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A susceptible-infectious-susceptible (SIS) epidemic model that describes the 
coinfection and cotransmission of two infectious diseases spreading through a 
single population is studied. The host population consists of two subclasses: 
susceptible and infectious, and the infectious individuals are further divided 
into three subgroups: those infected by the first agent/pathogen, the second 
agent/pathogen, and both. The basic reproduction numbers for all cases are derived 
which completely determine the global stability of the system if the presence of one 
agent/pathogen does not affect the transmission of the other. When the constraint 
on the transmissibility of the dually infected hosts is removed, we introduce the 
invasion reproduction number, compare it with two other types of reproduction 
number and show the uniform persistence of both diseases under certain conditions. 
Numerical simulations suggest that the system can display much richer dynamics 
such as backward bifurcation, bistability and Hopf bifurcation.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Different infectious agents may infect or colonize a host at the same time [21]. Many examples can be 
found, these involving HIV [30,37] (for example, HIV and TB [19], HIV and Hepatitis B [12,26], HIV and 
Hepatitis C [23], and HIV and malaria [2]), as well as some not involving HIV (for example, Hepatitis B and 
C coinfection [11], gonorrhea and Chlamydia [13], and herpes simplex viruses 1 and 2 [41,59]). Moreover, 
simultaneous infection may occur with multiple strains or serotypes of the same organism, as is the case for 
influenza [20,49], human papilloma virus [9], and HIV [55,63,22], for just three of many examples. However, 
simultaneous colonization or infection may occur even when there appears to be little or no interaction 
between the two agents, as in the case of infection by ocular strains of chlamydia and nasopharyngeal colo-
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nization by pneumococcus [24]. The dynamics of coinfection is important in this case, because antimicrobials 
used to treat one infection may affect the other (e.g., [51,24]).

A variety of mathematical models for coinfections with multiple specific diseases, such as HIV/TB [43,
48,6,47], HIV/gonorrhea [40], HIV/malaria [1,39], malaria and meningitis [29], general diseases [5,7,35,28], 
and microparasites (viruses, bacteria, protozoa, fungi) [54,10,3,4,61], have been developed and analyzed 
in the past few years. Ferguson et al. [16] and Kawaguchi et al. [27] presented models to describe the 
coinfection of two serotypes of dengue virus in a human community. With respect to the interaction between 
nonspecific agents or pathogens, Blyuss and Kyrychko [7] studied a two-disease SIS model with equal 
transmission efficiency for both susceptible and singly infected individuals; Allen et al. [5] studied an SI 
model for a single host population with two viral infections, in which one is vertically transmitted and 
the other is horizontally transmitted; Zhang et al. [60] proposed an ODEs coinfection model with two 
strains of parasites and two host types to study the influence of heterogeneities in parasite virulence and 
host life history on the persistence and spread of parasite strains; Martcheva and Pilyugin [35] considered 
an epidemic model of two diseases: a primary disease and a secondary disease, structured by time since 
infection structure (for the primary disease); in the monograph of Keeling and Rohani [28], the interaction 
of two pathogens spreading through a host population was discussed in four cases: complete cross-immunity, 
no cross-immunity, enhanced susceptibility and partial cross-immunity. Among these models either the 
uninfected hosts cannot become infected with both diseases/strains directly [38,35,28,10], or there is no 
recovery and an infection is lifelong [54,5,4], or both [60,3].

In this paper, we develop and analyze a simple model of multiple infections; this model includes the 
possibility that the two agents are simultaneously transmitted, thereby inaugurating a dual infection. It 
exhibits aspects of Chlamydia trachomatis and pneumococcus, though we do not restrict the analysis to this 
setting (see [31,46] for examples of cotransmission in vector-borne disease ecology and human case reports, 
respectively). Our model will also include the possibility that an individual who is currently infected with 
one agent will become dually infected as a result of an exposure to the second agent. In this paper, the 
condition of being simultaneously infected by multiple agents will be referred to simply as coinfection. Our 
model is similar to the model of Blyuss and Kyrychko [7] where the disease induced mortality is included, 
the doubly infected hosts recover from both diseases simultaneously and strong restrictions on transmission 
parameters are required, and to the models for coinfection by different species in Tanaka and Feldman [54]
and Alizon [4] where disease-induced mortality may occur, but no recovery is possible (and the forces of 
infection follow a different rule).

We will assess a two-disease SIS model with no immunity or cross-immunity. For simplicity, we will refer to 
the first and second disease, recognizing that the model applies equally well to colonization or to subclinical 
infections. In Section 3, we carry out a complete global stability analysis of the model for the case where 
the force of infection of one disease is not affected by the presence of the other (i.e., no interaction between 
two infections). In Section 4, when the two infections interact with each other, we calculate the invasion 
reproduction numbers and obtain their epidemiologically meaningful lower and upper bounds, and show 
that the interaction outcome could be extinction of one or both diseases or persistence of both diseases. In 
Section 5, four numerical examples are provided to support the existence of competitive exclusion, backward 
bifurcation, bistability and Hopf bifurcation, respectively.

2. The model

We propose a simple SIS epidemic model with two infectious agents (or strains of the same agent) 
spreading through one host species. Let S(t), I1(t), I2(t) and I12(t) be the fractions of the population 
infected with no infectious agent, the first agent, the second agent and both agents at time t, respectively. 
A susceptible individual who contacts coinfected persons can be infected with either one or both disease 
agents as a result of a single contact. Using ocular strains of Chlamydia trachomatis and nasopharyngeal 



D. Gao et al. / J. Math. Anal. Appl. 442 (2016) 171–188 173
Fig. 1. Flowchart of a two-disease coinfection model. S, I1, I2 and I12 represent the fractions of population infected with no 
infectious agent, the first agent, the second agent and both agents, respectively.

pneumococcus as an example, transmission of either or both organisms could occur as a result of a single 
contact. This process is illustrated in Fig. 1. The model is then described by a system of four ordinary 
differential equations as follows:

dS

dt
= μ− (λ1 + λ2 + λ12→1 + λ12→12 + λ12→2)S + (ρ1I1 + ρ2I2) − μS,

dI1
dt

= (λ1 + λ12→1)S − (λ2 + λ12→2 + λ12→12)I1 + (ρ2I12 − ρ1I1) − μI1,

dI2
dt

= (λ2 + λ12→2)S − (λ1 + λ12→1 + λ12→12)I2 + (ρ1I12 − ρ2I2) − μI2,

dI12
dt

= λ12→12S + (λ2 + λ12→2 + λ12→12)I1 + (λ1 + λ12→1 + λ12→12)I2

− (ρ1 + ρ2)I12 − μI12, 1 = S + I1 + I2 + I12,

(2.1)

where the forces of infection are proportional to disease prevalence, i.e.,

λ1 = β1I1, λ2 = β2I2, λ12→12 = β12I12, λ12→1 = β10I12, λ12→2 = β02I12.

Parameters ρ1 and ρ2 represent the recovery rate of the first and second diseases, respectively. The disease 
induced death rate is ignored. We assume that the natural birth and death rates are balanced and equal 
to μ, so that the total population size is constant. All parameters are assumed to be positive, except that 
β12 ≥ 0. As stated earlier, the possibility of simultaneous transmission from a single contact with a dually 
infected individual, which we model according to the assumption β12 > 0. An underlying assumption in the 
model is that individuals in all disease states have the same contact rate; we do not assume that individuals 
have fewer contacts if they are infected. The rates/probabilities of transmission of the model in Blyuss and 
Kyrychko [7] satisfy β12 + β10 = β1, β12 + β02 = β2, β12 = β1β2, which is a special case of ours.

Following the method and notations of van den Driessche and Watmough [58] and Diekmann et al. [14,
15], we have

F =
(
β1 0 β10
0 β2 β02
0 0 β12

)
and V =

(
ρ1 + μ 0 −ρ2

0 ρ2 + μ −ρ1
0 0 ρ1 + ρ2 + μ

)
.

The basic reproduction number associated with the model (2.1) is defined as the spectral radius of the next 
generation matrix FV −1, i.e., R0 = max{R10, R20, R30}, where
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R10 = β1

ρ1 + μ
, R20 = β2

ρ2 + μ
, R30 = β12

ρ1 + ρ2 + μ
.

Let Ω = {(S, I1, I2, I12) ∈ R
4
+ : S + I1 + I2 + I12 = 1}. Clearly, the set Ω is positively invariant for system 

(2.1), so we will always set initial values within Ω. It is immediate that system (2.1) has up to three boundary 
equilibria as follows.

Proposition 2.1. For system (2.1), we have

(i) the disease-free equilibrium E0 = (1, 0, 0, 0) always exists;
(ii) the equilibrium with the presence of only the first disease E1 = (1/R10, 1 − 1/R10, 0, 0) exists if and 

only if R10 > 1;
(iii) the equilibrium with the presence of only the second disease E2 = (1/R20, 0, 1 − 1/R20, 0) exists if and 

only if R20 > 1.

3. Noninteracting transmission

We begin with the simpler case where the presence of each disease does not affect the transmission of the 
other; throughout this section, we assume that a doubly infected individual has the same total infectivity 
as a singly infected person, which translates to

β12 + β10 = β1 and β12 + β02 = β2. (H)

Under the assumption (H), the persistence and extinction of one disease, and the total fraction of people 
infected by that disease, are not affected by the presence of the other disease. The ability of a disease to 
invade an uninfected population is completely determined by its own basic reproduction number.

Theorem 3.1. Let Ω0 = {E0}, Ω1 = {(S, I1, 0, 0) ∈ Ω : I1 > 0} and Ω2 = {(S, 0, I2, 0) ∈ Ω : I2 > 0}. For 
system (2.1) under assumption (H), we have

(1) if R0 ≤ 1 then the disease-free equilibrium E0 is globally asymptotically stable in Ω;
(2) if R10 > 1 ≥ R20 (or R20 > 1 ≥ R10), then E1 (or E2) is globally asymptotically stable in Ω\(Ω0 ∪Ω2)

(or Ω\(Ω0 ∪ Ω1)) where Ω0 ∪ Ω2 (or (Ω0 ∪ Ω1)) is the attractor of E0;
(3) if R10 > 1 and R20 > 1, then there exists a unique coexistence equilibrium, denoted by E12 =

(S∗, I∗1 , I
∗
2 , I

∗
12), which is globally asymptotically stable in

Ω\(Ω0 ∪ Ω1 ∪ Ω2) = {(S, I1, I2, I12) ∈ Ω : I12 > 0 or I1I2 > 0}.

Here Ω0, Ω1 and Ω2 are the attractor of E0, E1 and E2, respectively.

Proof. The summations of the second and fourth equations of (2.1) and the third and fourth equations of 
(2.1) give

d(I1 + I12)
dt

= −(ρ1 + μ− β1(S + I2))(I1 + I12)

and

d(I2 + I12) = −(ρ2 + μ− β2(S + I1))(I2 + I12),

dt
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respectively. It follows from S + I1 + I2 + I12 = 1 that the above two logistic equations satisfy

I1(t) + I12(t) → max
{

0, 1 − 1
R10

}
and I2(t) + I12(t) → max

{
0, 1 − 1

R20

}
as t → ∞,

respectively, if both diseases present initially. If, for example, R10 ≤ 1, then I1(t) +I12(t) → 0 which implies 
lim
t→∞

I1(t) = lim
t→∞

I12(t) = 0. Thus, the first two arguments are established.
Now we assume that R10 ≥ R20 > 1 and the symmetric case R20 ≥ R10 > 1 can be proved similarly. If 

E12 = (S∗, I∗1 , I
∗
2 , I

∗
12) exists, then it must satisfy

I∗1 = 1
R20

− S∗, I∗2 = 1
R10

− S∗ and I∗12 = S∗ + 1 − 1
R10

− 1
R20

(3.1)

and substituting them into the first equation of (2.1) yields

dS∗

dt
= β12(S∗)2 −

(( 1
R10

+ 1
R20

− 1
)
β12 + (β1 + β2) − μ

)
S∗ + ρ1

R20
+ ρ2

R10
+ μ = 0. (3.2)

Meanwhile, solving I∗12 in terms of S∗ from the first equation of (2.1) gives

I∗12 =
β1( 1

R10
− S∗)I∗1 + β2( 1

R20
− S∗)I∗2

(β10 + β02 + β12)S∗ − μ
=

(β1 + β2)( 1
R10

− S∗)( 1
R20

− S∗)
(β1 + β2 − β12)S∗ − μ

≥ I∗1 I
∗
2

S∗ .

Claim 1: If β12 = 0, then S∗ =
( ρ1

R20
+ ρ2

R10
+ μ

)
/(β1 + β2 − μ) and there exists a unique endemic 

equilibrium

E12 = 1
β1 + β2 − μ

(
ρ1

R20
+ ρ2

R10
+ μ,

(
1 − 1

R10

)(β1 + β2

R20
− μ

)
,

(
1 − 1

R20

)(β1 + β2

R10
− μ

)
,
(
1 − 1

R10

)(
1 − 1

R20

)
(β1 + β2)

)
.

If β12 > 0, then (3.2) has two roots, labeled by S∗
1 and S∗

2 , satisfying 0 < �S∗
1 ≤ �S∗

2 . Here �(z) is the 
real part of a complex number z. Dividing both sides of (3.2) by β12 yields

F (S∗) ≡ (S∗)2 − (v1 + v2 − 1 + g − h)S∗ + gv1v2 + (1 − v1 − v2)h = 0,

where v1 = 1
R10

, v2 = 1
R20

, g = β1 + β2

β12
and h = μ

β12
. Clearly, v1 ≤ v2 < 1, g > 2 and g > 2h.

Claim 2: 0 < S∗
1 < v1 ≤ v2 < 1 < S∗

2 . It follows from F (0) = S∗
1S

∗
2 > 0 and

F (v1) = v2
1 − (v1 + v2 − 1 + g − h)v1 + gv1v2 + (1 − v1 − v2)h

= −(v2 − 1 + g − gv2)v1 + (1 − v2)h = (1 − v2)(h− v1(g − 1))

= (1 − v2)
( μ

β12
− ρ1 + μ

β1

(β1 + β2

β12
− 1

))

= (1 − v2)
( μ

β12
− ρ1 + μ

β12
− ρ1 + μ

β1

( β2

β12
− 1

))
< 0

that both S∗
1 and S∗

2 are positive real numbers and S∗
1 < v1. In addition,
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S∗
2 = v1 + v2 − 1 + g − h− S∗

1 > v2 − 1 + g − h

= ρ2 + μ

β2
− 1 + β1 + β2

β12
− μ

β12
≥

( μ

β2
− 1 + β2

β12
− μ

β12

)
+ β1

β12

=
( β2

β12
− 1

)(
1 − μ

β2

)
+ β1

β12
>

β1

β12
> 1.

When S∗ = S∗
1 , the positivities of I∗1 and I∗2 follow from S∗

1 < v1 ≤ v2 and I∗12 > 0 is equivalent to 
S∗

1 > μ/(β1 + β2 − β12) = h/(g − 1) ∈ (0, 1), which is guaranteed by

F

(
h

g − 1

)
= g(h− (g − 1)v1)(h− (g − 1)v2)

(g − 1)2 > 0 = F (S∗
1 ) and h < (g − 1)v1 ≤ (g − 1)v2.

Consequently, if R10 > 1 and R20 > 1, then (2.1) has a unique endemic equilibrium

E12 = (S∗, I∗1 , I
∗
2 , I

∗
12) =

(
S∗,

1
R20

− S∗,
1

R10
− S∗, S∗ + 1 − 1

R10
− 1

R20

)
,

where S∗ ∈ (0, 1) is the unique feasible solution to (3.2).
The spectrum of the Jacobian matrix of system (2.1) at E12 is

{−μ,−β1 + ρ1 + μ,−β2 + ρ2 + μ,−β1 − β2 + μ + β12 − β12(I∗1 + I∗2 )},

which means the endemic equilibrium is locally asymptotically stable. It follows from the result on asymptot-
ically autonomous differential equations [56] that E12 is globally attractive. Hence the endemic equilibrium 
is globally asymptotically stable when it exists. �
Remark 3.2. When coinfection is impossible, the competitive exclusion principle holds and the disease with a 
larger reproduction number must exclude the other [8]. Thus coinfection is a mechanism for the coexistence 
of multiple agents or pathogens [35].

Remark 3.3. It follows from S∗ + (v1 − S∗) + (v2 − S∗) + (v1 − S∗)(v2 − S∗)/S∗ ≤ 1 and (3.1) that 
min{v1, v2} > S∗ ≥ v1v2, I∗1 ≤ (1 − v1)v2, I∗2 ≤ (1 − v2)v1, and I∗12 ≥ (1 − v1)(1 − v2). Both the uninfected 
population and the coinfected population are increasing in the cotransmission rate. Indeed, differentiating 
F (S∗) = 0 with respect to β12 gives

∂S∗

∂β12
= gv1v2 + (1 − v1 − v2)h− (g − h)S∗

(2S∗ − (v1 + v2 + g − 1 − h))β12
= (S∗)2 − (v1 + v2 − 1)S∗

((v1 − S∗) + (v2 − S∗) + (g − 1 − h))β12

>
(v1v2 − (v1 + v2 − 1))S∗β−1

12
(v1 − S∗) + (v2 − S∗) + (g − 1 − h) = (1 − v1)(1 − v2)S∗β−1

12
(v1 − S∗) + (v2 − S∗) + (g − 1 − h) > 0,

and I∗12 = S∗ + 1 − v1 − v2 implies that ∂I
∗
12

∂β12
= ∂S∗

∂β12
> 0.

In the setting of multiple diseases, we may treat the entire population (mass treatment, ρi → ρi + θ for 
any i), or only a fraction of people infected by a specific disease (targeted treatment, ρi → ρi+θi for some i). 
Under both treatment strategies, it is shown that for model (2.1) with the restriction (H) the uninfected 
population is always increased by choosing a higher treatment rate; this differs from the two-disease model 
we studied in [17].

Corollary 3.4. For system (2.1) under assumption (H), the fraction of susceptible, S∗, is always increasing 
in the mass treatment rate θ (or targeted treatment rate θi).
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Proof. If β12 = 0, then under the mass treatment and targeted treatment we have

∂S∗

∂θ
= (β1 + β2)(ρ1 + ρ2 + 2θ + μ)

β1β2(β1 + β2 − μ) and ∂S∗

∂θi
= βi(ρj + μ) + βjρj

β1β2(β1 + β2 − μ) , i 
= j, i, j = 1, 2,

respectively. Now assume that β12 > 0 and v1 ≥ v2, it follows from the differentiation of F (S∗) = 0 with 
respect to targeted treatment rate θi or mass treatment rate θ that

∂S∗

∂θi
= (S∗ − gvj + h)β−1

i

2S∗ − (v1 + v2 + g − 1 − h) = ((vj − S∗) + (vj(g − 1) − h))β−1
i

(v1 − S∗) + (v2 − S∗) + (g − 1 − h) > 0

and

∂S∗

∂θ
= S∗ − g(ρ1 + θ + μ + ρ2 + θ + μ)/(β1 + β2) + h

2S∗ − (v1 + v2 + g − 1 − h) ·
( 1
β1

+ 1
β2

)

>
S∗ − gv1 + h

2S∗ − (v1 + v2 + g − 1 − h) ·
( 1
β1

+ 1
β2

)
> 0.

The last inequality holds because of S∗ − gv1 + h < 0 and 2S∗ − (v1 + v2 + g − 1 − h) < 0. �
4. Interacting transmission

In the rest of the paper, we remove the requirement (H), namely, β12 + β10 
= β1 or β12 + β02 
= β2. 
Biologically, this means that a dually-infected individual may transmit each agent either more or less 
efficiently than a person infected with each agent singly. Three possible scenarios are listed as follows:

(1) Mutual enhancement: β12 + β10 > β1 and β12 + β02 > β2;
(2) Enhancement and inhibition: β12 + β10 > β1 and β12 + β02 < β2, or β12 + β10 < β1 and β12 + β02 > β2;
(3) Mutual inhibition: β12 + β10 < β1 and β12 + β02 < β2.

The dynamics are simple equilibrium if the double infection has mild impact on the transmission of one of 
the two infections. The following proof utilizes the theory of monotone dynamical systems [52], simplifying
the proof of Theorem 3.1.

Proposition 4.1. Assume that dual infection has no impact on the transmission of the first disease, i.e., 
β12 + β10 = β1. For system (2.1), every orbit with initial value in Ω converges to an equilibrium.

Proof. The assumption β12 + β10 = β1 implies that I1(t) + I12(t) → max{0, 1 − 1/R10} as t → ∞ for 
I1(0) + I12(0) > 0. If R10 ≤ 1, then either E0 or E2 is globally stable. If R10 > 1, then I1(t) + I12(t) →
1 − 1/R10 and S(t) + I2(t) → 1/R10 as t → ∞. Thus, the 4-dimensional system (2.1) can be reduced 
to a 2-dimensional system in I1 and I2. Denote the Jacobian matrix of this two-dimensional system by 
J2 = (aij)2×2, where

a12 = −(β1 − β12)(1 − 1/R10) − (β2 + β12)I1 < 0 and a21 = −ρ1 − (1/R10 − I2)β02 < 0.

Thus, the reduced 2-dimensional system is competitive. By Theorem 3.2.2 in Smith [52], every orbit con-
verges to an equilibrium. �

The stability analysis for system (2.1) now becomes more complicated, and we need to introduce a new 
threshold parameter—the invasion reproduction number, which is used to measure the ability of one disease 
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to invade an equilibrium of the other disease [42,35,60]. We now assume that the equilibrium E1 exists, or 
equivalently, R10 > 1. Using the next generation matrix method [14,15,58], the vectors for the rate of the 
appearance of new infections by disease two and the rate of transfer of individuals are, respectively,

F2(I2, I12) =
(

(λ2 + λ12→2)S̄
λ12→12S̄ + λ2Ī1 + (λ12→2 + λ12→12)Ī1

)
,

V2(I2, I12) =
(

(λ1 + λ12→1 + λ12→12)Ī2 − (ρ1Ī12 − ρ2Ī2) + μĪ2
−λ1Ī2 − (λ12→1 + λ12→12)Ī2 + (ρ1 + ρ2)Ī12 + μĪ12

)
,

where (S̄, Ī1) = (1/R10, 1 − 1/R10). The derivatives of F2 and V2 at (I2, I12) = (0, 0) are, respectively,

F2 = DF2(0, 0) =
(
β2S̄ β02S̄
β2Ī1 β12S̄ + (β12 + β02)Ī1

)
,

V2 = DV2(0, 0) =
(
β1Ī1 + ρ2 + μ −ρ1

−β1Ī1 ρ1 + ρ2 + μ

)
.

The characteristic polynomial of the matrix F2V
−1
2 is A2λ

2 + A1λ + A0 = 0, where

A2 = (β1 + ρ2)(ρ2 + μ), A0 = β2β12(ρ1 + μ)/β1,

A1 = −(β2S̄(ρ1 + ρ2 + μ) + β02S̄β1Ī1 + β2Ī1ρ1 + (β12S̄ + (β12 + β02)Ī1)(β1Ī1 + ρ2 + μ))

= −(β12 + β02)β1 + ((β12 + β02)(ρ1 − ρ2) − β2ρ1) + (β02 − β2)(ρ1 + μ)(ρ2 + μ)/β1 < 0.

The invasion reproduction number of disease 2, denoted by R1
2, is given by the spectral radius of the 

non-negative matrix F2V
−1
2 , i.e.,

R1
2 = ρ(F2V

−1
2 ) = −A1 +

√
A2

1 − 4A0A2

2A2
> 0.

It follows from A0 > 0 that the characteristic equation has two positive roots as β12 > 0. If β12 = 0 then 
A0 = 0 and R1

2 = −A1/A2.
Similarly, we can derive a formula for the invasion reproduction number of disease 1, denoted by R2

1. By 
Theorem 2 in van den Driessche and Watmough [58], disease 1 can invade disease 2 if R2

1 > 1 and disease 
2 can invade disease 1 if R1

2 > 1 (see Appendix A for a direct proof).

Proposition 4.2. For system (2.1), when the equilibrium E1 exists (i.e., R10 > 1), it is locally asymptotically 
stable if R1

2 < 1 and unstable if R1
2 > 1. Symmetrically, the equilibrium E2 is locally asymptotically stable 

if R2
1 < 1 and unstable if R2

1 > 1.

Define R̃20 = (β12+β02)/(ρ2+μ); this quantity, analogous to a basic reproduction number, is the number 
of cases of disease 2 resulting from the introduction of a dually infected person into a wholly susceptible 
population. We can establish the lower and upper bounds for the invasion reproduction number R1

2.

Proposition 4.3. Assume that E1 exists, or equivalently, R10 > 1. Then the following statements are valid:

(i) R̃20 < R1
2 < R20 if and only if β2 > β12 + β02;

(ii) R̃20 > R1
2 > R20 if and only if β2 < β12 + β02;

(iii) R̃20 = R1
2 = R20 if and only if β2 = β12 + β02.
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Proof. R20 −R1
2 has the same sign as β2 − β12 − β02. In fact, we can rewrite R20 < R1

2 as

β2

ρ2 + μ
<

−A1 +
√

A2
1 − 4A0A2

2A2
⇔ 2β2A2 + (ρ2 + μ)A1 < (ρ2 + μ)

√
A2

1 − 4A0A2.

If G ≡ 2β2A2 + (ρ2 + μ)A1 ≥ 0, then R20 < R1
2 is equivalent to

4β2
2A

2
2 + 4β2(ρ2 + μ)A1A2 + (ρ2 + μ)2A2

1 < (ρ2 + μ)2A2
1 − 4(ρ2 + μ)2A0A2

⇔ 4A2(A2β
2
2 + A1β2(ρ2 + μ) + A0(ρ2 + μ)2) < 0

⇔ β2(β2 − β12 − β02)(β1 − ρ1 − μ)(ρ2 + μ)(β1 + ρ2 + μ) < 0 ⇔ β2 < β12 + β02.

If G < 0, then G = (ρ2 + μ)(G0 + (β2 − β12 − β02)G1) where

G0 = [β1β02(β1 + ρ2) + β12(β1(β1 + ρ2) − (ρ1 + μ)(ρ2 + μ))]/β1,

G1 = 2(β1 + ρ2) − ρ1 − (ρ1 + μ)(ρ2 + μ)/β1.

Note that G0 > 0 and G1 > 0 when R10 > 1. If β2 ≥ β12 + β02 then G > 0, a contradiction.
On the other hand, R̃20 < R1

2 is equivalent to

A2(β12 + β02)2 + A1(β12 + β02)(ρ2 + μ) + A0(ρ2 + μ)2 < 0

⇔ (β12 + β02 − β2)(ρ2 + μ)(μ2β02 + μβ02(ρ1 + ρ2) + ρ1(β1(β12 + β02) + β02ρ2)) < 0

⇔ β12 + β02 < β2.

This completes the proof. �
Therefore, it is possible that R20 < 1 < R1

2 as β2 < β12 + β02. Moreover, we will show that the second 
disease may be able to invade in the presence of the first disease even if it cannot persist alone. That is, the 
presence of the first disease promotes persistence of the second disease. Similar to the model in Martcheva 
and Pilyugin [35], we can obtain the following result about the consequence of competition.

Proposition 4.4. For system (2.1), if R̃10 ≤ 1 or R̃20 ≤ 1 and R10 ≤ 1, R20 ≤ 1, then both diseases go 
extinct and the disease-free equilibrium is globally stable; if max{R10, R̃10} ≤ 1 (or max{R20, R̃20} ≤ 1) 
then disease 1 (or 2) goes extinct; if min{R10, R̃10} > 1 (or min{R20, R̃20} > 1) then disease 1 (or 2) 
persists.

Proof. It follows from the second and fourth equations of system (2.1) that

d(I1 + I12)
dt

= −(ρ1 + μ)(I1 + I12) + (β12I12 + β10I12 + β1I1)(S + I2)

and hence

d(I1 + I12)
dt

≤ (max{β12 + β10, β1} − (ρ1 + μ))(I1 + I12) − max{β12 + β10, β1}(I1 + I12)2,

d(I1 + I12)
dt

≥ (min{β12 + β10, β1} − (ρ1 + μ))(I1 + I12) − min{β12 + β10, β1}(I1 + I12)2.

By a simple comparison principle [53], we get
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lim sup
t→∞

(I1 + I12) ≤ max
{

1 − ρ1 + μ

max{β1, β12 + β10}
, 0
}
,

lim inf
t→∞

(I1 + I12) ≥ max
{

1 − ρ1 + μ

min{β1, β12 + β10}
, 0
}

if I1(0) + I12(0) > 0. �
Remark 4.5. A necessary condition for the existence of a coexistence equilibrium E∗ = (S∗, I∗1 , I

∗
2 , I

∗
12) is 

that max{Ri0, R̃i0} > 1 for i = 1, 2. When E∗ exists, it satisfies

1 − ρ1 + μ

min{β1, β12 + β10}
≤ I∗1 + I∗12 ≤ 1 − ρ1 + μ

max{β1, β12 + β10}
,

1 − ρ2 + μ

min{β2, β12 + β02}
≤ I∗2 + I∗12 ≤ 1 − ρ2 + μ

max{β2, β12 + β02}
.

The above result indicates that the two diseases coexist whenever min{Ri0, R̃i0} > 1, i = 1, 2. By a 
similar argument to that of Theorem 2.5 in Gao and Ruan [18], we will show that it remains true under a 
weaker condition: min{Ri0, Rj

i} > 1, i 
= j, i, j = 1, 2.

Theorem 4.6. For model (2.1), if

R10 > 1,R20 > 1,R2
1 > 1 and R1

2 > 1, (4.1)

then (2.1) admits at least one coexistence equilibrium and both diseases are uniformly persistent, i.e., there 
is a constant κ > 0 such that each solution φt(x0) ≡ (S(t), I1(t), I2(t), I12(t)) of system (2.1) with x0 ≡
(S(0), I1(0), I2(0), I12(0)) ∈ Ω0 ≡ {(S, I1, I2, I12) ∈ Ω : I1I2 > 0 or I12 > 0} satisfies

lim inf
t→∞

I1(t) > κ, lim inf
t→∞

I2(t) > κ and lim inf
t→∞

I12(t) > κ.

Proof. Denote ∂Ω0 = Ω\Ω0 = {(S, I1, I2, I12) ∈ Ω : I1 = 0 or I2 = 0, I12 = 0}. It is sufficient to show that 
system (2.1) is uniformly persistent with respect to (Ω0, ∂Ω0). Obviously, ∂Ω0 is relatively closed in Ω. It is 
clear that Ω and Ω0 are positively invariant and system (2.1) is point dissipative.

Let M∂ = {x0 ∈ ∂Ω0 : φt(x0) ∈ ∂Ω0 for t ≥ 0}. Therefore, M∂ = ∂Ω0. The boundary equilibria E0, E1
and E2 are in M∂ . Let W s(Ei) be the stable manifold of Ei for i = 0, 1, 2. We will show that W s(Ei) ∩Ω0 = ∅
whenever (4.1) holds.

Define

Rε
1 = (1 − ε)β1

(β2 + β12 + β02)ε + ρ1 + μ
.

It follows from R10 > 1 that there is an ε0 > 0 such that Rε
1 > 1 for ε ∈ [0, ε0]. Select η0 small enough such 

that

S(0) ≥ 1 − ε0 for ‖x0 −E0‖ ≤ η0.

We claim that lim sup
t→∞

‖φt(x0) −E0‖ > η0 for x0 ∈ Ω0, where ‖ · ‖ is the Euclidean norm. Supposing not, 

then by translation, we have ‖φt(x0) −E0‖ ≤ η0 for all t ≥ 0 and hence

dI1
dt

≥ β1(1 − ε0)I1 − (β2 + β12 + β02)ε0I1 − ρ1I1 − μI1

= (β (1 − ε ) − (β + β + β )ε − ρ − μ)I .
1 0 2 12 02 0 1 1
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By a comparison theorem, I1(t) → ∞ as t → ∞; the contradiction establishes the result.
To show W s(E1) ∩ Ω0 = ∅, we define

Δ =
(
β2 + β1 + 2β12 + 2β10 β02

β1 + β2 2β12 + β02

)
and Mε = F2 − V2 − εΔ.

Since s(F2 − V2) > 0 if and only if R1
2 > 1, there is an ε1 > 0 such that s(Mε) > 0 for ε ∈ [0, ε1]. Recall 

that (S̄, Ī1) = (1/R10, 1 − 1/R10). Choose η1 small enough such that

S̄ − ε1 ≤ S(0) ≤ S̄ + ε1 and Ī1 − ε1 ≤ I1(0) ≤ Ī1 + ε1 for ‖x0 − E1‖ ≤ η1.

We claim that lim sup
t→∞

‖φt(x0) −E1‖ > η1 for x0 ∈ Ω0. Supposing not, then again by translation, we have 

‖φt(x0) −E1‖ ≤ η1 for all t ≥ 0 and hence

dI2
dt

≥ (β2I2 + β02I12)(S̄ − ε1) − (β1(Ī1 + ε1) + (β12 + β10)2ε1)I2 + (ρ1I12 − ρ2I2) − μI2,

dI12
dt

≥ β12I12(S̄ − ε1) + (β1 + β2)(Ī1 − ε1)I2 + (β12 + β02)I12(Ī1 − ε1) − (ρ1 + ρ2 + μ)I12.

Notice that Mε1 has a positive eigenvalue s(Mε1) associated to a positive eigenvector. It follows from a 
comparison theorem that I2(t) → ∞ and I12(t) → ∞ as t → ∞, a contradiction.

Since W s(E0) = {E0}, W s(E1) = {(S, I1, I2, I12) ∈ Ω : I1 > 0, I2 = I12 = 0}, W s(E2) = {(S, I1, I2, I12) ∈
Ω : I2 > 0, I1 = I12 = 0} and M∂ = W s(E0) ∪ W s(E1) ∪ W s(E2), {E0}, {E1} and {E2} are isolated 
invariant sets and acyclic in M∂ . By Theorem 4.6 in Thieme [57], system (2.1) is uniformly persistent with 
respect to (Ω0, ∂Ω0). Moreover, by Theorem 2.4 in Zhao [62], we know that system (2.1) has an equilibrium 
E∗ = (S∗, I∗1 , I

∗
2 , I

∗
12) ∈ Ω0. It is easy to check that E∗ is a positive equilibrium of system (2.1). �

Remark 4.7. Similarly, we can show the uniform persistence of both diseases and the existence of a coexis-
tence equilibrium under the assumption R10 > 1 and R20 < 1 < R1

2, or R20 > 1 and R10 < 1 < R1
1. In this 

case, one disease goes extinct in the absence of the other and the presence of the other disease mediates the 
coexistence. Control strategies toward a reduction of both infections are favored.

A more detailed classification for the transmission dynamics of the coinfection model (2.1) based on its 
basic reproduction numbers and invasion reproduction numbers [35] is beyond the scope of current pa-
per. For example, we are particularly interested in the local/global stability of the coexistence equilibrium 
under conditions in Theorem 4.6, but numerical examples in the next section show that an unstable co-
existence equilibrium could present in case of backward bifurcation, bistability or a Hopf bifurcation. This 
suggests that it is hard to use the well-known Routh–Hurwitz criterion to determine the local stability of 
the coexistence equilibrium.

5. Numerical simulations

In this section, we illustrate, by numerical examples, possible phenomena the model of coinfection may 
exhibit.

Example 5.1 (Competitive exclusion). Two diseases cannot coexist even if each one can persist independently. 
Parameter values: β1 = 1.05, β2 = 2.5, ρ1 = 1, ρ2 = 0.8, μ = 0.02, β12 = 0.05, β10 = 0.2, β02 = 2. The 
respective basic reproduction numbers are R10 = 1.0294 > 1 and R20 = 3.0488 > 1. Fig. 2 shows that the 
first disease goes extinct while the second persists. It provides a theoretically plausible treatment strategy 
for some pathogens: suppose that 1 < R10 < R20, β12 + β10 < β1 and β12 + β02 < β2; there is an effective 
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Fig. 2. Numerical solution of system (2.1) with initial condition (S(0), I1(0), I2(0), I12(0)) = (0.3, 0.4, 0.2, 0.1). Dotted red line: I1; 
dashed black line: I2; solid blue line: I12. Two infections cannot coexist even if each one can survive independently. (Color appears 
in the web version of this article.)

Fig. 3. Backward bifurcation arising from the change of β12. Solid blue line—stable, dashed red line—unstable. Two diseases can 
coexist even if each one dies out independently. (Color appears in the web version of this article.)

way to treat pathogen 2, but not for pathogen 1. Here, one could in principle introduce pathogen 2 to 
eradicate pathogen 1.

Moreover, consider a scenario in which β1 = 2.9, β2 = 3, ρ1 = ρ2 = μ = 1, β12 = 0.5, β10 = 2, β02 = 0.1; 
we have R10 = 1.45, R20 = 1.5, R2

1 = 1.3612 and R1
2 = 0.9860. Thus, E1 is locally stable but E2 is unstable 

and there is no coexistence equilibrium. Interestingly, in this case the competitive exclusion principle still 
holds, but the disease with a higher reproduction number dies out while the other one persists (in contrast 
with [8]).

Example 5.2 (Backward bifurcation). Assume that R10 < 1 and R20 < 1. If β12+β10 > β1 and β12+β02 > β2, 
then it is possible that both diseases become persistent. Parameter values: β1 = 0.9, β2 = 0.7, ρ1 = 1, ρ2 =
0.8, μ = 0.02, β10 = β02 = 0.6. A bifurcation diagram for model (2.1) shows that the endemic equilibrium 
value of I12 with respect to β12 is presented in Fig. 3. In this setting, there is one stable coexistence 
equilibrium and one unstable coexistence equilibrium for β12 ∈ (1.256, 1.82). Biologically, this means that a 
small perturbation in model parameters or initial conditions may lead to a large difference in the dynamic 
behavior of the disease. The occurrence of backward bifurcation precludes, in general, the global stability 
of the disease-free equilibrium as R0 < 1. Note that backward bifurcation still exists even if there is no 
cotransmission (β12 = 0).
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Fig. 4. Numerical solutions of system (2.1) with initial conditions: (0.62, 0.25, 0.1, 0.03) and (0.62, 0.1, 0.25, 0.03) (black dots). 
Bistability: the two boundary equilibria E1 = (20/29, 9/29, 0, 0) and E2 = (2/3, 0, 1/3, 0) (blue dots) are locally stable, and the 
coexistence equilibrium E∗ ≈ (0.701, 0.165, 0.096, 0.038) (red dot) is unstable. (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this article.)

Example 5.3 (Bistability (R10 > 1, R20 > 1, R2
1 < 1 and R1

2 < 1)). The two boundary equilibria E1 and 
E2 are locally stable, while the coexistence equilibrium E∗ is unstable. Parameter setting: β1 = 2.9, β2 =
3, ρ1 = ρ2 = μ = 1, β12 = 0.5, β10 = 0.3, β02 = 0.05. Direct calculations yield the basic reproduction numbers 
R10 = 1.45, R20 = 1.5 and the invasion reproduction numbers R2

1 = 0.9714, R1
2 = 0.9747. A bistability 

phenomenon is observed in Fig. 4. The disease outcome depends on initial conditions and there exists a 
smooth surface separating the feasible region into two domains.

The occurrence of bistability also implies that the infection with a higher reproduction number is not 
necessarily the winner, so to speak, of the competition. In addition, there is no bistability phenomenon when 
the mortality rate μ is small enough (see Appendix B for a proof). Namely, if R20 > max{R10, 1}, then the 
second disease always persists as μ → 0.

Example 5.4 (Hopf bifurcation). The model can exhibit non-equilibrium dynamical behavior—periodic os-
cillations under certain conditions. Set β1 = 5, β2 = 0.2, ρ1 = ρ2 = 0, μ = 1, β12 = 0.805, β10 = 0 and 
β02 ∈ [70, 100]. It follows from R10 = 5 > 1 > R20 = 0.2 and R1

2 � 1 that both diseases are uniformly 
persistent and there is a coexistence equilibrium (see Remark 4.7). The Jacobian matrix at the coexis-
tence equilibrium has a pair of complex eigenvalues with negative real parts as β02 ∈ [70, 84.74), a pair of 
purely imaginary eigenvalues as β02 ≈ 84.74, and a pair of complex eigenvalues with positive real parts as 
β02 ∈ (84.74, 100]. Therefore, the coexistence equilibrium loses its stability and a Hopf bifurcation appears 
(see Fig. 5). For sufficiently small but nonzero ρ1, ρ2 and β10, the system still has a Hopf bifurcation.

6. Discussion

In this paper, we proposed a simple two-disease SIS coinfection model featuring simultaneous transmission 
of infection due to contacts with dually infected individuals, as well as superinfection leading to dual 
infection. In our model, there are four epidemiological classes: susceptible to both diseases, susceptible to 
disease 2 but infectious for disease 1, susceptible to disease 1 but infectious for disease 2, and infectious for 
both diseases. It is a simplified version of the two-disease three-strain model in Gao et al. [17] in which the 
first disease exhibits both drug sensitive and resistant strains. The cotransmission dynamics of two diseases 
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Fig. 5. Hopf bifurcation-two diseases coexist in an oscillatory mode.

modeled as a SIS process is of interest as a simplified model of, for instance, ocular chlamydia [33,32,34] and 
respiratory pneumococcal colonization [36]. In hyperendemic trachoma regions, both organisms are common 
and both are affected by trachoma control programs [24].

We considered the case for which the transmission of the first disease is completely unaffected by the 
presence of the second; that is, when coinfected people transmit infection to the same degree as singly 
infected people, disease dynamics are completely determined by the basic reproduction numbers of each. 
The two diseases coexist at an endemic level as long as they can persist independently. However, if the 
assumption does not hold, then we calculated the invasion reproduction number to measure the ability of 
one disease to invade the other at its steady state. The relation between the basic reproduction number 
and the invasion reproduction number was investigated, and sufficient conditions for the persistence of 
both diseases were obtained. Using numerical methods, more complicated dynamics including backward 
bifurcation, bistability and Hopf bifurcation were found. The disease with smaller reproduction number 
may be able to invade and competitively exclude the other disease even if there is no coexistence steady 
state. It is noteworthy that some of these dynamical behaviors have been observed in previous studies 
based on different models [7,35,60,61]. Our study provides further theoretical results on the stability and 
persistence in a model of coinfection. The results throughout this paper for one disease also holds for the 
other due to the symmetry of the model. Note that some of our analytical results are applicable to models 
of coinfection by different parasites (e.g. [54,4,3]) where there is no recovery (ρ1 = ρ2 = 0).

It is well known that, for a simple SIS epidemic model, the disease goes extinct if the basic reproduction 
number is less than unity and persists at a unique endemic equilibrium otherwise. Our analysis shows 
that the disease dynamics become more complicated in the presence of a second disease. For instance, the 
presence of coinfection could mediate coexistence despite that fact that one or both diseases could not 
survive independently. Different types of interaction in dually infected hosts can yield different outcomes. 
These findings emphasize the importance of understanding the interactions among pathogens and developing 
a multi-disease approach in the treatment of coinfected patients.

A complete classification of the model studied here is not yet available. For example, we would like to 
know how to rigorously prove the existence of Hopf bifurcations and whether a Hopf bifurcation is impossible 
for small death rate. It will be interesting to analyze our model from the perspective of evolutionary 
epidemiology [45,10,3,4]. The current model may be extended to other natural history models, such as 
the SEIR assumption, or include three or more agents/strains [61]. There may be partial cross-immunity or 
enhanced susceptibility to either of the two infections [28]. Coinfected patients may have more serious illness 
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and take a longer time to recover. In general, treatment of one infection in a doubly infected person may affect 
the other infection directly or indirectly (e.g. [50,25,44,51]). We will leave these for future consideration.
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Appendix A. The equivalence between s(F2 − V2) < 0 and R1
2 < 1

As we know, the boundary equilibrium E1 is locally asymptotically stable if and only if all eigenvalues 
of the Jacobian matrix F2 − V2 have negative real parts. This is also equivalent to R1

2 < 1 by Theorem 2 
in van den Driessche and Watmough [58]. Here we provide a direct proof. For simplicity, we consider two 
matrices

F2 =
(
a b
c d

)
and V2 =

(
h −i
−j k

)

satisfying a, b, c, d, h, i, j, k ≥ 0 and hk − ij > 0. The characteristic polynomial of the matrix F2 − V2 is

λ2 + (h− a + k − d)λ + (h− a)(k − d) − (b + i)(c + j) = 0.

By the Routh–Hurwitz criterion, the spectral bound s(F2 − V2) < 0 if and only if

h− a + k − d > 0, (A.1a)

(h− a)(k − d) − (b + i)(c + j) > 0. (A.1b)

Meanwhile, the characteristic polynomial of the matrix F2V
−1
2 is A2λ

2 + A1λ + A0 = 0, where

A2 = hk − ij > 0, A1 = −(ak + bj + ci + dh), A0 = ad− bc.

Then R1
2 = ρ(F2V

−1
2 ) < 1 if and only if

2A2 + A1 = 2(hk − ij) − (ak + bj + ci + dh) > 0, (A.2a)

A2 + A1 + A0 = (hk − ij) + (ad− bc) − (ak + bj + ci + dh) > 0. (A.2b)

Note that (A.1b) is the same as (A.2b). It suffices to show that (A.1) implies (A.2a) and (A.2) implies 
(A.1a), respectively.

It follows from (A.1) that h > a and k > d. Thus

2A2 + A1 = hk + (h− a + a)(k − d + d) − 2ij − (ak + bj + ci + dh)

= hk + (h− a)(k − d) + (h− a)d + a(k − d) + ad− 2ij − (ak + bj + ci + dh)

> hk + (b + i)(c + j) + (h− a)d + a(k − d) + ad− 2ij − (hk − ij) − (ad− bc)

= bj + ci + (h− a)d + a(k − d) ≥ 0.
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On the other hand, suppose that h − a + k − d ≤ 0, then (A.1b) or (A.2b) implies that h < a and k < d. 
We obtain

2A2 + A1 < 2(hk − ij) − (hk + bj + ci + kh) = −2ij − bj − ci ≤ 0,

a contradiction. The proof is complete.

Appendix B. The nonexistence of bistability for small μ

If R20 > max{R10, 1}, then the second disease always persists for sufficiently small μ. We only need to 
show the instability of the equilibrium E1 when it exists. In fact, E1 is locally asymptotically stable if and 
only if s(F2 − V2) < 0. The characteristic equation of F2 − V2 is β1λ

2 + C1(β1)λ + C0(β1) = 0, where

C1(β1) = β2
1 + β1(2ρ2 + μ− β12 − β02) − (β2 − β02)(ρ1 + μ) and C0(β1) = a2β

2
1 + a1β1 + a0.

Here a2 = ρ2 + μ − β12 − β02, a1 = −β2ρ1 + (β12 + β02)(ρ1 − ρ2) + μρ2 + ρ2
2, and a0 = −(ρ1 + μ)(β2(ρ2 +

μ − β12) − β02(ρ2 + μ)).
Thus, by the Routh–Hurwitz stability criterion, E1 is locally stable if C1 > 0 and C0 > 0. In particular, 

if β12 = 0 then E1 is locally stable if C0 > 0 (by Appendix A). For the instability of the equilibrium E1, It 
suffices to show that C0 < 0 in case of R10 > 1 and β12 + β02 < ρ2 + μ by Remark 4.5. This follows from 
a2 > 0, a0 < 0, β1 < (ρ1 + μ)R20 and

C0((ρ1 + μ)R20) = (ρ2 + μ)−2(ρ1 + μ)(β2 − ρ2 − μ)

× (β2μ(ρ2 + μ− β12 − β02) − β2ρ1(β12 + β02) − β02(ρ2 + μ)2) < 0

for small enough μ > 0.
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