = 0, namely k2 = 0 and f = 0, which means
no infected (exposed, infectious, or recovered) human or infected mosquito migrates
from patch 2 to patch 1, then

A =

[
e 0
g h

] [
a1 + k1 0
−k1 a2

]−1

=

[
e/(a1 + k1) 0

(ga2 + hk1)/((a1 + k1)a2) h/a2

]
.

We have ρ(A) = max{e/(a1 + k1), h/a2}, which is nonincreasing in k1.

The following result assumes that the travel rates of exposed, infectious, and
recovered humans depend on disease states but are independent of residences (i.e.,
the travel rate matrices (ϕE

ij)n×n and (ϕI
ij)n×n are symmetric).

Proposition 4.6. Let A = [ eg
f
h ][

a1+k
−k

−k
a2+k ]

−1, where all involving parameters are

positive and satisfy eh > fg. Then ρ(A) is decreasing in k if (e+ f)/a1 > (g + h)/a2
and (e+ g)/a1 > (f + h)/a2, or (e+ f)/a1 < (g+ h)/a2 and (e+ g)/a1 < (f + h)/a2,
and increasing otherwise.

Proof. We use the same notation as in Proposition 4.3 and consider the monotonic-
ity of the smaller eigenvalue λ1 = 1/ρ(A) of A−1 on k. The characteristic equation
of matrix A−1 is λ2 − Pλ+Q = 0, where P = x(a1 + k) + yk + zk + w(a2 + k) and
Q = (xw − yz)((a1 + k)(a2 + k)− k2).

Obviously, Ṗ = ∂P/∂k = x + y + z + w and Q̇ = ∂Q/∂k = (xw − yz)(a1 + a2).
Then

∂λ1/∂k > 0 ⇔ PṖ − 2Q̇ ≤ 0 or (Ṗ)2Q+ (Q̇)2 − PṖQ̇ < 0,

which is equivalent to

(4.4) (x(a1 + k) + yk + zk + w(a2 + k))(x + y + z + w) ≤ 2(xw − yz)(a1 + a2)

or

(4.5) −((x+ z)a1 − (y + w)a2)((x + y)a1 − (z + w)a2)(xw − yz) < 0.
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Since xw > yz, the solutions to (4.5) satisfy (x + z)a1 < (y + w)a2 and (x + y)a1 <
(z + w)a2, or (x + z)a1 > (y + w)a2 and (x + y)a1 > (z + w)a2. It is easy to verify
that (4.4) implies (4.5). The proof is complete.

Remark 4.7. The monotonicity of ρ(A) is still true if e, h, a1, a2 > 0, f, g, k ≥ 0,
and eh > fg. Epidemiologically, this means that the disease trend depends on a
double-side effect. If f = g = 0, ρ(A) is always nonincreasing in k, which means
that travel can reduce the disease severity when only the two classes associated to k
migrate between patches.

So far all our analyses are carried out for all three classes of humans: exposed,
infectious, and recovered. However, one would expect that the effect of the recovered
human movement is different from that of the other two classes. In fact, the last
two propositions do not work for the movement of recovered humans Rh

i , which is

related to different matrices, i.e., [ eg
f
h ]
(
[d1

d2
] + [a1+k1

−k1

−k2

a2+k2
]−1
)
and [ eg

f
h ]
(
[d1

d2
] +

[a1+k
−k

−k
a2+k ]

−1
)
, where all parameters are positive and eh > fg. A tentative analysis

suggests that similar, but more complicated, results may hold for the recovered class.

Therefore, for the two-patch submodel, the basic reproduction number R0 varies
monotonically with the travel rates of exposed, infectious, and recovered humans
depending on their disease states. This demonstrates that if there is enough travel of
humans between the two regions, malaria can be sustained in the region with lower or
no transmission. Screening at borders usually can help to identify infected individuals
with symptoms but not those individuals with subpatent parasitaemia or those with
only liver stage infections (exposed). The analysis in this section shows that the travel
of the infected individuals, with or without symptoms, can contribute to the spread of
the disease from one patch to another. Thus, as far as malaria is concerned, screening
at borders is not an effective control measure.

These results can be applied to general multipatch models when the impact of
population dispersal on the spatial spread of an infectious disease is concerned. When
the travel rate is independent of the disease state, but may or may not be independent
of residence, the relationship between R0 and the travel rates of exposed, infectious,
and recovered humans becomes even more complicated and nonmonotone dependence
can occur. We will investigate these situations by presenting some examples in the
next section.

5. Numerical simulations. In the case when two patches are concerned, we
study the effects of population dispersal on disease dynamics by performing numerical
simulations. Some of the parameter values are chosen from the data in Chitnis,
Hyman, and Cushing [8] and the references therein.

Example 5.1. To compare the importance of human movement of different ex-
posed, infectious, and recovered classes in the geographical spread of the disease, we
need to do sensitivity analysis of the basic reproduction number R0 on the dispersal
rates ϕE

ij , ϕ
I
ij , and ϕ

R
ij , respectively.

Assume parameters in system (2.1) are as follows: λhi = 5.5 × 10−5, μh
i = 8.8 ×

10−6, ρhi = 2.0× 10−7, λvi = 0.13, μv
i = 0.033, ρvi = 4.0× 10−5, νhi = 0.1, νvi = 0.083,

rhi = 2.2 × 10−3, αh
i = 4.8 × 10−3, γhi = 2.0 × 10−5, βh

i = 3.5 × 10−3, avi = 0.14
for i = 1, 2, and cvh1 = 0.11, chv1 = 0.08, dhv1 = 0.02, cvh2 = 0.02, chv2 = 0.337,
dhv2 = 0.06. These parameters yield the respective basic reproduction numbers in

isolation of R(1)
0 = 1.0127 > 1 and R(2)

0 = 0.8535 < 1. Thus, malaria is endemic in
patch 1 and dies out in patch 2.

With migration between patches, we take the same travel rate for mosquitoes
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Fig. 2. The basic reproduction number R0 in terms of k. (a) R0 = 1.0006 as k = 0.1; the
optimal strategy for reducing R0 to be less than 1 is to restrict the travel of infectious humans. (b)
R0 = 1.0002 as k = 0.1; the optimal strategy for reducing R0 to be less than 1 is to restrict the
travel of recovered humans.

from one patch to the other, namely, ψS
12 = ψE

12 = ψI
12 = ψS

21 = ψE
21 = ψI

21 = 0.01.
For human movement, we assume that the travel rates are independent of residences
and choose ϕS

12 = ϕS
21 = 0.15 for the susceptible. Now we keep two of the three travel

rates, i.e., ϕE
12 = ϕE

21 = k, ϕI
12 = ϕI

21 = 0.1k, and ϕR
12 = ϕR

21 = 0.4k, fixed with k = 0.1
and let the remaining one decrease with k from 0.1 to 0. For example, if the first two
travel rates are fixed with k = 0.1 and the remaining one decreases with k from 0.1 to
0, then ϕE

12 = ϕE
21 = 0.1 and ϕI

12 = ϕI
21 = 0.01, and ϕR

12 = ϕR
21 = 0.4k, k ∈ [0, 0.1]. The

curves of R0 against k are illustrated in Figure 2(a). The monotonicity of the curves
is predicted by Proposition 4.6. Since R0 = 1.0006 > 1 as k = 0.1, the disease is
endemic in both patches by Theorem 3.7. To eradicate the disease, it is more efficient
to restrict the travel of infectious humans in case we can only control the travel of
one of the exposed, infectious, and recovered human classes.

However, the optimal control strategy is changed if the parameter values are
varied. For example, taking the same parameters as above except that chv2 = 0.23

and dhv2 = 0.1365, then R(1)
0 = 1.0127 > 1, R(2)

0 = 0.8497 < 1, and R0 = 1.0002 > 1
as k = 0.1. From Figure 2(b), the only choice is to strictly control the travel of the
recovered humans, while travel restriction on the exposed and infectious humans has
an adverse influence on disease control.

Example 5.2. For model (2.1), we present an example where the disease dies out
or persists in each isolated patch but becomes endemic or extinct, respectively, when
there is suitable migration between them. In fact, such a scenario may happen even
for two identical patches from the aspect of ecology and epidemiology.

Case 1. R(1)
0 < 1 and R(2)

0 < 1, but R0 > 1. For i = 1, 2, suppose λhi = 5.5×10−5,
μh
i = 8.8× 10−6, ρhi = 2.0× 10−7, λvi = 0.13, μv

i = 0.033, ρvi = 4.0× 10−5, νhi = 0.1,
νvi = 0.083, rhi = 2.1 × 10−3, αh

i = 4.8 × 10−3, γhi = 1.8 × 10−5, βh
i = 2.7 × 10−3,

avi = 0.14, cvhi = 0.11, chvi = 0.08, dhvi = 0.008. We choose the travel rates as follows:
ϕS
12 = k, ϕE

12 = ϕI
12 = ϕR

12 = 0.2k, ϕS
21 = 0.5k, ϕE

21 = ϕI
21 = ϕR

21 = 0.3k, and
ψS
12 = ψE

12 = ψI
12 = ψS

21 = ψE
21 = ψI

21 = 0, where k increases from 0 to 0.10. Note
that the travel rates of exposed, infectious, and recovered humans are independent
of disease states but depend on their residences, and there is no mosquito migration
between patches.

For the above parameter values, the dependence of R0 on k is shown in Figure

3. In particular, we have R(1)
0 = R(2)

0 = 0.9557, and the disease can die out in each
isolated patch (see Figure 4(a)). When humans move between these two patches,
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Fig. 3. R0 as a function of k = ϕS
12 with R(1)

0 = R(2)
0 = 0.9557. The disease dies out in each

isolated patch, but it becomes endemic in both patches even when there is small human movement.
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Fig. 4. Numerical solutions of system (2.1) with (a) k = 0 (no human movement) and (b)
k = 0.06 (the corresponding R0 = 1.1116), respectively. In both situations, the initial conditions
are Sh

i (0) = 187, Eh
i (0) = 3, Ihi (0) = 8, Rh

i (0) = 9, Sv
i (0) = 2310, Ev

i (0) = 10, Ivi (0) = 4 for i = 1, 2.
The solution in (a) approaches the disease-free equilibrium, while the solution in (b) approaches the
endemic equilibrium. Note that the two trajectories in (a) coincide completely because they have the
same initial values and the two patches have the same parameter values.

even for a very small travel rate (k > 10−5), R0 exceeds 1 and the disease becomes
endemic in both patches (see Figure 4(b)), which is coincident with Theorem 3.7.

Case 2. R(1)
0 > 1 and R(2)

0 > 1, but R0 < 1. Use the same parameter values as
in Case 1 except that av1 = av2 = 0.15 and the travel rates are different. We choose
ϕS
12 = k, ϕE

12 = ϕI
12 = ϕR

12 = 0.6k, ϕS
21 = 0.5k, ϕE

21 = ϕI
21 = ϕR

21 = 0.05k, and
ψS
12 = ψE

12 = ψI
12 = ψS

21 = ψE
21 = ψI

21 = 0, where k varies from 0 to 0.10. Thus,
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R(1)
0 = R(2)

0 = 1.0240 and the dependence of R0 in k is shown in Figure 5. Suitable
human movement may result in the extinction of the disease in both patches, even
though the disease persists in each isolated patch (see Figure 6).
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Fig. 5. R0 in terms of k = ϕS
12 with R(1)

0 = R(2)
0 = 1.0240. The disease persists in each

isolated patch, but it becomes extinct in both patches when there is suitable human movement.
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Fig. 6. Numerical solutions of system (2.1) with (a) k = 0 (no human movement) and (b)
k = 0.06 (the corresponding R0 = 0.9727), respectively. In both situations, the initial conditions
are Sh

i (0) = 221, Eh
i (0) = 3, Ihi (0) = 6, Rh

i (0) = 4, Sv
i (0) = 2150, Ev

i (0) = 8, Ivi (0) = 7 for i = 1, 2.
The solution in (a) approaches the endemic equilibrium, while the solution in (b) approaches the
disease-free equilibrium. Note that the two trajectories in (a) coincide completely because the two
patches have the same parameter values and the initial data are the same.

In studying how travel affects the spatial spread of certain disease, Hsieh, van
den Driessche, and Wang [20] considered two patches, a low prevalence patch with a
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minor disease outbreak (basic reproduction number in isolation is less than 1) and a
high prevalence patch with endemic disease (basic reproduction number in isolation
is greater than 1). They numerically demonstrated the possibility that for the low
prevalence patch, open travel with a high prevalence patch could lead to the endemic of
the disease. However, for a high prevalence patch, open travel with a low prevalence
patch could eradicate the disease. Our simulations in Example 5.2 present more
interesting scenarios. Case 1 indicates that if both patches have low prevalence of the
disease, travel of the exposed and infectious individuals from one patch to another
would increase the chances of infecting the susceptible individuals in the second patch,
and travel of susceptible individuals from one patch to another would give them more
opportunities to be infected in the second patch, and vice versa. These travels would
make the disease more likely to be endemic in both patches. Such a situation has also
been observed in Cosner et al. [9] for a two-patch Ross–Macdonald malaria model.
Case 2 is an ad hoc and probably less likely scenario which could occur when all
exposed and infectious individuals from one patch moved to another while all the
susceptible individuals in the second patch move to the first. This dilution of the
overall prevalence could lessen the severity of the disease so that it becomes minor in
both patches.

Example 5.3. Assume all parameters are as in Case 1 of Example 5.2 except that
cvh1 = 0.118, chv1 = 0.08, dhv1 = 0.008, cvh2 = 0.012, chv2 = 0.50, dhv2 = 0.176, and the
travel rates are different. This means that the two patches differ only in infectivity,
namely, one with higher mosquito infectivity but lower human infectivity and the
other with lower mosquito infectivity but higher human infectivity. Using formula

(3.3), we obtain the respective basic reproduction numbers R(1)
0 = 0.9899 < 1 and

R(2)
0 = 0.9250 < 1 for both patches in isolation. So the disease dies out in each

isolated patch.

Next, when the patches are connected, we fix the travel rates of mosquitoes and
susceptible humans by letting ψS

12 = ψE
12 = ψI

12 = ψS
21 = ψE

21 = ψI
21 = 0.002, ϕS

12 =
ϕS
21 = 0.15, and want to see the effects of exposed, infectious, and recovered human

movement on the disease dynamics. If the travel rates of exposed, infectious, and
recovered humans are independent of residences and disease states, i.e., ϕE

12 = ϕI
12 =

ϕR
12 = ϕE

21 = ϕI
21 = ϕR

21 = k, then R0 varies with k from 0 to 0.10 as shown in Figure
7.
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Fig. 7. Relationship between R0 and k = ϕE
12 = ϕI
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12 = ϕE
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21. The disease
dies out when the exposed, infectious, and recovered human travel rate is small or large; it persists
otherwise.
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The disease may die out if the exposed, infectious, and recovered human move-
ment is weak. Stronger travel of exposed, infectious, and recovered humans between
patches can lead the disease to become endemic in both patches. However, if the travel
rate keeps increasing, the disease may again die out in both patches. This implies
that inappropriate border control on exposed, infectious, and recovered humans could
have negative results. Observe that it is also an example where R0 is not monotone
in the exposed, infectious, and recovered human travel rate, which is independent of
residence and disease state.

6. Discussion. Malaria is one of the world’s most common infectious diseases
and is a major cause of child death and poverty in Africa. This issue may become even
more serious due to many factors such as the rapid expansion of modern transporta-
tion, urbanization in developing countries, deforestation, and so on. In this paper,
taking the transmission heterogeneity into account, we proposed a multipatch model
to study the impact of mobility of vector and host populations on malaria transmis-
sion. We have discussed the existence and stability of the disease-free equilibrium of
the model and obtained a formula for the basic reproduction number R0. By apply-
ing some matrix inequalities, bounds on R0 were given. A sufficient condition was
obtained to guarantee the existence of an endemic equilibrium. Then the dependence
of R0 on the model parameters was analyzed. In particular, for a two-patch model,
we studied the monotonicity of R0 in terms of the travel rates of exposed, infectious,
and recovered humans. Our analysis indicates that R0 varies monotonously with the
movement of exposed, infectious, and recovered humans, which depends on the disease
state. We should mention that the monotonicity also holds for mosquito movement.
Finally, three numerical examples were given to illustrate the impact of population
dispersal on the disease spread. The first example explores the role of different ex-
posed, infectious, and recovered classes in the disease propagation. The second shows
that suitable human movement can both intensify and mitigate the disease spread
even for two identical patches. In the last example, two patches which only differ
in infectivity of humans and mosquitoes are concerned. Nonmonotonicity of R0 in
the exposed, infectious, and recovered human travel rates, which are independent of
the residence and disease state, is observed. These results suggest that human move-
ment is a critical factor in the spatial spread of malaria around the world. Since
the travel of exposed (latently infected) human individuals can also spread the dis-
ease geographically and screening at borders usually can only help to identify those
infected with symptoms, inappropriate border control may make the disease trans-
mission even worse, and to control or eliminate malaria we need global and regional
strategies (Tatem and Smith [42]). Accordingly, a full understanding of its movement
is important in designing effective antimalaria measures.

There is still much work to do with our model. First, we are interested in the
global stability of the disease-free equilibrium when R0 < 1. Unfortunately, it is
difficult to give an explicit formula for the disease-free equilibrium (even for n = 2),
so is R0. Even if we obtained such a formula, it is too complicated to use it directly.
Unlike models in Salmani and van den Driessche [37] and Hsieh, van den Driessche,
and Wang [20], here we cannot use a comparison theorem for the vector-host model
using their methods. Second, the existence, uniqueness, and stability of the endemic
equilibrium is in general unclear. Third, the dependence of R0 on travel rates for
three or more patches submodels would be extremely complicated since the interaction
networks are more complex. However, at least we can do some numerical simulations.
Furthermore, it is interesting to test our model with field data and carry out sensitivity
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analysis to develop efficient intervention strategies.

We remark that there are many possibilities to generalize the ODEs model studied
here to increase realism. For example, in the model it is assumed that all parameters
are constant. In fact, the biological activity and geographic distribution of malaria
parasite and its vector are greatly influenced by climatic factors such as rainfall,
temperature, and humidity (Martens et al. [28], Smith, Dushoff, and McKenzie [38]).
The impact of climate change can be investigated by assuming some parameters to be
time or temperature dependent. It is also important to consider stochastic versions of
these models. The basic modeling approach of dividing the population into subclasses
according to their locations and then observing their moving behavior can be viewed
as a Markov process with random coefficients (Langevin formulation) or with known
transition probabilities between regions. We leave all these for future consideration.
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