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Abstract. In this chapter, we provide a brief review about some recent studies
on mathematical modeling of malaria transmission in spatially heterogeneous en-
vironments. Deterministic models described by ordinary differential equations and
reaction-diffusion equations are used to investigate the spatial spread of malaria be-
tween humans and mosquitoes. Selected topics include the importance of modeling
spatial heterogeneity, basic models with infective immigrants, multi-patch models,
and reaction-diffusion models. The chapter ends with a brief discussion about possi-
ble future research directions.

1.1 Introduction

Malaria, a vector-borne infectious disease caused by the Plasmodium parasite, is
still endemic in more than 100 countries in Africa, South-East Asia, the Eastern
Mediterranean, Western Pacific, Americas and Europe. In 2010 there were about 219
million malaria cases, with an estimated 660,000 deaths, mostly children under five
in Sub-Saharan Africa (WHO 2012). The malaria parasite is transmitted to humans
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4 MALARIA MODELS WITH SPATIAL EFFECTS

via the bites of infected female mosquitoes of the genus Anopheles. Mosquitoes can
become infected when they feed on the blood of infected humans. Thus the infection
goes back and forth between humans and mosquitoes.

Mathematical modeling of malaria transmission has a long history. It has helped
us to understand transmission mechanism, design and improve control measures,
forecast disease outbreaks, etc. The so-called Ross-Macdonald model

dh(t)

dt
= ab

H − h(t)

H
v(t)− rh(t)

dv(t)

dt
= ac

h(t)

H
(V − v(t))− dv(t)

is the earliest malaria model which was originally considered by Ross (1911) in
1911 and later extended by Macdonald (1952, 1956, 1957) in 1950s. Here H and
V are the total populations of humans and mosquitoes, respectively, h(t) and v(t)
are the numbers of infected humans and mosquitoes at time t, a is the rate of bit-
ing on humans by a single mosquito, b and c are the transmission probabilities from
infected mosquitoes to susceptible humans and from infected humans to susceptible
mosquitoes, respectively, 1/r is the duration of the disease in humans and d is the
mortality rate of mosquitoes. On the basis of the modeling, Ross (1911) introduced
the threshold density concept and concluded that “... in order to counteract malaria
anywhere we need not banish Anopheles there entirely–we need only to reduce their
numbers below a certain figure.” Macdonald (1952, 1956, 1957) generalized Ross’
basic model, introduced the concept of basic reproduction number as the average
number of secondary cases produced by an index case during its infectiousness pe-
riod, and analyzed several factors contributing to malaria transmission. The work
of Macdonald had a very beneficial impact on the collection, analysis, and interpre-
tation of epidemic data on malaria infection (Molineaux and Gramiccia 1980) and
guided the enormous global malaria-eradication campaign of his era (Ruan et al.
2008). The Ross-Macdonald model is very useful and successful in the sense that it
captures the essential features of malaria transmission process. The modeling struc-
ture is now frequently used to investigate the transmission dynamics of many other
vector-borne diseases.

However, the Ross-Macdonald model is highly simplified and ignores many im-
portant factors of real-world ecology and epidemiology (Ruan et al. 2008). For
example, it does not take into account the age structure and immunity in humans,
latencies in both humans and mosquitoes, environmental factors, vital dynamics in
humans, etc. Another omission is the spatial heterogeneity since both mosquitoes
and humans are moving around which contributes to the spatial spread of the dis-
ease significantly. Malaria may vary spatially in the vectors that transmit it, in the
species causing the disease, and in the level of intensity. It can be easily spread
from one location to another due to extensive travel and migration (Martens and Hall
2000, Tatem et al. 2006, Stoddard et al. 2009). A possible reason for the failure
of the Global Malaria Eradication Program (1955-1969) is due to human movement
(Bruce-Chwatt 1968).
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One way of introducing spatial effects into epidemic models is to divide the pop-
ulation into n subpopulations and allow infective individuals in one patch to infect
susceptible individuals in another (see Lajmanovich amd Yorke 1976, Sattenspiel
and Dietz 1995, Dushoff amd Levin 1995, Lloyd and May 1996, Arino 2009, Wang
2007, and the references cited therein). Spatial heterogeneities can be modeled by
adding an immigration term where infective individuals enter the system at a constant
rate. This certainly allows the persistence of the disease since if it dies out in one
region then the arrival of an infective individual from elsewhere can trigger another
epidemic. Spatial heterogeneities have also been incorporated into epidemiological
models by using reaction-diffusion equations by some researchers (see, for example,
Murray 1989). Smith and Ruktanonchai (2010), Mandal et al. (2011), and Reiner
et al. (2013) have given comprehensive reviews on various mathematical models of
malaria. In what follows, we only introduce some spatial models solely develope-
d for malaria transmission. There are numerous spatial epidemic models for West
Nile virus, dengue, and other vector-borne diseases which may be also applicable to
malaria study, but are excluded from this chapter.

1.2 Malaria models with constant infective immigrants

In modern time, humans travel more frequently on scales from local to global. One
million people are reported to travel internationally each day, and one million people
travel from developed to developing countries (and vice versa) each week (Garret-
t 1996). A more recent report quoted a figure of 700 million tourist arrivals per
year (Gössling 2002). These types of movements have the potential to spread dis-
ease pathogens and their vectors over long distances. Infected people from malaria-
endemic regions can bring the disease to malaria-free regions and this has happened
in the United States where an estimated 1,500 malaria cases are diagnosed annually
in this country, of which about 60% are among U.S. travelers (Newman et al. 2004).
Perhaps the simplest way to include spatial effects is to assume that there is a con-
stant recruitment through human movement with a fraction of infective immigrants.

Tumwiine et al. (2010) developed such a model with the SIRS structure for hu-
mans and the SI structure for mosquitoes. LetNH(t) andNV (t) be the total numbers
of mosquitoes and humans at time t, respectively. The human population is divid-
ed into three subclasses: susceptible, infectious and semi-immune, with numbers at
time t in these classes given by SH(t), IH(t) andRH(t), respectively. The mosquito
population is divided into two subclasses: susceptible SV (t) and infectious IV (t).
Thus NH(t) = SH(t) + IH(t) + RH(t) and NV (t) = SV (t) + IV (t). A flow Λ
of new members enters into the human population through birth or immigration with
a fraction ϕ of infectives. It is assumed that there are no immigrants that enter the
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immune class. The model takes the form

dSH

dt
= (1− ϕ)Λ− ab

SH

NH
IV + νIH + γRH − µhSH ,

dIH
dt

= ϕΛ + ab
SH

NH
IV − (ν + r + δ + µh)IH ,

dRH

dt
= rIH − (γ + µh)RH ,

dSV

dt
= λvNV − ac

IH
NH

SV − µvSV ,

dIV
dt

= ac
IH
NH

SV − µvIV ,

(1.1)

where a is the number of humans a mosquito bites per unit time, b is the proportion
of infected bites on humans that produce an infection, c is the transmission efficiency
from humans to mosquitoes, µh and µv are the natural death rates for humans and
mosquitoes, respectively, δ is the disease-induced death rate for humans, r is the
progression rate that infectious humans become semi-immune, ν is the progression
rate that infectious humans become susceptible, γ is the rate of loss of immunity for
humans, and λv is the birth rate of mosquitoes.

Since a female mosquito takes a fixed number of blood meals per unit time inde-
pendent of the abundance of the host, the mosquito-human ratio m = NV

NH
is taken

as a constant. Set sh = SH

NH
, ih = IH

NH
, rh = RH

NH
, sv = SV

NV
and iv = IV

NV
as the

proportions for classes SH , IH , RH , SV and IV , respectively, so that

sh + ih + rh = 1 ⇒ rh = 1− sh − ih and sv + iv = 1 ⇒ sv = 1− iv.

Then system (1.1) reduces to

dsh
dt

= γ + (1− ϕ)(µh + δih)− [abmiv + µh + γ]sh + (ν − γ)ih,

dih
dt

= ϕ(µh + δih) + abmshiv − [ν + r + µh + δ]ih,

div
dt

= ac(1− iv)ih − λviv

(1.2)

provided that Λ
NH

= µh + δih. It can be shown that the biologically feasible region

T = {(sh, ih, iv) ∈ R3
+ : 0 ≤ sh, 0 ≤ ih, sh + ih ≤ 1, 0 ≤ iv ≤ 1}

is positively invariant with respect to system (1.2). Clearly, system (1.2) always has
a disease-free equilibrium E0 = (1, 0, 0) when ϕ = 0 (namely, there is no infective
immigrants). So we can define a basic reproduction number

R0 =

√
a2bmc

λv(ν + r + µh + δ)



MALARIA MODELS WITH DISCRETE DIFFUSION 7

for system (1.2) if ϕ = 0. There exists a unique endemic equilibrium, denoted by
E1, if ϕ = 0 and R0 > 1. For ϕ > 0, system (1.2) has no disease-free equilibrium
but has exactly one endemic equilibrium, denoted by Ẽ1, for all parameter values.
Following Tumwiine et al. (2010), we have the following results:

Theorem 1.1 Let T̊ be the interior of T .

(i) If ϕ = 0 and R0 ≤ 1, then the disease-free equilibrium E0 of system (1.2) is
the only equilibrium in T and is globally asymptotically stable.

(ii) If ϕ = 0 and R0 > 1, then the disease-free equilibrium E0 of system (1.2)
becomes unstable and there exists a unique endemic equilibrium E1 which is
globally asymptotically stable in T̊.

(iii) If 0 < ϕ < 1, then the unique endemic equilibrium Ẽ1 of system (1.2) is globally
asymptotically stable in T̊.

The global stability of E0 is proved by constructing a Lyapunov function and the
global stabilities of E1 and Ẽ1 are proved by employing the geometrical approach
developed in Li and Muldowney (1996). These indicate that a constant influx of
infected immigrants plays a significant role in the spread and persistence of malaria
and it could result in new disease outbreaks in area where malaria had once been
eradicated.

1.3 Malaria models with discrete diffusion

Multi-patch models are widely used to model directly transmitted diseases as well
as vector-borne diseases (see Arino 2009, Wang 2007). A patch may be referred
to as a village, city, country, or some other geographical region. Either humans,
mosquitoes or both are mobile, which case mainly depends on the spatial scale un-
der consideration. Because mosquitoes have relatively lower mobility, we usually
neglect mosquito movement in the large geographical scale, but consider both or
mosquito movement in the small scale. In this section, we will first introduce some
multi-path models with constant population size, then present multi-patch models
with birth and death. At the end we will discuss a multi-strain model in a heteroge-
neous environment.

1.3.1 Multi­patch models without vital dynamics of humans

In the Ross-Macdonald model, both human and mosquito populations are constant
and there is no latent period or partially-immune class. Its simplicity allows us to
do some in-depth investigations. The early multi-patch malaria models follow the
Ross-Macdonald structure (see Dye and Hasibeder 1986, Hasibeder and Dye 1988,
Torres-Sorando and Rodrı́guez 1997, Rodrı́guez and Torres-Sorando 2001).

To take account of the non-homogeneous mixing between vectors and hosts, Dye
and Hasibeder (1986, 1988) proposed and analyzed the following epidemic model
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with m host patches and n vector patches

dSi

dt
= α

(∑
j

γjiIj

)(
1− Si

Hi

)
− ρSi, 1 ≤ i ≤ m,

dIj
dt

= β

(
Vj − Ij

)(∑
i

γji
Si

Hi

)
− δIj , 1 ≤ j ≤ n,

(1.3)

where Hi is the total host population size in patch i with Si being infected and Vj
is the total vector population size in patch j with Ij being infected, α and β are
the transmission rates of infection from vectors to hosts and vice versa, γji is the
probability that a vector from patch j commutes to and bites in host patch i, ρ is the
human recovery rate and δ is mosquito death rate. As far as we know, this is the first
multi-patch malaria model which is somewhat different from those we will present
later. A mosquito from any one of the n vector patches can bite any one of the m
host patches. The nonnegative terms γji are assumed to satisfy

∑
1≤i≤m γji = 1 for

j = 1, 2, · · · , n.
We call model (1.3) a p/q model if m = p and n = q. Let H and V be the total

hosts and vectors over all patches. The following result suggests that nonuniform
host selection by mosquitoes leads to basic reproduction numbers greater than or
equal to those obtained under uniform host selection.

Theorem 1.2 (Theorem 2 in Hasibeder and Dye 1988) The basic reproduction
number R(m/n) for the m/n model (1.3) can be estimated against the basic re-
production numbersR(m/1), R(1/1), R(1/n) for the correspondingm/1, 1/1, and
1/n models according to

R(m/n) ≥ R(m/1) ≥ R(1/1) = R(1/n) = αβV/ρδH.

Moreover, the disease dynamics are completely determined by the basic repro-
duction number (Theorem 7 in Hasibeder and Dye 1988). Namely, the disease ei-
ther goes extinct (if R(m/n) ≤ 1) or persists at an endemic equilibrium level (if
R(m/n) > 1) in the whole system.

Torres-Sorando and Rodrı́guez (1997, 2001) clearly stated two types of mobility
patterns in humans for malaria infection: migration between patches without return,
and visitation in which the individuals return to their patch of origin after visiting
other patches. Conditions for invasibility of the disease are obtained for the models
under further assumptions. More recently, Auger et al. (2008) and Cosner et al.
(2009) generalized the models in Dye and Hasibeder (1986, 1988), Torres-Sorando
and Rodrı́guez (1997, 2001) to an even more general form. In particular, Cosner et
al. (2009) studied the following visitation model

dXi

dt
=

(
N∑
j=1

AijYj

)
(Hi −Xi)− riXi,

dYi
dt

=

(
N∑
j=1

BijXj

)
(Vi − Yi)− µiYi,

(1.4)
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and migration model

dXi

dt
=AiYi(H

∗
i −Xi)− riXi +

N∑
j=1

CijXj ,

dYi
dt

=BiXi(V
∗
i − Yi)− µiYi +

N∑
j=1

DijYj ,

(1.5)

where Ai = aibie
−µiτi/H∗

i and Bi = aici/H
∗
i for i = 1, · · · , N . Here N is the

number of patches in the network;Xi and Yi are the numbers of infected humans and
mosquitoes, respectively;Hi and Vi are the total numbers of humans and mosquitoes
for the ith patch in isolation, respectively; ri and µi are the recovery rate for humans
and mortality rate of mosquitoes, respectively; Aij and Bij measure the rates that
a vector from patch j bites and infects a host in patch i and a host in patch i gets
infection from a vector in patch j, respectively; ai and τi are the human feeding rate
and the extrinsic incubation period of malaria within mosquitoes, respectively; bi
and ci measure the transmission efficiencies from infected mosquitoes to susceptible
humans and from infected humans to susceptible mosquitoes in patch i, respectively;
Cij andDij are the movement rates of humans and mosquitoes from patch j to patch
i, i ̸= j, respectively; −Cii =

∑N
j=1,j ̸=i Cji and −Dii =

∑N
j=1,j ̸=iDji are the

emigration rate of humans and mosquitoes in patch i, respectively; (H∗
1 , · · · ,H∗

N )
and (V ∗

1 , · · · , V ∗
N ) are the equilibrium population size of humans and mosquitoes,

which are the unique positive solutions to

N∑
j=1

CijH
∗
j = 0, i = 1, · · · , N, and

N∑
j=1

H∗
j =

N∑
j=1

Hj ,

N∑
j=1

DijV
∗
j = 0, i = 1, · · · , N, and

N∑
j=1

V ∗
j =

N∑
j=1

Vj ,

respectively.
The basic reproduction number for each modeling approach is computed using

the method of van den Driessche and Watmough (2002) and it is a threshold that
determines the global dynamics of the disease.

Theorem 1.3 (Theorem 1 in Cosner et al. 2009) Let A = ((AijHi/µj)) and B =
((BijVi/rj)), where the entries in A and B are taken from (1.4). Assume that the
matrices A , B are irreducible. Then for (1.4) we may take R2

0 = ρ(A B) where ρ
is the spectral radius. If R0 < 1 then the disease-free equilibrium in (1.4) is stable
while if R0 > 1 it is unstable. If the disease-free equilibrium in (1.4) is stable then
there is no positive equilibrium and the disease-free equilibrium is globally stable
among nonnegative solutions. If the disease-free equilibrium is unstable then there
is a unique positive equilibrium which is globally stable among positive solutions.

Theorem 1.4 (Theorem 2 in Cosner et al. 2009) Consider the system (1.5) restrict-
ed to the invariant region {(X1, · · · , XN , Y1, · · · , YN ) : 0 ≤ Xi ≤ H∗

i , 0 ≤ Yi ≤
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V ∗
i , i = 1, · · · , N}. Let C = ((Cij)) and D = ((Dij)). Let A ∗ = ((AiH

∗
i δij)),

B∗ = ((BiV
∗
i δij)), C ∗ = ((Cij − riδij)), and D∗ = ((Dij − µiδij)), where δij is

the Kronecker delta (i.e., 1 when i = j and 0 otherwise). Assume that the matrices
C and D are irreducible. Then for (1.5) we may take R2

0 = ρ(A ∗D∗−1B∗C ∗−1).
If R0 < 1 then the disease-free equilibrium in (1.5) is stable while if R0 > 1 it is
unstable. If the disease-free equilibrium in (1.5) is stable then there is no positive
equilibrium and the disease-free equilibrium is globally stable among non-negative
solutions. If the disease-free equilibrium is unstable then there is a unique positive
equilibrium which is globally stable among positive solutions.

An numerical example in Cosner et al. (2009) shows that a vector-borne disease
can become endemic when humans move between patches, even though the disease
dies out in each isolated patch. In fact, for a model consists of two identical patches
we can show that the basic reproduction number of the isolated patch, labeled by
Ri,0, is always less than or equal to the basic reproduction number R0 of the two-
patch model.

Theorem 1.5 Consider system (1.5) with two identical patches connected by human
movement, i.e., ai = a, bi = b, ci = c, µi = µ, ri = r, τi = τ,Hi = H,Vi = V ,
i = 1, 2, C12 > 0, C21 > 0 and D12 = D21 = 0. Then R0 ≥ R1,0 = R2,0 with
equality if and only if C12 = C21.

Based on the above result, we present an example to illustrate this interesting
phenomenon. For i = 1, 2, suppose ai = 0.2, bi = 0.3, ci = 0.3, µi = 0.095,
ri = 0.07, τi = 0, Hi = 1, Vi = 1.8. Thus R1,0 = R2,0 = 0.9871 < 1 and
the disease dies out in each isolated patch (see Figure 1.1). Now we allow humans
to migrate between these two patches with C12 = 0.1 and C21 = 0.5. The basic
reproduction number of the two-patch model is R0 = 1.0357 > 1. Therefore, the
disease becomes endemic in both patches (see Figure 1.2).

0 500 1000 1500 2000

0.005

0.010

0.015

0.020

Time

vi

hi

Figure 1.1 When there is no movement between the two patches, the disease disappears in
both patches. Here hi(0) = 0.02, vi(0) = 0.01, i = 1, 2.

However, the scenario cannot happen for an SIS multi-patch model with standard
incidence (see Gao and Ruan 2011) where the basic reproduction number of the full
model is between the maximum and minimum of the basic reproduction numbers of
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Figure 1.2 When nonsymmetric human movement occurs, the disease becomes endemic in
both patches. Here C12 = 0.1, C21 = 0.5, hi(0) = 0.02 and vi(0) = 0.01, i = 1, 2.

each isolated patch, but can occur for an SIS multi-patch model with bilinear inci-
dence (Wang and Zhao 2004) where we can rigorously establish a result on R0 sim-
ilar to Theorem 1.5 under the assumption that susceptible and infectious individuals
have identical travel rates. In addition, this scenario does not exist for a multi-patch
Ross-Macdonald model with constant mosquito-human ratio in each patch. The fol-
lowing conclusion follows from Proposition 2.2 in Gao and Ruan (2011).

Theorem 1.6 Consider system (1.5) with arbitrary number of patches connected
by human movement satisfying Vi/Hi = V ∗

i /H
∗
i = mi and Dij = 0 for i, j =

1, · · · , N . Then min1≤i≤N Ri0 ≤ R0 ≤ max1≤i≤N Ri,0.

So the possible occurrence of the aforementioned scenario depends on the con-
tact rate, namely, the scenario appears if the contact rate is a function of the total
population and disappears if it is a constant. The other interesting observation with
respect to system (1.5) is the non-monotone dependence of R0 upon the travel rate.
For example, using the same parameters as in Figure 1.1 except that C12 = 0.2 and
C21 = m, the curve R0 against m from 0.05 to 0.70 is given in Figure 1.3.

Auger et al. (2010) also considered an n-patch Ross-Macdonald model with host
migration under the assumptions that the susceptible and infected hosts have dif-
ferent movement rates and the migration process is faster than the epidemic phe-
nomenon. The model can possess multiple endemic equilibria when the basic repro-
duction number of the model is greater than one. Prosper et al. (2012) eliminated the
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0.1 0.2 0.3 0.4 0.5 0.6 0.7
m

1.00

1.02

1.04

1.06

R0

Figure 1.3 The relation between R0 and m = C21. The disease dies out when the travel
rate from patch 1 to patch 2 is neither too small nor too large; it persists otherwise.

equation for infected mosquitoes from the classical Ross-Macdonald model provid-
ed that the infected mosquito population equilibrates much faster than the infected
human population. When it extends to a patchy environment with human migration,
a directly transmitted disease like model was derived. For the two-patch case, they
found that the basic reproduction number of the whole system is between the basic
basic reproduction numbers of the two patches in isolation. In fact, we can easily
generalize this result to a system with an arbitrary number of patches and even es-
tablish the global dynamics of the system by using some earlier results in Gao and
Ruan (2011).

1.3.2 Multi­patch models with vital dynamics of humans

In this subsection, we present two metapopulation models in which the acquired im-
munity in humans and the demographic process (births and deaths) of both humans
and mosquitoes are incorporated and the transmission process is more complicated.

1.3.2.1 A multi­patch model with constant recruitment Arino et al. (2012)
developed a multi-patch malaria model with SIRS and SI structures for the host-
s and vectors, respectively. In the absence of disease and human migration, both
humans and mosquitoes are modeled by a simple linear growth model with a con-
stant recruitment rate and a constant natural death rate. It is assumed that a recov-
ered person (asymptomatic carrier) is temporarily immune to the disease but who
may be still infectious to mosquitoes. The total number of patches is n. At time t
in patch i, there are SH,i(t) susceptible humans, IH,i infectious humans, RH,i re-
covered humans, SV,i susceptible mosquitoes and IV,i infectious mosquitoes. Let
Hi(t) = SH,i(t) + IH,i(t) + RH,i(t) and Vi(t) = SV,i(t) + IV,i(t) be the total
human and mosquito populations in patch i at time t. Then the malaria transmission
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dynamics are governed by the equations

dSH,i

dt
=ΛH,i + βH,iRH,i + ρH,iIH,i − µH,iSH,i − ΦH,iSH,i +

n∑
j=1

mS
ijSH,j ,

dIH,i

dt
=ΦH,iSH,i − (αH,i + γH,i + ρH,i + µH,i)IH,i +

n∑
j=1

mI
ijIH,j ,

dRH,i

dt
=αH,iIH,i − (βH,i + µH,i)RH,i +

n∑
j=1

mR
ijRH,j ,

dSV,i

dt
=ΛV,i − µV,iSV,i − ΦV,iSV,i,

dIV,i
dt

=ΦV,iSV,i − µV,iIV,i,

(1.6)
where ΦH,i = ΦH,i(SH,i, SV,i, IH,i, RH,i, IV,i) and ΦV,i = ΦV,i(SH,i, SV,i, IH,i,
RH,i, IV,i) are the forces of infection from mosquitoes to humans and from humans
to mosquitoes, respectively. A classic form and a general form of ΦH,i and ΦV,i can
be found in Ngwa and Shu (2000) and Chitnis et al. (2006), respectively.

For patch i, ΛH,i and ΛV,i are the recruitment of humans and mosquitoes, respec-
tively, αH,i is the rate of progression from the infectious to the partially immune
class, ρH,i is the rate of recovery from being infectious, µH,i and µV,i are the natural
death rates for humans and mosquitoes, respectively, γH,i is the disease death rate,
βH,i is the rate of loss of immunity for humans. Let mπ

ij , π = S, I,R, represent
the travel rate of humans from patch j to patch i, for i, j = 1, · · · , n, i ̸= j, and
mπ

ii = −
∑n

j=1,j ̸=im
π
ji, for π = S, I,R and i = 1, · · · , n.. Assume that the travel

rate matrices Mπ = (mπ
ij)n×n are irreducible for π = S,R.

Let S = (SH,1, SV,1, · · · , SH,n, SV,n) and I = (IH,1, RH,1, IV,1, · · · , IH,n,
RH,n, IV,n) denote the susceptible and infected states, respectively. It is easy to
check that system (1.6) is well-posed and has a unique disease-free equilibrium
(S∗, 0) in Ω = {(S, I) ∈ R5n

+ : SH,i > 0, SV,i > 0, 1 ≤ i ≤ n}. Following the
recipe of van den Driessche and Watmough (2002), we define the basic reproduction
number of system (1.6) as

R0 = ρ(FV −1) = ρ(diag{F11, · · · , Fnn}(Vij)n×n),

where submatrices

Fii =

 0 0 ∂ΦH,i/∂IV,iS
∗
H,i

0 0 0

∂ΦV,i/∂IH,iS
∗
V,i ∂ΦV,i/∂RH,iS

∗
V,i 0

 ,

Vij = diag{−mI
ij ,−mR

ij , 0}, i ̸= j, Vii =

ϵH,i −mI
ii 0 0

−αH,i δH,i −mR
ii 0

0 0 µV,i


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for i, j = 1, 2, · · · , n.
The basic reproduction number R0 determines the local stability of the disease-

free equilibrium but not the global behavior of system (1.6) since a backward bifurca-
tion may occur at R0 = 1 if the disease related death rate is sufficiently high. Arino
et al. (2012) used type reproduction numbers (Roberts and Heesterbeek 2003) to
identify the reservoirs of infection where control measures would be most effective.
The paper ends with applications to the disease spread from endemic to non-endemic
areas and from rural to urban areas.

Zorom et al. (2012) introduced two control variables, prevention and treatment,
to the model (1.6). By using the optimal control theory to a three-patch submodel,
they numerically identified the best control strategy when the patch is a reservoir or
not.

1.3.2.2 A multi­patch model with logistic growth To explore the effects of pop-
ulation dispersal on the spatial spread of malaria, Gao and Ruan (2012) formulated
a multi-patch model based on that of Ngwa and Shu (2000) with an SEIR structure
for humans and an SEI structure for mosquitoes. Both human and mosquito popu-
lations obey a logistic growth and migrate between n patches, with humans having
additional disease induced death. The number of susceptible, exposed, infectious
and recovered humans in patch i at time t, is denoted by Sh

i (t), E
h
i (t), I

h
i (t) and

Rh
i (t), respectively. Let Sv

i (t), E
v
i (t) and Ivi (t) denote, respectively, the number

of susceptible, exposed and infectious mosquitoes in patch i at time t. Nh
i (t) and

Nv
i (t) represent the total human and mosquito populations in patch i at time t. The

interactions between hosts and vectors in patch i are given by the following system
of 7n ordinary differential equations with nonnegative initial conditions satisfying
Nh

i (0) > 0 :

dSh
i

dt
= λhiN

h
i + βh

i R
h
i + rhi I

h
i − cvhi avi I

v
i

Nh
i

Sh
i − fhi (N

h
i )S

h
i +

n∑
j=1

φS
ijS

h
j ,

dEh
i

dt
=
cvhi avi I

v
i

Nh
i

Sh
i − (νhi + fhi (N

h
i ))E

h
i +

n∑
j=1

φE
ijE

h
j ,

dIhi
dt

= νhi E
h
i − (rhi + αh

i + γhi + fhi (N
h
i ))I

h
i +

n∑
j=1

φI
ijI

h
j ,

dRh
i

dt
= αh

i I
h
i − (βh

i + fhi (N
h
i ))R

h
i +

n∑
j=1

φR
ijR

h
j , (1.7)

dSv
i

dt
= λviN

v
i − chvi avi I

h
i

Nh
i

Sv
i − dhvi aviR

h
i

Nh
i

Sv
i − fvi (N

v
i )S

v
i +

n∑
j=1

ψS
ijS

v
j ,

dEv
i

dt
=
chvi avi I

h
i

Nh
i

Sv
i +

dhvi aviR
h
i

Nh
i

Sv
i − (νvi + fvi (N

v
i ))E

v
i +

n∑
j=1

ψE
ijE

v
j ,
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dIvi
dt

= νvi E
v
i − fvi (N

v
i )I

v
i +

n∑
j=1

ψI
ijI

v
j ,

where λhi and λvi are the birth rates of humans and mosquitoes, respectively, fhi (N
h
i )

= µh
i + ρhiN

h
i and fvi (N

v
i ) = µv

i + ρviN
v
i are the density-dependent death rates

for humans and mosquitoes, respectively; γhi is the disease-induced death rate for
humans; avi is the mosquito biting rate; cvhi , chvi and dhvi are the transmission proba-
bilities from infectious mosquito to a susceptible human, from an infectious human
to a susceptible mosquito and from a recovered human to a susceptible mosquito,
respectively; νhi , αh

i and βh
i are the progression rates that exposed humans become

infectious, infectious humans become recovered and recovered humans become sus-
ceptible, respectively; rhi is the rate of recovery from being infectious for humans;
νvi is the progression rate that exposed mosquitoes become infectious; φK

ij ≥ 0
for K = S,E, I,R is the immigration rate from patch j to patch i for i ̸= j of
susceptible, exposed, infectious, and recovered humans, respectively; ψL

ij ≥ 0 for
L = S,E, I is the immigration rate from patch j to patch i for i ̸= j of susceptible,
exposed, and infectious mosquitoes, respectively; −φK

ii ≥ 0 for K = S,E, I,R is
the emigration rate of susceptible, exposed, infectious, and recovered humans away
from patch i, respectively; −ψL

ii ≥ 0 for L = S,E, I , is the emigration rate of
susceptible, exposed, and infectious mosquitoes in patch i, respectively.

The travel rate matrices (φK
ij )n×n for K = S,E, I,R and (ψL

ij)n×n for L =
S,E, I are assumed to be irreducible. For convenience, suppose that individuals do
not change their disease status and there is no birth or death during travel. So we
have

φK
ii = −

n∑
j=1
j ̸=i

φK
ji ,K = S,E, I,R, and ψL

ii = −
n∑

j=1
j ̸=i

ψL
ji, L = S,E, I, 1 ≤ i ≤ n.

To avoid extinction of either humans or mosquitoes in the patchy environment, we
further assume that

s(((λhi − µh
i )δij + φS

ij)n×n) > 0 and s(((λvi − µv
i )δij + ψS

ij)n×n) > 0,

where s denotes the spectral bound of a matrix which is the largest real part of any
eigenvalue of the matrix.

For any t ≥ 0, denote the vector (Sh
1 (t), . . . , S

h
n(t)) by Sh(t) and Eh(t), Ih(t),

Rh(t), Sv(t), Ev(t) and Iv(t) can be introduced similarly. It is not difficult to show
that system (1.7) is mathematically well-posed and epidemiologically reasonable.
Applying the theory of monotone dynamical systems (Smith 1995), we find that
system (1.7) has a disease-free equilibrium of the form (Sh∗, 0, 0, 0, Sv∗, 0, 0). It
follows the next generation method (Diekmann et al. 1990, van den Driessche and
Watmough 2002) that the basic reproduction number of system (1.7) is

R0 =

√
ρ(A64A

−1
44 A42A

−1
22 (A73 +A75A

−1
55 A53)A

−1
33 A31A

−1
11 ),
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where

A11 = (δij(ν
h
i + fhi (S

h∗
i ))− φE

ij)n×n, A22 = (δij(ν
v
i + fvi (S

v∗
i ))− ψE

ij)n×n,

A31 = (δijν
h
i )n×n, A33 = (δij(r

h
i + αh

i + γhi + fhi (S
h∗
i ))− φI

ij)n×n,

A42 = (δijν
v
i )n×n, A44 = (δijf

v
i (S

v∗
i )− ψI

ij)n×n, A53 = (δijα
h
i )n×n,

A55 = (δij(β
h
i + fhi (S

h∗
i ))− φR

ij)n×n, A64 = (δijc
vh
i avi )n×n,

A73 = (δijc
hv
i avi S

v∗
i /Sh∗

i )n×n, A75 = (δijd
hv
i avi S

v∗
i /Sh∗

i )n×n.

Immediately, we know the disease-free equilibrium is locally asymptotically sta-
ble if R0 < 1 and is unstable if R0 > 1. Since system (1.7) is a high-dimensional
nonlinear system, it is difficult to investigate the global dynamics of the system.
However, under suitable conditions, we can use the techniques of persistence theo-
ry (Zhao 2003, Smith and Thieme 2011) to establish the uniform persistence of the
disease in all patches provided that R0 > 1.

Theorem 1.7 (Theorem 3.7 in Gao and Ruan 2012) Let E11 denote the disease-free
equilibrium of (1.7), W s(E11) be the stable manifold of E11, and X0 be Rn

+ ×
IntR3n

+ × Rn
+ × IntR2n

+ . Suppose that R0 > 1, then W s(E11) ∩ X0 = ∅. If, in
addition, assume that

(i) λhi − µh
i − γhi > 0 for i = 1, 2, . . . , n;

(ii) φK
ij > 0 for K = S,E, I,R, i, j = 1, 2, . . . , n, i ̸= j;

(iii) λvi − µv
i > 0 for i = 1, 2, . . . , n (or ψS

ij = ψE
ij = ψI

ij for i, j = 1, 2, . . . , n).

Then the disease is uniformly persistent among patches, i.e., there is a constant κ > 0
such that each solution Φt(x0) ≡ (Sh(t), Eh(t), Ih(t), Rh(t), Sv(t), Ev(t), Iv(t))
of system (1.7) with x0 ≡ (Sh(0), Eh(0), Ih(0), Rh(0), Sv(0), Ev(0), Iv(0)) ∈ X0

satisfies

lim inf
t→∞

(Eh(t), Ih(t), Rh(t), Ev(t), Iv(t)) > (κ, κ, . . . , κ)1×5n,

and (1.7) admits at least one endemic equilibrium.

Therefore, R0 gives a sharp threshold below which the disease-free equilibrium
is locally stable and above which the disease persists in all patches. In order to elim-
inate the disease, we should seek a way to reduce R0 to be less than unity. A natural
question about disease control in a discrete space is how the reproduction number
depends on the travel rate matrices. This leads to a complicated eigenvalue problem.
For the two-patch case, the basic reproduction number R0 varies monotonically with
the travel rates of exposed, infectious, and recovered humans, which depend on the
disease status. When the travel rate is independent of the disease status, but may
or may not be independent of residence, the relationship between R0 and the travel
rates of exposed, infectious and recovered humans becomes even more complicated
and non-monotone dependence can occur.
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Figure 1.4 The basic reproduction number R0 in terms of k = φE
12 = φI

12 = φR
12 = φE

21 =
φI

21 = φR
21. Here all other parameters are fixed. The disease dies out when the exposed,

infectious and recovered human travel rate is small or large, it persists otherwise.

Finally, for the two-patch submodel, three numerical examples were given to il-
lustrate the impact of population dispersal for the disease spread. The first example
is used to compare the importance of different disease states in the disease propa-
gation. The optimal control strategy varies with the parameter setting. The second
one indicates that suitable human movement can both promote and halt the disease
spread even for two identical patches with the same initial conditions. In the last
example, two patches which only differ in infectivity of humans and mosquitoes are
concerned. Non-monotonicity of R0 in the exposed, infectious and recovered hu-
man travel rate which is independent of the residence and disease state is observed
(see Figure 1.4). These results suggest that human movement plays a vital role in
the spatial spread of malaria around the world. Since the travel of exposed humans
can also spread the disease geographically and screening at borders usually can only
help to identify those infected with symptom, inappropriate border control may make
the disease spread even worse and to control or eliminate malaria we need strategies
from regional to global.

1.3.3 Multi­patch and multi­strain malaria models

Most existing vector-borne disease models with population dispersal focus on the
effect of spatial heterogeneity on the distribution and maintenance of infectious dis-
eases. Few studies have addressed the impact of spatial heterogeneities on the evo-
lution of pathogens to more resilient drug-resistant strains.

In a recent paper, Qiu et al. (2013) proposed a Ross-Macdonald type model with
l competing strains on n discrete patches connected by human movement. In the
i-th patch, the host population is divided into l + 1 subclasses: susceptible, Si(t),
and infected with strain j, Hj

i (t), j = 1, 2, · · · , l, while the vector population is
classified as susceptible, Mi(t), and infected with strain j, V j

i (t), j = 1, 2, · · · , l.
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The interactions between hosts and vectors in patch i (i = 1, 2, · · · , n) are described
by the following differential equations:

dSi(t)

dt
=νiNi − bi

(
l∑

j=1

αjV
j
i

)
Si

Ni
+

l∑
j=1

γjiH
j
i +

n∑
k=1

mikSk − νiSi,

dHj
i (t)

dt
=biαjV

j
i

Si

Ni
− γjiH

j
i +

n∑
k=1

mikH
j
k − νiH

j
i , j = 1, 2, · · · , l,

dMi(t)

dt
=Λi − bi

(
l∑

j=1

βjH
j
i

)
Mi

Ni
− µiMi,

dV j
i (t)

dt
=biβjMi

Hj
i

Ni
− µiV

j
i , j = 1, 2, · · · , l,

Ni =Si +
l∑

j=1

Hj
i , Ti =Mi +

l∑
j=1

V j
i ,

(1.8)

where νi is the birth and death rate of the hosts, bi is the biting rate of vectors on
hosts, αj and βj are the transmission efficiencies from infected vectors with strain
j to susceptible hosts and from infected hosts with strain j to susceptible vectors,
respectively, γji is the recovery rate of infected hosts with strain j, Λi is the vector
recruitment into the susceptible class, µi is the mortality rate of the vectors. In
addition, mik represents the migration rate from patch k to patch i for susceptible
and infected hosts, 1 ≤ i, k ≤ n and i ̸= k. We assume that the travel rate matrix
(mik)n×n is irreducible with mii = −

∑n
k=1,k ̸=imki, otherwise the n patches can

be separated into two independent groups.
Since the total host and vector populations in patch i satisfy

dNi(t)

dt
=

n∑
k=1

mikNk, 1 ≤ i ≤ n, and
dTi(t)

dt
= Λi − µiTi, 1 ≤ i ≤ n, (1.9)

respectively, it follows from Cosner et al. (2009), Auger et al. (2008) that the sub-
system composed of the first n equations of (1.9) has a unique positive equilibrium,
labeled by N̄ = (N̄1, N̄2, · · · , N̄n)

T , which is globally asymptotically stable, and
the subsystem composed of the last n equations of (1.9) also admits a unique positive
equilibrium, labeled by T̄ = (W̄1, W̄2, · · · , W̄n)

T = (Λ1

µ1
, Λ2

µ2
, · · · , Λn

µn
)T , which is

also globally asymptotically stable. System (1.8) is then qualitatively equivalent to
the following 2ln-dimensional system

dHj
i (t)

dt
= biαjV

j
i

N̄i −
l∑

j=1

Hj
i

N̄i
− γjiH

j
i +

n∑
k=1

mikH
j
k − νiH

j
i ,

dV j
i (t)

dt
= biβj

(
W̄i −

l∑
j=1

V j
i

)
Hj

i

N̄i
− µiV

j
i ,

(1.10)
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where i = 1, 2, · · · , n, j = 1, 2, · · · , l. Set

Ω =

{
(I1, I2, · · · , I l) ∈ R2ln

+ :
l∑

j=1

Hj
i ≤ N̄i,

l∑
j=1

V j
i ≤ W̄i, i = 1, 2, · · · , n

}
,

where Ij = (Hj
1 ,H

j
2 , · · · ,Hj

n, V
j
1 , V

j
2 , · · · , V j

n ). Thus Ω is positively invariant for
(1.10).

In the context of no host migration, model (1.10) becomes a simple multi-strain
model

dHj
i (t)

dt
= biαjV

j
i

N0
i −

l∑
j=1

Hj
i

N0
i

− γjiH
j
i − νiH

j
i , 1 ≤ j ≤ n,

dV j
i (t)

dt
= biβj

(
W̄i −

l∑
j=1

V j
i

)
Hj

i

N0
i

− µiV
j
i , 1 ≤ j ≤ n

(1.11)

and the respective basic reproduction number for strain j in patch i is

Rj
i =

√
b2iαjβjW̄i

(γji + νi)µiN0
i

,

where N0
i = Ni(0), 1, 2, · · · , n. Qiu et al. (2013) proved the following theorem

which implies that competitive exclusion of the strains is the only outcome on a
single patch.

Theorem 1.8 (Theorem 3.1 in Qiu et al. 2013) For a given i ∈ {1, 2, · · · , n}, sys-
tem (1.11) has the following:

(1) if Rj
i < 1 for all 1 ≤ j ≤ l, then the disease for all strains will eventually die

out, i.e., the disease-free equilibrium of the system (1.11) is globally asymptoti-
cally stable;

(2) if Rj
i > 1 for some 1 ≤ j ≤ l and assume that there exists j∗ ∈ {1, 2, · · · , l}

such that Rj∗

i > Rj
i for all j = 1, 2, · · · , l, j ̸= j∗, then

lim
t→+∞

Hj∗

i (t) =
[b2iαj∗βj∗

W̄i

N0
i
− µi(γ

j∗

i + νi)]N
0
i

biβj∗(γ
j∗

i + νi + biαj∗
W̄i

N0
i
)

,

lim
t→+∞

V j∗

i (t) =
[b2iαj∗βj∗

W̄i

N0
i
− µi(γ

j∗

i + νi)]N
0
i

biαj∗(biβj∗ + µi)
,

and
lim

t→+∞
Hj

i (t) = 0, lim
t→+∞

V j
i (t) = 0
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for all j = 1, 2, · · · , l, j ̸= j∗.

Next, for the case when the patches are connected, define

Γc = {(I1, I2, · · · , I l) ∈ Ω : Ij = 0, j ̸= c}

for c ∈ {1, 2, · · · , l}. Then Γc is positively invariant for (1.10) and system (1.10) in
Γc becomes

dHc
i (t)

dt
= biαcV

c
i

N̄i −Hc
i

N̄i
− γciH

c
i +

n∑
k=1

mikH
c
k − νiH

c
i ,

dV c
i (t)

dt
= biβc(W̄i − V c

i )
Hc

i

N̄i
− µiV

c
i , i = 1, 2, · · · , n.

(1.12)

Note that system (1.12) a special case of the migration model (1.5). The multi-patch
basic reproduction number of subsystem (1.12) is given by

Rc
0 =

√
ρ(F c

12(V
c
22)

−1F c
21(V

c
11)

−1)

for strain c, where

F c
12 = diag{b1αc, b2αc, · · · , bnαc},

F c
21 = diag{b1βc

W̄1

N̄1
, b2βc

W̄2

N̄2
, · · · , bnβc

W̄n

N̄n
},

V c
11 = ((γci + νi)δik −mik)n×n, V c

22 = diag{µ1, µ2, · · · , µn}.

The dynamics of system (1.10) in Γc are completely determined by the respective
basic reproduction number Rc

0.

Theorem 1.9 (Theorem 3.2 in Qiu et al. 2013) If Rc
0 ≤ 1, then the disease-free

equilibrium E0 of the system (1.10) is globally asymptotically stable in Γc.
If Rc

0 > 1, then system (1.10) has a unique equilibrium EIc(Ic = Īc > 0, Ij =
0, j ̸= c) which is globally asymptotically stable in Γc\{O}.

By the comparison principle and the result on asymptotically autonomous sys-
tems, we find that a strain cannot invade the patchy environment and dies out over
the whole system if the multi-patch basic reproduction number for that strain is less
than one, and it can if it is the only strain whose reproduction number is greater than
one.

Theorem 1.10 (Theorem 3.3 in Qiu et al. 2013) (1) If Rj
0 ≤ 1 for all 1 ≤ j ≤ l,

then the disease-free equilibrium E0 of the system (1.10) is globally asymptotically
stable in Ω.

(2) If there exists c ∈ {1, 2, · · · , l} such that Rc
0 > 1 and Rj

0 ≤ 1 for 1 ≤ j ≤
l, j ̸= c, then the boundary equilibrium EIc(Ic = Īc > 0, Ij = 0, j ̸= c) is globally
asymptotically stable in Ω\{(I1, I2, · · · , I l) : Ic = 0}.
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When two or more strains have their multi-patch basic reproduction numbers
greater than one, they compete for the same limiting resource, the susceptible hosts
and vectors. For simplicity, we consider the two-strain multi-patch model

dHj
i (t)

dt
= biαjV

j
i

N̄i −H1
i −H2

i

N̄i
− γjiH

j
i +

n∑
k=1

mikH
j
k − νiH

j
i ,

dV j
i (t)

dt
= biβj(W̄i − V 1

i − V 2
i )
Hj

i

N̄i
− µiV

j
i ,

(1.13)

where i = 1, 2, · · · , n, j = 1, 2.
We are interested in the case when both R1

0 > 1 and R2
0 > 1, since oth-

erwise by Theorem 1.10 one or both strains will die out. By Theorem 1.9, the
system (1.13) has a disease-free equilibrium E0(0, 0) and two boundary equilibri-
a EI1(Ī1, 0), EI2(0, Ī2). Define the invasion reproduction number for strain j as

Ri
j = (ρ(M i

j ))
1
2 ,

where

M i
j =diag

{
b1βi

W̄1 − V̄ j
1

N̄1
, b2βi

W̄2 − V̄ j
2

N̄2
, · · · , bnβi

W̄n − V̄ j
n

N̄n

}

× (V i
11)

−1diag

{
b1αi

N̄1 − H̄j
1

N̄1µ1
, b2αi

N̄2 − H̄j
2

N̄2µ2
, · · · , bnαi

N̄n − H̄j
n

N̄nµn

}
.

for 1 ≤ i, j ≤ 2 and i ̸= j. Here V i
11, i = 1, 2 are defined in Ri

0. Obviously,
Ri

j < Ri
0.

Using some results from the theory of M-matrices, we can prove that the Jacobian
matrix for the system (1.13) at EIj is unstable (stable) if Ri

j > 1 (Ri
j < 1). So is

the equilibrium EIj . Moreover, it is proved that both strains are uniformly persistent
among patches when R1

2 > 1 and R2
1 > 1.

Theorem 1.11 (Theorem 4.2 in Qiu et al. 2013) If R1
2 > 1 and R2

1 > 1, then
there exists an ε > 0 such that for every (I1(0), I2(0)) ∈ IntR4n

+ the solution
(I1(t), I2(t)) of system (1.13) satisfies that

lim inf
t→+∞

Hj
i (t) ≥ ε, lim inf

t→+∞
V j
i (t) ≥ ε

for all i = 1, 2, · · · , n, j = 1, 2. Moreover, system (1.13) admits at least one
(component-wise) positive equilibrium.

A combination of Theorem 1.8 and 1.11 suggests that host migration among
patches, i.e., the spatial heterogeneity, is a possible mechanism that can lead to the
coexistence of multiple competing strains in a common area. In addition, by ap-
plying the theory of type-K monotone dynamical systems (Smith 1995), Qiu et al.
(2013) investigated the global dynamics of system (1.13) with two patches under
certain restraints.
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1.4 Malaria models with continuous diffusion

Reaction-diffusion type models have been developed to describe motion of individ-
uals in a continuous space (Wu 2008, Ruan and Wu 2009). The population density
now becomes a function of two variables: time and location. When malaria is con-
cerned, the simplest model of this kind is the standard Ross-Macdonald model with
a diffusion term. Lou and Zhao (2010) extended it to a reaction-diffusion-advection
malaria model with seasonality

∂h(t, x)

∂t
=a(t)b

H − h(t, x)

H
v(t, x)− dhh(t, x) +Dh

∂2h(t, x)

∂x2
,

∂v(t, x)

∂t
=a(t)c

h(t, x)

H
(M(t)− v(t, x))− dv(t)v(t, x)

+Dv
∂2v(t, x)

∂x2
− g

∂

∂x
v(t, x).

(1.14)

The density of humans and mosquitoes at location x and time t are H and M(t),
h(t, x) and v(t, x) of whom are infected, respectively. Let a(t) be the mosquito
biting rate at time t, 1/dh and 1/dv(t) be the human infectious period and the life
expectancy of mosquitoes, respectively, b and c be the transmission efficiencies from
infectious vectors to humans and from infectious humans to vectors, Dh and Dv

be the diffusion rates for humans and mosquitoes, respectively, g be the constant
velocity flux. The time-dependent parameters, a(t), dv(t) and M(t), are ω-periodic
functions while b, c,H, dh, g,Dh and Dv are positive constants.

In the case of an unbounded domain, the spreading speeds and travelling waves
for system (1.14) are studied. With respect to a bounded domain, the model exhibits
a threshold behavior on the global attractivity of either the disease-free equilibrium
or the positive periodic solution.

Consideration of certain practical factors in the study of malaria is sometimes nec-
essary and even critical. In another paper, Lou and Zhao (2011) derived a reaction-
diffusion malaria model with incubation period in the vector population

∂u1(t, x)

∂t
=Dh∆u1(t, x) +

cβ(x)

H(x)
(H(x)− u1(t, x))u3(t, x)− (dh + ρ)u1(t, x),

∂u2(t, x)

∂t
=Dm∆u2(t, x) + µ(x)− bβ(x)

H(x)
u2(t, x)u1(t, x)− dmu2(t, x),

∂u3(t, x)

∂t
=e−dmτ

∫
Ω

Γ(Dmτ, x, y)
bβ(y)

H(y)
u2(t− τ, y)u1(t− τ, y)dy

+Dm∆u3(t, x)− dmu3(t, x), x ∈ Ω, t > 0,

∂ui
∂n

=0, ∀x ∈ ∂Ω, t > 0, i = 1, 2, 3,

(1.15)
where u1(t, x), u2(t, x) and u3(t, x) are the population densities of infected humans,
susceptible and infectious mosquitoes, respectively, Dh and Dm are the diffusion
coefficients of humans and mosquitoes, respectively, b and c are the transmission
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probabilities from infectious humans to susceptible mosquitoes and from infectious
mosquitos to susceptible humans, respectively, β(x) is the habitat-dependent biting
rate, H(x) is the total human density at point x, dh and dm are the human and
mosquito death rates, respectively, ρ is the human recovery rate, µ(x) is the habitat-
dependent mosquito recruitment rate, τ is the incubation period in mosquitoes, Γ
is the Green function associated with the Laplacian operator ∆ and the Neumann
boundary condition, Ω is a spatial habitat with smooth boundary ∂Ω.

This nonlocal and time-delayed reaction-diffusion model admits a basic reproduc-
tion number R0 which serves as a threshold between the extinction and persistence
of the disease when Ω is a bounded region. Wu and Xiao (2012) studied the corre-
sponding Cauchy problem in an unbound domain and showed that there exist trav-
elling wave solutions connecting the the disease-free steady state and the endemic
steady state if R0 > 1 (i.e., malaria can invade the domain), and there is no trav-
elling wave solution connecting the disease-free steady state itself if R0 < 1. By
assuming that infectious humans are more attractive to mosquitoes than susceptible
humans, Xu and Zhao (2012) modified the model of Lou and Zhao (2010) with a
vector-bias term, i.e., change the terms (H(x)−u1(t, x))/H(x) and u1(t, x)/H(x)
in (1.15) to

l[H(x)− u1(t, x)]

pu1(t, x) + l[H(x)− u1(t, x)]
and

pu1(t, x)

pu1(t, x) + l[H(x)− u1(t, x)]
,

respectively. Here p (l) is the probability that a mosquito bites a human if that human
is infectious (susceptible) and p > l. They obtained some similar results as before.
Additionally, in 2005 Bacaër and Sokhna (2005) developed a reaction-diffusion type
model describing the geographical spread of drug resistance due to the mobility of
mosquitoes.

1.5 Discussion

Human and mosquito movement plays an important role in the spread and persistence
of malaria around the world. It brings a big challenge to the prevention and control
of malaria. Mathematical modeling of malaria with population dispersal could pro-
vide insights into the link of disease transmission between different places, identify
key patches or populations, and therefore help us design more effective antimalarial
strategies.

In the case of discrete spaces, multi-patch models with migration or commuting
have been used by many researchers. The transmission dynamics are much sim-
pler if human population dynamics are ignored (Dye and Hasibeder 1986, Hasibeder
and Dye 1988, Torres-Sorando and Rodrı́guez 1997, Rodrı́guez and Torres-Sorando
2001, Cosner et al. 2009, Auger et al. 2008). This is probably okay for short term
prediction and control. However, we have to add demographic effects into the mod-
el for studies with a longer time scale. Models with variable human and mosquito
populations become more complicated with richer dynamics (Arino et al. 2012, Gao
and Ruan 2012). Little is known about the global stability, the multiplicity or unique-
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ness of the endemic steady states. In many cases, fortunately, it is possible to define
the basic reproduction number R0 based on the procedure of van den Driessche and
Watmough (2002) and show the existence of an endemic equilibrium as well as the
uniform persistence of the disease when R0 > 1.

Table 1.1 Overview of some malaria models with spatial heterogeneity. The meaning of
each column is: Article­which paper, Year­publication year, Eqns­type of model equations
(ordinary differential equations­ODE, delay differential equations­DDE or reaction­diffusion
equations­RDE), Host­model structure in host, Vector­model structure in vector, Mobility­
who has mobility (vector, host, or both), Approach­modeling approach (migration model
or visitation model), Rate­is travel rate independent of disease status, Vital­does the model
consider vital dynamics in humans. The articles are ordered first by the type of model equations,
then by the publication year with an exception of the model in the last article which is a single
patch model with constant immigration of infectives.

Article Year Eqns Host Vector Mobility Approach Rate Vital

[11] 1986 ODE SIS SI vector visitation yes no

[17] 1988 ODE SIS SI vector visitation yes no

[48] 1997 ODE SIS SI host both yes no

[37] 2001 ODE SIS SI host visitation yes no

[42] 2004 ODE SIS SE1EkI vector migration yes no

[28] 2005 ODE SIS SEI vector migration yes no

[3] 2008 ODE SIS SI host migration yes no

[8] 2009 ODE SIS SI both both yes no

[4] 2010 ODE SIS SI host migration no no

[1] 2012 ODE SIRS SI host migration no yes

[33] 2012 ODE SIS SI host migration yes no

[14] 2012 ODE SEIRS SEI both migration no yes

[60] 2012 ODE SIRS SI host migration no yes

[34] 2013 ODE SIS SI host migration yes no

[12] 2014 ODE SIS SI host migration yes no

[57] 2013 DDE SEIS SEI host migration no yes

[5] 2005 RDE SI1(I2)R(J)S SI1(I2) vector n/a yes yes

[21] 2010 RDE SIS SI both n/a yes no

[22] 2011 RDE SIS SEI both n/a yes yes

[58] 2012 RDE SIS SEI both n/a yes yes

[55] 2012 RDE SIS SEI both n/a yes yes

[49] 2010 ODE SIRS SI host n/a n/a yes
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With respect to continuous spaces, reaction-diffusion equations models have been
developed to study the spatial spread of malaria, but so far only a very limited number
of works are available. Using the theory of next generation operators we can still
define a basic reproduction number R0, and prove that there exist traveling wave
solutions connecting the disease-free state and the endemic state if R0 > 1 or show
the global attractivity of the disease-free steady state or the endemic steady state
under special conditions.

In Table 1.1 we give a summary of the malaria models we mentioned in this
survey. The study of malaria transmission with spatial heterogeneity is far from
well-established. In general, questions such as the global dynamics of multi-patch
model with demographic structure, the dependence of R0 on the diffusion rate and
the validity of spatial models are still unanswered. There are some interesting future
research directions that we would like to mention as follows.

1. Multi-patch models with time-varying parameters. The mosquito ecology
and behavior are strongly driven by climate factors such as rainfall, temperature and
humidity. An obvious fact is that mosquito densities are usually higher during the
rainy season than in the dry season. To reflect these features, we might use time-
varying model parameters instead of constant parameters. Gao et al. (2014) pro-
posed a periodic malaria model in a fragmented habitat which is a generalization of
the multi-patch Ross-Macdonald model studied by Auger et al. (2008) and Cosner
et al. (2009). Each mosquito is confined to one of the n patches while humans can
seasonally migrate from one patch to another. At time t, there are Hi(t) humans
with hi(t) being infected and Vi(t) mosquitoes with vi(t) being infected in patch i.
The human feeding rate ai(t), mosquito recruitment rate ϵi(t), mosquito death rate
di(t), and human migration rate mij(t), are assumed to be periodic and continuous
functions with the same period ω = 365 days. The transmission probabilities from
infectious mosquitoes to susceptible humans, bi, from infectious humans to suscep-
tible mosquitoes, ci, and the human recovery rate, ri, are positive constants. The
periodic malaria model then has the form

dHi(t)

dt
=

p∑
j=1

mij(t)Hj(t), 1 ≤ i ≤ p,

dVi(t)

dt
= ϵi(t)− di(t)Vi(t), 1 ≤ i ≤ p,

dhi(t)

dt
= biai(t)

Hi(t)− hi(t)

Hi(t)
vi(t)− rihi(t) +

p∑
j=1

mij(t)hj(t), 1 ≤ i ≤ p,

dvi(t)

dt
= ciai(t)

hi(t)

Hi(t)
(Vi(t)− vi(t))− di(t)vi(t), 1 ≤ i ≤ p,

(1.16)
where the emigration rate of humans in patch i, −mii(t) ≥ 0, satisfies

∑p
j=1mji(t)

= 0 for i = 1, . . . , p and t ∈ [0, ω] and the matrix (
∫ ω

0
mij(t)dt)p×p is irreducible.
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According to the framework presented in Wang and Zhao (2008), we define the
basic reproduction number R0 for system (1.16) and show that either the disease
disappears or becomes established at a unique positive periodic solution, depending
on R0. It provides a possible explanation to the fact that the number of malaria cases
show seasonal variations in most endemic areas.

2. Time delays in humans and mosquitoes. Another interesting extension is to in-
troduce delays to account for the latencies in humans and/or mosquitoes. This leads
to non-local infections, meaning an infection that is caused by an infectious individ-
ual from other location who was exposed before arriving at the current site. Xiao and
Zou (2013) derived a system of delay differential equations to depict malaria trans-
mission in a large scale patchy environment in which the latent periods within both
hosts and vectors are explicitly included. Since mosquitoes have limited mobility,
only host migration is concerned. Within a single patch, the disease progression in
humans and mosquitoes are modeled by an SEIS model and an SEI model, respec-
tively. It follows the theory of the next generation operator for structured disease
models that the basic reproduction number is defined and shown to be a threshold
for the dynamics of the model.

3. More realistic spatial models. Models of malaria in heterogeneous environ-
ments has been developed rapidly in recent years. Researchers incorporate acquired
immunity, vital dynamics, time delays and environmental factor into the multi-patch
Ross-Macdonald model and obtain conditions for disease persistence and extinc-
tion. However, these models are still lack of reality and practicality. Models with
increasing reality become less mathematically tractable, but they are still useful as
long as we can solve them in a numerical way. For example, Smith et al. (2004)
proposed a multi-patch malaria model with seasonally varying mosquito birth rate,
multi-stage incubation in humans and the movement of mosquitoes. The emigration
rate of mosquitoes in one patch is not a constant, but a decreasing function of the
number of humans in that patch. They performed simulations for a linear array of 17
patches and found that the two risk factors of human infection, the human biting rate
and the proportion of mosquitoes that are infectious, may be negatively corrected in
a heterogeneous environment. Their model was modified by Menach et al. (2005)
by incorporating a more detailed description of mosquito oviposition behaviour.

Acknowledgements

The first author was partly supported by the Models of Infectious Disease Agent
Study (MIDAS) (UCSF 1 U01 GM087728). The second author was partially sup-
ported by the NIH grant R01GM093345 and NSF grant DMS-1022728.



REFERENCES

1. Arino, J., Ducrot, A., and Zongo, P. (2012). A metapopulation model for malaria
with transmission-blocking partial immunity in hosts. Journal of Mathematical Biology,
64(3):423–448.

2. Arino, J. (2009). Diseases in metapopulations. In Ma, Z., Zhou, Y., and Wu, J., editors,
Modeling and Dynamics of Infectious Diseases, volume 11 of Series in Contemporary
Applied Mathematics, pages 65–123. World Scientific, Singapore.

3. Auger, P., Kouokam, E., Sallet, G., Tchuenté, M., and Tsanou, B. (2008). The Ross–
Macdonald model in a patchy environment. Mathematical Biosciences, 216(2):123–131.
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