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a b s t r a c t

In this paper, an SIS patch model with non-constant transmission coefficients is formulated to investigate
the effect of media coverage and human movement on the spread of infectious diseases among patches.
The basic reproduction numberR0 is determined. It is shown that the disease-free equilibrium is globally
asymptotically stable ifR0 6 1, and the disease is uniformly persistent and there exists at least one ende-
mic equilibrium if R0 > 1. In particular, when the disease is non-fatal and the travel rates of susceptible
and infectious individuals in each patch are the same, the endemic equilibrium is unique and is globally
asymptotically stable as R0 > 1. Numerical calculations are performed to illustrate some results for the
case with two patches.

� 2011 Elsevier Inc. All rights reserved.

1. Introduction

It has been observed that media coverage can affect the spread
and control of infectious diseases (see [9] and the references cited
therein). During outbreaks of serious infectious diseases such as
the SARS outbreak in 2003 and the H1N1 influenza pandemic in
2009, public media has massive reports on the number of infec-
tions and deaths per day, the locations where these happen, the
symptoms of the disease, the proper protections to decrease the
possibility of being infected, etc. People follow the reports and thus
choose to protect themselves by reducing their social activities and
direct contacts with others, especially with those high-risk groups,
which could therefore lead to a reduction of effective contacts
between susceptible individuals and infectious individuals. In a
recent paper [3], Cui et al. proposed an SIS epidemiological model
incorporating media coverage

dS
dt
¼ A� dS� bðIÞ SI

Sþ I
þ cI;

dI
dt
¼ bðIÞ SI

Sþ I
� ðdþ mþ cÞI;

ð1:1Þ

where the transmission coefficient b(I) is a non-increasing function
of the number of the infectious individuals. They defined a thresh-
old for (1.1) below which all orbits converge to the disease-free

equilibrium and above which all orbits with I(0) > 0 converge to a
unique endemic equilibrium.

In this paper, we shall study an SIS patch model for the trans-
mission of an infectious disease with population dispersal between
p patches. Within a single patch, our model is based on that of Cui
et al. [3]. Let Si(t) and Ii(t) denote, respectively, the number of sus-
ceptible and infectious individuals in patch i at time t. The popula-
tion dynamics is described by the following system of ordinary
differential equations with non-negative initial conditions:

dSi

dt
¼ Ai � diSi � biðIiÞ

SiIi

Si þ Ii
þ ciIi þ

Xp

j¼1

mijSj; 1 6 i 6 p;

dIi

dt
¼ biðIiÞ

SiIi

Si þ Ii
� ðdi þ mi þ ciÞIi þ

Xp

j¼1

nijIj; 1 6 i 6 p:

ð1:2Þ

In patch i, Ai > 0 is the recruitment rate, di > 0 is the natural death
rate, ci > 0 is the recovery rate and mi P 0 is the disease-induced
death rate. The transmission coefficient in patch i is
bi(Ii) = ai � bifi(Ii), where ai is the usual transmission coefficient
without considering the impact of media reported number of infec-
tive individuals, bi is the maximum reduced transmission coefficient
due to the media effect and fi(Ii) is a saturation function to measure
the impact of the reported number of infected individuals. Similar
to Cui et al. [3], we assume that

ai > bi P 0; f ið0Þ ¼ 0; f iðIiÞ 2 C1ð½0;1ÞÞ with f 0i ðIiÞP 0;
lim
Ii!1

fiðIiÞ ¼ 1 for i ¼ 1; . . . ;p:

Typical examples of fi(Ii) with such properties are 1� ki=ðki þ Ini
i Þ

with ki > 0 and ni > 0, and 1� e�kiIi with ki > 0. When bi = 0 for
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i = 1,2, . . . ,p, i.e., the media impact is ignored, model (1.2) with two
patches was studied in Salmani and van den Driessche [11]. The
immigration rates from patch j to patch i for i – j of susceptible
and infectious humans are denoted, respectively, by mij P 0 and
nij P 0, while the emigration rates of susceptible and infectious hu-
mans in patch i are denoted, respectively, by �mii P 0 and �nii P 0.
For simplicity, deaths and births during travel are neglected. Thus,
we haveXp

j¼1

mji ¼ 0 and
Xp

j¼1

nji ¼ 0 for i ¼ 1;2; . . . ; p:

Unless otherwise indicated, the travel rate matrices (mij)p�p and
(nij)p�p are assumed to be irreducible.

The organization of this paper is as follows. In Section 2, the ba-
sic reproduction number R0 is defined and it is shown to be a
threshold of the disease dynamics. Namely, the disease can be
eradicated if R0 6 1 and will be endemic if R0 > 1. In Section 3,
we consider the special case when susceptible and infectious indi-
viduals have identical travel rates and there is no disease-induced
death, and present a global qualitative analysis. In the final section,
we conclude with some numerical examples and a brief discussion.

2. Threshold dynamics

We first introduce some notations which will be used through-
out this paper. Let Rp

þ ¼ fx 2 Rp : xi P 0 for 1 6 i 6 pg be the posi-
tive orthant in Rp and IntRp

þ ¼ fx 2 Rp : xi > 0 for 1 6 i 6 pg be the
interior of Rp

þ. We write x 6 y and y P x whenever y�
x 2 Rp

þ; x < y and y > x whenever y� x 2 Rp
þ and x – y, and x� y

and y� x whenever y� x 2 IntRp
þ. If x; y 2 Rp

þ and x 6 y, we let
½x; y� ¼ fz 2 Rp

þ : x 6 z 6 yg.
Let Ni(t) = Si(t) + Ii(t) be the total population in patch i at time t,

and let the new infection term in patch i equal zero whenever
Ni = 0 [5]. The following result indicates that model (1.2) is mathe-
matically and biologically well posed.

Theorem 2.1. Consider system (1.2) with non-negative initial con-
ditions. Then the system has a unique solution defined for all time
t P 0, and all disease state variables remain non-negative. Moreover,
the total population NðtÞ ¼

Pp
i¼1NiðtÞ is bounded.

Proof. The vector field defined by (1.2) is Lipschitzian in each com-
pact set in R2p

þ , so the initial value problem has a unique solution
which exists for all t P 0 [25]. The non-negative property of state
variables can be immediately verified.

Let A ¼
Pp

i¼1Ai and D ¼min16i6pdi. Since

dN
dt
¼
Xp

i¼1

ðAi � diNi � miIiÞ 6
Xp

i¼1

ðAi � diNiÞ 6 A�DN;

by a comparison theorem, N(t) is bounded above by
maxfA=D;Nð0Þg. h

2.1. Basic reproduction number

Let the right hand side of (1.2) be zero, one can verify that mod-
el (1.2) always admits a disease-free equilibrium (DFE), denoted by

E0 ¼ S0
1; S

0
2; . . . ; S0

p;0;0; . . . ;0
� �

. Indeed, there is a DFE if and only if

S0 ¼ S0
1; S

0
2; . . . ; S0

p

� �
satisfies B(S0)T = A, where B = (dijdi �mij)p�p

and A = (A1,A2, . . . ,Ap)T. Here dij denotes the Kronecker delta (i.e. 1
when i = j and 0 otherwise). It follows from Corollary 4.3.2 in Smith
[13] that B�1 is a positive matrix. Hence S0 = (B�1A)T� 0 guaran-
tees the existence and uniqueness of the disease-free equilibrium.

Now, we calculate the basic reproduction number of (1.2). Using
the recipe of van den Driessche and Watmough [18], we have

F ¼ ðdijaiÞp�p and V ¼ ðdijðdi þ mi þ ciÞ � nijÞp�p:

Therefore, the basic reproduction number is R0 ¼ qðFV�1Þ, where q
denotes the spectral radius and it is the same as that of the classical
model with fixed transmission coefficients.

Observe that R0 is independent of the parameters Ai, bi for
i = 1,2, . . . ,p, and the travel rates of susceptible individuals. It is
easy to see thatR0 is increasing in ai while it is decreasing with re-
spect to di, mi and ci. The following estimation on the basic repro-
duction number was already showed by Wang and Mulone [20]
and Salmani and van den Driessche [11] for p = 2, so here is an
interesting generalization for general p.

Proposition 2.2. LetRðiÞ0 ¼ ai=ðdi þ mi þ ciÞ be the basic reproduction
number for patch i in isolation and write eRðiÞ0 ¼ ai=ðdi þ mi þ ci � niiÞ
as a modified reproduction number that contains travel of infectives
out of patch i. Then

max max
16i6p

eRðiÞ0 ;min
16i6p

RðiÞ0

� �
6 R0 6 max

16i6p
RðiÞ0 :

Proof. The inequality max16i6p
eRðiÞ0 6 R0 6 max16i6pRðiÞ0 follows a

similar analysis used in the proof of Theorem 3.4 in Gao and Ruan
[4]. It then suffices to prove that min16i6pRðiÞ0 6 R0.

Let ci = di + mi + ci for i = 1,2, . . . ,p and s(�) denote the spectral
bound of a matrix. Since V has a positive inverse, FV�1 is a positive
matrix. Using the Perron-Frobenius theorem, R0 ¼ sðFV�1Þ is a
simple eigenvalue of FV�1 associated to a positive eigenvector v
and any eigenvector w > 0 of FV�1 is a positive multiple of v (see
[13]). Hence, FV�1v ¼ R0v, which is equivalent to �VF�1v ¼
� 1
R0

v, where

�VF�1 ¼ ðnijÞp�pF�1 � diag 1=Rð1Þ0 ;1=Rð2Þ0 ; . . . ;1=RðpÞ0

n o
:

Since �VF�1 is a quasi-positive and irreducible matrix and v is po-
sitive, we conclude that sð�VF�1Þ ¼ �1=R0. The facts ML 6 �VF�1

6

MU and s((nij)p�pF�1) = 0 imply that

sðMLÞ ¼ �max
16i6p

1

RðiÞ0

6 sð�VF�1Þ ¼ �1=R0 6 sðMUÞ ¼ �min
16i6p

1

RðiÞ0

;

where

ML ¼ ðnijÞp�pF�1 �max
16i6p

1

RðiÞ0

� diagf1;1; . . . ;1g;

MU ¼ ðnijÞp�pF�1 �min
16i6p

1

RðiÞ0

� diagf1;1; . . . ;1g:

A direct simplification completes the proof of the proposition. h

Remark 2.3. By the results in Hadeler and Thieme [6], s(�VF�1)
depends in a monotone way on the travel rate of infectious
humans nij for i, j = 1,2, . . . ,p and i – j. More precisely, it is always
strictly decreasing or strictly increasing or it is constant. So is
R0 ¼ �1=sð�VF�1Þ.

Like in the single patch model (1.2) or many other epidemic
models, we have the global stability of the DFE for system (1.2)
as R0 < 1.

Theorem 2.4. The DFE of system (1.2) is globally asymptotically
stable (GAS) if R0 6 1 and unstable if R0 > 1.

Proof. From Theorem 2 in van den Driessche and Watmough [18],
E0 is locally asymptotically stable if R0 < 1, but unstable if R0 > 1.

D. Gao, S. Ruan / Mathematical Biosciences 232 (2011) 110–115 111
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Now it suffices to prove that all solutions converge to the DFE
when R0 6 1. The inequalities Si/Ni 6 1 and bi(Ii) 6 ai yield

dIi

dt
6 aiIi � ðdi þ mi þ ciÞIi þ

Xp

j¼1

nijIj; 1 6 i 6 p:

By applying the algorithm in Kamgang and Sallet [8], we know that
the DFE is GAS wheneverR0 6 1 (or like in Sun et al. [16], by a stan-
dard comparison theorem). h

2.2. Uniform persistence

Using the techniques of persistence theory [24], we can show
the uniform persistence of the disease and the existence of at least
one endemic equilibrium when R0 > 1. Thus, the basic reproduc-
tion number R0 is a threshold parameter of the disease dynamics.
The proof below is analogous to those of Theorem 2.3 in Wang and
Zhao [21] and Theorem 3.7 in Gao and Ruan [4].

Theorem 2.5. For model (1.2), if R0 > 1, then the disease is
uniformly persistent, i.e., there exists a constant j > 0 such that every
solution /t(x0) � (S1 (t), . . . , Sp(t), I1(t), . . . , Ip(t)) of system (1.2) with
x0 � ðS1ð0Þ; . . . ; Spð0Þ; I1ð0Þ; . . . ; Ipð0ÞÞ 2 R

p
þ � R

p
þ n f0g satisfies

lim inf
t!1

IiðtÞ > j for i ¼ 1;2; . . . ;p;

and (1.2) admits at least one endemic equilibrium.

Proof. Let

X ¼ fðS1; . . . ; Sp; I1; . . . ; IpÞ : Si P 0; Ii P 0; i ¼ 1;2; . . . ;pg;
X0 ¼ fðS1; . . . ; Sp; I1; . . . ; IpÞ 2 X : Ii > 0; i ¼ 1;2; . . . ;pg;
@X0 ¼ X n X0 ¼ fðS1; . . . ; Sp; I1; . . . ; IpÞ 2 X : Ii ¼ 0

for some i 2 f1;2; . . . ;pgg:

It suffices to prove that @X0 repels uniformly the solutions of system
(1.2) in X0. Clearly, @X0 is relatively closed in X. It is immediate that
X and X0 are positively invariant. Theorem 2.1 implies that system
(1.2) is point dissipative.

Denote M@ = {x0 2 @X0:/t(x0) 2 @X0 for t P 0} and D = {x0 2 X:
Ii = 0, i = 1,2, . . . ,p}. Obviously, D 	M@. On the other hand, we have
I1(0) + � � � + Ip(0) > 0 for any x0 2 @X0nD. By the irreducibility of the
travel rate matrix (nij)p�p, we know that /t(x0) 2 X0 for all t > 0.
Therefore, x0 R M@ and M@ 	 D, which implies that M@ = D.

The disease-free equilibrium E0 is the unique equilibrium in M@.
Let Ws(E0) be the stable manifold of E0. We now show that
Ws(E0) \ X0 = ; when R0 > 1. Let

M� ¼ F � V � diagfa1�þ b1�� b1�2; . . . ; ap�þ bp�� bp�2g:

Since s(F � V) > 0 if and only if R0 > 1, there is an �1 > 0 such that
s(M�) > 0 for � 2 [0,�1]. Choose g small enough such that

Sið0Þ=Nið0ÞP 1� �1 and f iðIið0ÞÞ 6 �1

for i ¼ 1; . . . ; p; kx0 � E0k 6 g:

We claim that limsupt?1k/t(x0) � E0k > g for x0 2 X0, where k�k
is the usual Euclidean norm. Suppose not, after translation, we
have k/t(x0) � E0k 6 g for all t P 0 and hence

dIi

dt
P ðai � bi�1Þð1� �1ÞIi � ðdi þ mi þ ciÞIi þ

Xp

j¼1

nijIj; 1 6 i 6 p:

Notice that M�1 has a positive eigenvalue sðM�1 Þ associated to a po-
sitive eigenvector. It follows from a comparison theorem that
Ii(t) ?1 as t ?1 for i = 1,2, . . . ,p, a contradiction.

Since E0 is globally stable in M@, it follows that {E0} is an isolated
invariant set and acyclic. By Theorem 4.6 in Thieme [17], system
(1.2) is uniformly persistent with respect to (X0,@X0). Furthermore,
by Theorem 2.4 in Zhao [22], we know that system (1.2) has an
equilibrium E ¼ ð �S1; . . . ; Sp; I1; . . . ; IpÞ 2 X0. The first equation of
(1.2) ensures that Si > 0 for i = 1, . . . ,p. This means that E is an
endemic equilibrium of system (1.2). h

Remark 2.6. Neither the travel of susceptible individuals nor the
media coverage affects the persistence and extinction of the dis-
ease. By Proposition 2.2, if RðiÞ0 > 1 (or 61) for i = 1,2, . . . ,p, then
R0 > 1 (or 61). Biologically, this means that the disease persists
or dies out in each isolated patch then remains persistent or
extinct, respectively, when human movement occurs.

3. Model with restrictions

In the case where there is no disease-induced death (i.e., mi = 0
for i = 1,2, . . . ,p) and susceptible and infectious individuals have
identical travel rates (i.e., mij = nij for i, j = 1,2, . . . ,p), the dynamics
of the individuals are governed by the following model:
dSi

dt
¼ Ai � diSi � biðIiÞ

SiIi

Si þ Ii
þ ciIi þ

Xp

j¼1

mijSj; 1 6 i 6 p;

dIi

dt
¼ biðIiÞ

SiIi

Si þ Ii
� ðdi þ ciÞIi þ

Xp

j¼1

mijIj; 1 6 i 6 p:

ð3:1Þ

Sun et al. [16] presented a global qualitative analysis for system
(3.1) with two-patch when R0 > 1. Here we study the model with
an arbitrary number of patches by using the theory of monotone
dynamical systems [13].

Theorem 3.1. If R0 > 1, then system (3.1) has a unique endemic
equilibrium which is globally asymptotically stable relative to
R

p
þ � R

p
þ n f0g.

Proof. Adding the two equations in system (3.1) leads to

dNi

dt
¼ Ai � diNi þ

Xp

j¼1

mijNj; 1 6 i 6 p: ð3:2Þ

Obviously, system (3.2) has a unique equilibrium, labeled by
N
 ¼ N
1;N



2; . . . ;N
n

� �
, which is equal to S0 ¼ S0

1; S
0
2; . . . ; S0

p

� �
and is

globally asymptotically stable for (3.2). System (3.1) is then equiv-
alent to the following system

dNi

dt
¼ Ai � diNi þ

Xp

j¼1

mijNj; 1 6 i 6 p;

dIi

dt
¼ biðIiÞ

Ni � Ii

Ni
Ii � ðdi þ ciÞIi þ

Xp

j¼1

mijIj; 1 6 i 6 p:

ð3:3Þ

Since NiðtÞ ! N
i ; i ¼ 1;2; . . . ;p, as t ?1, (3.3) gives the following
limit system

dIi

dt
¼ hiðI1; . . . ; IpÞ ¼ biðIiÞ

N
i � Ii

N
i
Ii � ðdi þ ciÞIi þ

Xp

j¼1

mijIj;

i ¼ 1;2; . . . ; p: ð3:4Þ
Let h : Rp

þ ! Rp denote the vector field described by (3.4) and wt

denote the corresponding flow. For any a 2 (0,1) and any
ðI1; . . . ; IpÞ 2 IntRp

þ \D with D ¼ ½0;N
�, there hold

biðaIiÞ
N
i � aIi

N
i
aIi � ðdi þ ciÞaIi þ

Xp

j¼1

mijaIj

> a biðIiÞ
N
i � Ii

N
i
Ii � ðdi þ ciÞIi þ

Xp

j¼1

mijIj

 !
; i ¼ 1;2; . . . ;p;

112 D. Gao, S. Ruan / Mathematical Biosciences 232 (2011) 110–115



Author's personal copy

that is, h(a(I1, . . . , Ip))� ah(I1, . . . , Ip). Thus h is strongly sublinear on
D. In addition, D is positively invariant for (3.4) since

hiðN
Þ ¼ �ðdi þ ciÞN


i þ

Xp

j¼1

mijN


j ¼ �Ai � ciN



i < 0;

i ¼ 1;2; . . . ;p:

Note that the Jacobian matrix of system (3.4) at the origin, Dh(0),
satisfies s(Dh(0)) = s(F � V) > 0. It is easy to see that Corollary 3.2
in Zhao and Jing [23] also holds if Rp

þ is replaced by a positively
invariant order interval in Rp

þ. Therefore, system (3.4) has a positive

equilibrium I
 ¼ I
1; I


2; . . . ; I
p

� �
2 D, which is globally asymptotically

stable in D n f0g. It is clear from the strong monotonicity of wt that
S
i ¼ N
i � I
i > 0 for i = 1,2, . . . ,p. Hence (3.1) admits a unique posi-

tive equilibrium E
 ¼ S
1; S


2; . . . ; S
p; I



1; I


2; . . . ; I
p

� �
.

Next, we prove that every non-trivial solution to (3.4) in R
p
þ

converges to I⁄. We claim that (3.4) has no equilibrium in R
p
þ nD.

Assume, by contrary, that I

 ¼ I

1 ; . . . ; I

p
� �

is an equilibrium of
(3.4) in R

p
þ nD. It follows from the strong monotonicity of the flow

wt that I⁄� I⁄⁄. From (3.4), we have M⁄(I⁄)T = 0 and M⁄⁄(I⁄⁄)T = 0,
where M
 ¼ bi I
i

� �
N
i � I
i
� �

=N
i � ðdi þ ciÞ
� �

dij þmij
� �

p�p and M

 ¼
bi I

i
� �

N
i � I

i
� �

=N
i �ðdiþciÞ
� �

dijþmij
� �

p�p. Then s(M⁄) = s(M⁄⁄) = 0,
which is in contradiction to

M
 �M

 ¼ bi I
i
� �

N
i � I
i
� �

=N
i � bi I

i
� �

N
i � I

i
� �

=N
i
� �

dij
� �

p�p > 0:

So, I⁄ is the unique non-trivial equilibrium of (3.4) in Rp
þ. For any

y0 2 Rp
þ nD, we have y0� lN⁄ for sufficiently large l > 1 and there-

fore wt(y0)� wt(lN⁄) for t P 0. Note that h(lN⁄)� 0 for l P 1, so
wt(lN⁄) ? I⁄ as t ?1. This means that wt(y0) enters into D for large
t and thus wt(y0) approaches I⁄ as t ?1.

Since both systems (3.2) and (3.4) are locally (globally) asymp-
totically stable, system (3.3) has E
 ¼ N
1;N



2; . . . ;N



p; I


1; I


2; . . . ; I



p

� �
as a

locally asymptotically stable state [19]. A comparison theorem
implies that all orbits of (3.3) are forward bounded, while the proof
of Theorem 2.5 indicates that no orbit of system (3.3) starting at a
point in R

p
þ�R

p
þ nf0g tends to N
1; . . . ;N



p;0; . . . ;0

� �
if R0 >1. It then

follows a similar argument used in the proof of Theorem 4.2 in
Seibert and Suarez [12] that E
 is globally asymptotically stable for
system (3.3) relative to R

p
þ�R

p
þ nf0g. So is E⁄ for system (3.1). h

Remark 3.2. The above approach works for a class of SIS patch
models where there is no disease-induced death and susceptible
and infectious individuals travel at the same rates. As far as we
know, most of the existing global results on these models are only
for two-patch case. With our approach, for example, one can gen-
eralize Theorem 2.7 in Wang and Mulone [20] and Theorem 3.3 in
Jin and Wang [7] to arbitrary number of patches where the respec-
tive limit system is strongly sublinear in the positive orthant and
hence Corollary 3.2 in Zhao and Jing [23] can be applied directly.

Remark 3.3. The existence and global asymptotic stability of the
positive equilibrium of system (3.4) can also be proved in a manner
similar to the proof for Theorem 2 in Cosner et al. [1]. Clearly, our
result is a generalization of Theorem 3.1 in Salmani and van den
Driessche [11] where two patches are concerned and there is no
impact of media coverage (bi = 0 for i = 1,2).

Remark 3.4. The endemic equilibrium E⁄ for (3.1) is also linearly
stable. To prove this, it is equivalent to consider the stability of
the Jacobian matrix of system (3.3) at E
, i.e.,

JðE
Þ ¼
ðð�diÞdij þmijÞp�p 0p�p

bi I
i
� �

I
i =N
i
� �2

dij

� �
p�p

M0

0@ 1A;

where M0 ¼ b0iðI


i Þ

N
i �I
i
N
i

I
i þ biðI
i Þ
N
i �2I
i

N
i
� ðdi þ ciÞ

� �
dij þmij

� �
p�p

.

Obviously, s(((�di)dij + mij)p�p) < 0. Meanwhile, s(M0) < 0 is proved
by observing that s(M⁄) = 0 and

M0 �M
 ¼ b0i I
i
� �N
i � I
i

N
i
I
i � bi I
i

� � I
i
N
i

� 	
dij

� 	
p�p

< 0:

Consequently, all eigenvalues of JðE
Þ have negative real parts.

A combination of Theorems 2.4 and 3.1 yields a complete
description of the dynamics of system (3.1) as follows.

Corollary 3.5. For model (3.1), the disease-free equilibrium E0 is
globally asymptotically stable if R0 6 1, and the endemic equilibrium
E⁄ exists and is globally asymptotically stable on the non-negative
orthant minus the disease-free state if R0 > 1.

Remark 3.6. The media coverage has no influence on the dynam-
ics of disease transmission of system (3.1). However, the final
infected size in each patch can be strictly reduced with more media
coverage when the disease persists (i.e., R0 > 1). Such media-
induced reduction was demonstrated in Sun et al. [16] by numer-
ical simulations. In fact, this is equivalent to say that @I
i =@bj < 0 for
i, j = 1,2, . . . ,p. Since I
1; I



2; . . . ; I
p

� �
is the unique positive solution of

the following equations

biðIiÞ
N
i � Ii

N
i
Ii � ðdi þ ciÞIi þ

Xp

j¼1

mijIj ¼ 0; i ¼ 1;2; . . . ;p; ð3:5Þ

it follows from the implicit function theorem that @I
i =@bj exists. We
consider without loss of generality the sign of @I
i =@b1. Taking par-
tial derivatives of (3.5) with respect to b1 gives

M0 @I
1
@b1

;
@I
2
@b1

; . . . ;
@I
p
@b1

� 	T

¼ f1ðI
1Þ
N
1 � I
1

N
1
I
1;0; . . . ;0

� 	T

;

where M0 is defined in Remark 3.4. Note that M0 has a negative in-
verse, thus @I
i =@b1 < 0 for i = 1,2, . . . ,p.

When R0 > 1 for system (1.2), the following result shows that
the existence, uniqueness and global attractivity of the endemic
equilibrium still hold if the disease has mild effect on the travel
of infectious humans (i.e., nij �mij for i, j = 1,2, . . . ,p) and the dis-
ease-induced death is seldom (i.e., mi � 0 for i = 1,2, . . . ,p). We omit
the proof which is similar to that of Theorem 3.4 in Jin and Wang
[7] by applying Theorem 4.3 and Remark 4.2 in Smith and Zhao
[15] and Corollary 2.3 in Smith and Waltman [14].

Theorem 3.7. Let P = (mij)p�p and Q = (nij)p�p be the travel rate
matrices for the susceptible and infectious classes, respectively, and
~m ¼ ðm1; m2; . . . ; mpÞ be the vector formed by the disease-induced death
rates. Assume that all parameters in (1.2) are fixed except nij for
i, j = 1,2, . . . , p and mi for i = 1,2, . . . , p, and R0 > 1 when Q = P and
~m ¼ 01�p. Then there is a s > 0 such that for any Q and ~m with
kQ � Pk < s and k~mk < s, (1.2) has a unique endemic equilibrium
E
ðQ ;~mÞ, which is globally attractive with respect to R

p
þ � R

p
þ n f0g.

Here k�k is the Frobenius norm if ‘�’ is a matrix and the Euclidean norm
if ‘�’ is a vector.

We end this section with a result on the number of endemic
equilibria for a special case of the two-patch model:

dNi

dt
¼ Ai � diNi � miIi �mjiðNi � IiÞ þmijðNj � IjÞ; i; j ¼ 1;2; i – j;

dIi

dt
¼ biðIiÞ

Ni � Ii

Ni
Ii � ðdi þ mi þ ciÞIi; i; j ¼ 1;2; i – j:

ð3:6Þ

Namely, when the infectious individuals in each patch do not travel
to the other patch, we cannot obtain multiple endemic equilibria by
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choosing suitable saturation functions and parameter values, which
is different from the two-patch model in Jin and Wang [7].

Theorem 3.8. System (3.6) has at most one endemic equilibrium if
m12 P 0 and m21 P 0.

Proof. Assume that E
 ¼ N
1;N


2; I


1; I


2

� �
and bE ¼ ðbN1; bN2;bI1;bI2Þ are

two distinct positive equilibria of (3.6). Then they must satisfy
the following four equations

Ai � diNi � miIi �mjiðNi � IiÞ þmijðNj � IjÞ ¼ 0; i; j ¼ 1;2; i – j;

biðIiÞ
Ni � Ii

Ni
� ðdi þ mi þ ciÞ ¼ 0; i; j ¼ 1;2; i – j:

Solving N1, N2 in terms of I1, I2 from the first two and the last two
equations gives

Ni ¼ ððdj þmijÞðAi � ðmi �mjiÞIi �mijIjÞ þmijðAj �mjiIi � ðmj

�mijÞIjÞÞ=D ð3:7Þ

and

Ni ¼ Ii=ð1�Ki=biðIiÞÞ; ð3:8Þ

respectively, where Ki = di + mi + ci, i, j = 1,2, i – j and D = (d1 +
m21)(d2 + m12) �m12m21 > 0. Thus, Ij can be solved in terms of Ii

from (3.7) and (3.8) as follows:

ðdj þ mjÞmijIj ¼ ðdj þmijÞAi þmijAj � ððdj þmijÞmi � djmjiÞIi

� IiD
1�Ki=biðIiÞ

ð3:9Þ

for i, j = 1,2 and i – j, or

Ij ¼
ðdj þmijÞAi þmijAj � ððdj þmijÞmi � djmjiÞIi � IiD=ð1�Ki=biðIiÞÞ

ðdj þ mjÞmij

ð3:10Þ

if mij – 0. Next the proof is naturally divided into three cases.

Case 1. m12 > 0,m21 > 0. Note that I
i – bIi for i = 1,2, since other-
wise it follows from (3.8) and (3.10) that E
 ¼ bE. For
i ¼ 1;2;N
i > 0 and bNi > 0 imply that biðIiÞ >
Ki; Ii 2 ½minfI
i ;bIig;maxfI
i ;bIig�. We differentiate the
right hand side of (3.10), denoted by gi(Ii), with respect
to Ii 2 min I
i ;bIi

n o
;max I
i ;bIi

n oh i
and obtain

dgiðIiÞ
dIi

¼ djmji � ðdj þmijÞmi

ðdj þ mjÞmij

� D
ðdj þ mjÞmij

biðIiÞ
biðIiÞ �Ki

� Iib
0
iðIiÞKi

ðbiðIiÞ �KiÞ2

 !

6
djmji � ðdj þmijÞmi � D

ðdj þ mjÞmij
¼ Hi < 0; i; j

¼ 1;2; and i – j:

Direct algebraic manipulations yield

ðd1m12 � ðd1 þm21Þm2 � DÞðd2m21 � ðd2 þm12Þm1 � DÞ
� ðd1 þ m1Þðd2 þ m2Þm12m21

¼ ðd1 þ m1Þðd2 þ m2Þðd1d2 þ d1m12 þ d2m21Þ
¼ ðd1 þ m1Þðd2 þ m2ÞD > 0;

which is equivalent to H1 �H2 > 1. Without loss of generality, let
I
1 < bI1. Hence,

dg1ðI1Þ
dI1

dg2ðI2Þ
dI2

> 1) dg1ðI1Þ
dI1

<
dg2ðI2Þ

dI2

� 	�1

< 0; I1 2 ½I
1;bI1�:

This means that in the I1I2-plane, after the point I
1; I


2

� �
, the curve of

I2 = g1(I1) is below the curve of I1 = g2(I2). So the two curves cannot
intersect again at ðbI1;bI2Þ.

Case 2. m12 > 0 and m21 = 0, or m12 = 0 and m21 > 0. It suffices to
prove the result under the first condition. The negativity
of the derivative of the right side of (3.9) with respect to
I2 (i = 2, j = 1) means that I
2 ¼ bI2. Once again, the nega-
tivity of the derivative of the right side of (3.9) with
respect to I1 (i = 1, j = 2) means that I
1 ¼ bI1. It follows
(3.8) that E
 ¼ bE, which is a contradiction.

Case 3. m12 = m21 = 0. The negativity of the derivative of the
right side of (3.9) with respect to Ii means that I
i ¼ bIi

for i = 1,2. So E
 ¼ bE, a contradiction. h

Remark 3.9. An elementary but lengthy argument shows that sys-
tem (3.6) can have up to four biologically meaningful equilibria in
R4
þ if m12 P 0 and m21 P 0, that is, the DFE E0, two one-patch dis-

ease-free steady states, and the endemic equilibrium. This is the
same as the classic endemic model with bi = 0, i = 1,2 (see [11,2]).

4. Examples and discussion

As mentioned earlier, the media effect alone cannot drive an en-
demic disease extinct, but it plays a significant role in reducing the
number of infectives and its proportion to the total population. To
investigate this, we carry out a numerical example for the two-
patch model.

Consider the saturation functions fi(Ii) = 1 � ki/(ki + Ii) for i = 1,2
with k1 = 30 and k2 = 50, and take parameters in system (1.2) as fol-
lows: A1 = 20, a1 = 0.10, d1 = 3.6 � 10�5, m1 = 0.02, c1 = 0.09, A2 = 15,
a2 = 0.22, d2 = 4.0 � 10�5, m2 = 0.05, c2 = 0.05, b2 = 0.11. For these
parameter values, the respective basic reproduction numbers for
both patches are Rð1Þ0 ¼ 0:9088 < 1 and Rð2Þ0 ¼ 2:1991 > 1. If the
two patches are disconnected, the disease eventually dies out in
patch 1 while it persists in patch 2.

We fix the travel rates by letting m12 = 0.10, m21 = 0.08,
n12 = 0.08, n21 = 0.06, thus R0 ¼ 1:6208. Therefore, the disease be-
comes endemic in both patches and there exists an endemic equi-
libria. If we let b1 vary from 0 to 0.05, the curves of the final sized
infectives I
1 and I
2 against b1 are depicted in Fig. 1(a). Here numer-
ical calculations indicate that the endemic equilibrium is unique
for each b1 2 [0,0.05] and is locally stable. Both I
1 and I
2 are strictly
decreasing with respect to b1 which means stronger media cover-
age in patch 1 is beneficial to individuals in both patches.

If we keep all parameter values unchanged except that m2 = 0.03,
n12 = 0.04 and n21 = 0.02, then Fig. 1(b) shows how I
1 and I
2 vary
with b1 from 0 to 0.05. Here I
1 is decreasing in b1 but I
2 is increas-
ing in b1. However, their proportions to the total population in each
patch are strictly decreasing. Basically, appropriate media alert is
helpful to disease control.

In this paper, we proposed a multi-patch model to study the
influence of media coverage and human movement on disease
transmission. Our results show that the basic reproduction number
R0 is a threshold parameter of the disease dynamics. Particularly,
either all positive solutions approach the disease-free equilibrium
ðR0 6 1Þ or a unique endemic equilibrium ðR0 > 1Þ provided that
the disease is non-fatal and susceptible and infectious individuals
have the same travel rates. There are some unanswered questions
with our model. For example, the non-existence of multiple ende-
mic equilibria is unclear even for p = 2. Can the model exhibit more
complicated dynamical behaviors like Hopf bifurcation? Is there a
possibility that media coverage has negative effect on controlling
of infectious diseases?

We can generalize the current model in many aspects. A more
realistic model should include the impact of media on the dispersal
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rates. Sometimes it is better to consider the transmission coeffi-
cient as a function of the ratio Ii/Ni in patch i. There is a difference
between the time when data is collected and the time when audi-
ences get to know it, so it may be reasonable to consider a system
of delay differential equations. One can also incorporate media ef-
fect in other ways such as that in Mummert and Weiss [10].

Acknowledgment

The authors thank Chris Cosner, Long Zhang and Xiao-Qiang
Zhao for helpful discussions on this project.

References

[1] C. Cosner, J.C. Beier, R.S. Cantrell, D. Impoinvil, L. Kapitanski, M.D. Potts, A.
Troyo, S. Ruan, The effects of human movement on the persistence of vector-
borne diseases, J. Theor. Biol. 258 (2009) 550.

[2] J. Cui, Y. Takeuchi, Y. Saito, Spreading disease with transport-related infection,
J. Theor. Biol. 239 (2006) 376.

[3] J. Cui, X. Tao, H. Zhu, A SIS infection model incorporating media coverage,
Rocky Mount. J. Math. 38 (2008) 1323.

[4] D. Gao, S. Ruan, A multi-patch malaria model with logistic growth populations,
submitted for publication.

[5] D. Greenhalgh, Hopf bifurcation in epidemic models with a latent period and
nonpermanent immunity, Math. Comput. Model. 25 (2) (1997) 85.

[6] K.P. Hadeler, H.R. Thieme, Monotone dependence of the spectral bound on the
transition rates in linear compartmental models, J. Math. Biol. 57 (2008) 697.

[7] Y. Jin, W. Wang, The effect of population dispersal on the spread of a disease, J.
Math. Anal. Appl. 308 (2005) 343.

[8] J.C. Kamgang, G. Sallet, Computation of threshold conditions for
epidemiological models and global stability of the disease-free equilibrium
(DFE), Math. Biosci. 213 (2008) 1.

[9] R. Liu, J. Wu, H. Zhu, Media/psychological impact on multiple outbreaks of
emerging infectious diseases, Comput. Math. Methods Med. 8 (2007) 153.

[10] A. Mummert, H. Weiss, Get the news out loudly and quickly: modeling the
influence of the media on limiting infectious disease outbreaks, 2010.
Available from: <arXiv:1006.5028v2>.

[11] M. Salmani, P. van den Driessche, A model for disease transmission in a patchy
environment, Discrete Contin. Dyn. Syst. Ser. B 6 (2006) 185.

[12] P. Seibert, R. Suarez, Global stabilization of nonlinear cascade systems, Syst.
Control Lett. 14 (1990) 347.

[13] H.L. Smith, Monotone Dynamical Systems: An Introduction to the theory of
Competitive and Cooperative Systems, Mathematical Surveys and
Monographs, vol. 41, AMS, Providence, RI, 1995.

[14] H.L. Smith, P. Waltman, Perturbation of a globally stable steady state, Proc.
Amer. Math. Soc. 127 (1999) 447.

[15] H.L. Smith, X.-Q. Zhao, Dynamics of a periodically pulsed bio-reactor model, J.
Differ. Equat. 155 (1999) 368.

[16] C. Sun, Y. Wei, J. Arino, K. Khan, Effect of media-induced social distancing on
disease transmission in a two patch setting, Math. Biosci. 230 (2011) 87.

[17] H.R. Thieme, Persistence under relaxed point-dissipativity (with application to
an endemic model), SIAM J. Math. Anal. 24 (1993) 407.

[18] P. van den Driessche, J. Watmough, Reproduction numbers and sub-threshold
endemic equilibria for compartmental models of disease transmission, Math.
Biosci. 180 (2002) 29.

[19] M. Vidyasagar, Decomposition techniques for large-scale systems with
nonadditive interactions: stability and stabilizability, IEEE Trans. Automat.
Control 25 (1980) 773.

[20] W. Wang, G. Mulone, Threshold of disease transmission in a patch
environment, J. Math. Anal. Appl. 285 (2003) 321.

[21] W. Wang, X.-Q. Zhao, An epidemic model in a patchy environment, Math.
Biosci. 190 (2004) 97.

[22] X.-Q. Zhao, Uniform persistence and periodic coexistence states in infinite-
dimensional periodic semiflows with applications, Can. Appl. Math. Quart. 3
(1995) 473.

[23] X.-Q. Zhao, Z.-J. Jing, Global asymptotic behavior in some cooperative systems
of functional differential equations, Can. Appl. Math. Quart. 4 (1996) 421.

[24] X.-Q. Zhao, Dynamical Systems in Population Biology, Springer, New York,
2003.

[25] Z. Zhang, T. Ding, W. Huang, Z. Dong, Qualitative Theory of Differential
Equations, vol. 101, AMS, Providence, RI, 1992.

0 0.01 0.02 0.03 0.04 0.05
400
450
500
550
600
650
700
750
800
850

b1

I* 1&
I* 2

(b)

0 0.01 0.02 0.03 0.04 0.05
100
150
200
250
300
350
400
450
500
550

b1

I* 1&
I* 2

(a)
I*1
I*2

I*1
I*2

Fig. 1. The dependence of I
1 and I
2 on b1.
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