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Abstract. Based on the classical Ross-Macdonald model, in this paper we
propose a periodic malaria model to incorporate the effects of temporal and

spatial heterogeneity on disease transmission. The temporal heterogeneity is

described by assuming that some model coefficients are time-periodic, while the
spatial heterogeneity is modeled by using a multi-patch structure and assuming

that individuals travel among patches. We calculate the basic reproduction

number R0 and show that either the disease-free periodic solution is globally
asymptotically stable if R0 ≤ 1 or the positive periodic solution is globally

asymptotically stable if R0 > 1. Numerical simulations are conducted to

confirm the analytical results and explore the effect of travel control on the
disease prevalence.

1. Introduction. Malaria, a widely prevalent vector-borne disease in tropical and
subtropical areas, is caused by a parasite that is transmitted to humans and many
other animals by the Anopheles mosquito. Once infected, people may experience a
variety of symptoms, ranging from absent or very mild symptoms to severe compli-
cations and even death. It is one of the most deadly infectious diseases that causes
major economic loss due to illness and death in humans.

The Ross-Macdonald model is the earliest and also simplest mathematical model
describing malaria transmission between human and mosquito populations. It was
initially proposed by Ross [31] in 1911 and later extended by Macdonald [23, 24, 25]
in 1950s. The modeling framework is now widely used for malaria and some other
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mosquito-borne diseases. It captures the essential features of malaria transmission
process, but ignores many factors of real-world ecology and epidemiology (see Ruan,
Xiao and Beier [32]).

One omission in the classical Ross-Macdonald model is the temporal heterogene-
ity in the number of both populations and the human feeding rate of mosquitoes. In
many nations like Niger, seasonal human migration has a long history, and destina-
tions and reasons vary by community and ethnic group (Rain [29]). It is a common
sense that there are more mosquitoes in the summer and fewer in the winter. The
biological activity and geographic distribution of a malaria parasite and its vector
are greatly influenced by climatic factors such as rainfall, temperature and humid-
ity (Craig et al. [9], Gao et al. [12]). These influences can be investigated by
assuming some parameters to be time dependent. In recent years, epidemic models
with seasonal fluctuations have been proposed and explored by many researchers.
A vector-borne model for epidemics of cutaneous leishmaniasis with a seasonally
varying vector population and a distributed delay in humans was proposed and
studied by Bacaër and Guernaoui [4]. Dembele, Friedman and Yakubu [10] intro-
duced a new malaria model with periodic mosquito birth and death rates. Bai and
Zhou [6] developed a SIRS model for bacillary dysentery with periodic coefficients.
Using an ODE model with periodic transmission rates, Zhang et al. [38] considered
the transmission dynamics of rabies from dogs to humans in China. Liu, Zhao and
Zhou [17] used a compartmental model with periodic infection rate and reactivation
rate to describe the TB transmission in China. For a detailed discussion of seasonal
infectious diseases, we refer the reader to two excellent survey papers (Altizer et
al. [1], Grassly and Fraser [13]) and the introduction of a recent paper (Lou, Lou
and Wu [19]). Periodicity mainly occurs in the contact rate, birth or death rate,
vaccination rate, etc.

Another omission is the spatial movements of hosts between different patches.
The migration of humans can influence disease spread in a complicated way (Gao
and Ruan [11]). To have a better understanding of the disease dynamics, it is
necessary to incorporate periodic variations and population dispersal into epidemic
models. These two issues are considered in (Lou and Zhao [20]) via a periodic
reaction-diffusion-advection model. In this paper, we will formulate a periodic Ross-
Macdonald model in a patchy environment and establish the threshold dynamics
of the model in Section 2 and Section 3, respectively. The last section gives some
numerical simulations and a brief discussion of our main results and future research
directions.

2. Model formulation. Most mosquitoes can only travel a couple of kilometers
throughout their lifetime (Costantini et al. [8] and Midega et al. [26]), so we as-
sume no movement for vector populations between patches (see Auger et al. [3]).
For simplicity, the human vital dynamics are ignored and the population model for
vectors is the same as that studied in Smith, Dushoff and Mckenzie [33]. Follow-
ing the classical Ross-Macdonald model, we divide the adult female mosquito and
human populations into two classes in each patch: susceptible and infectious. The
total number of patches is p. We assume that the total populations of humans and
mosquitoes at time t in patch i are Hi(t) and Vi(t), respectively. Let hi(t) and
vi(t) denote the numbers of infectious humans and infectious mosquitoes in patch
i, respectively. The interactions between humans and mosquitoes in patch i can be
described by the following periodic system with non-negative initial conditions:
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Table 1. The parameters in model (2.1) and their descriptions

Symbol Description
εi(t) > 0 Recruitment rate of mosquitoes
di(t) > 0 Mortality rate of mosquitoes
ai(t) > 0 Mosquito biting rate
bi > 0 Transmission probability from infectious mosquitoes

to susceptible humans
ci > 0 Transmission probability from infectious humans

to susceptible mosquitoes
1/ri > 0 Human infectious period
mij(t) ≥ 0 Human immigration rate from patch j to patch i for i 6= j
−mii(t) ≥ 0 Human emigration rate from patch i

dHi(t)

dt
=

p∑
j=1

mij(t)Hj(t), 1 ≤ i ≤ p, (2.1a)

dVi(t)

dt
= εi(t)− di(t)Vi(t), 1 ≤ i ≤ p, (2.1b)

dhi(t)

dt
= biai(t)

Hi(t)− hi(t)
Hi(t)

vi(t)− rihi(t) +

p∑
j=1

mij(t)hj(t), 1 ≤ i ≤ p, (2.1c)

dvi(t)

dt
= ciai(t)

hi(t)

Hi(t)
(Vi(t)− vi(t))− di(t)vi(t), 1 ≤ i ≤ p. (2.1d)

The model parameters and their descriptions are listed in Table 1. To incor-
porate the seasonal mosquito dynamics and human migration, all time-dependent
parameters in system (2.1) are continuous and periodic functions with the same
period ω = 365 days. We assume that there is no death or birth during travel, so
the emigration rate of humans in patch i, −mii(t) ≥ 0, satisfies

p∑
j=1

mji(t) = 0 for i = 1, . . . , p and t ∈ [0, ω].

For travel rates between two patches, we assume there must be some travelers
between different patches at some specific seasons. Mathematically, we assume that
the matrix (

∫ ω
0
mij(t)dt)p×p, which is related to the travel rates between different

patches, is irreducible. The notation H(t) will mean (H1(t), . . . ,Hp(t)), with similar
notations for other vectors. We will denote both zero value and zero vector by 0,
but this should cause no confusion. The following theorem indicates that model
(2.1) is mathematically and epidemiologically well-posed.

Theorem 2.1. For any initial value z in

Γ = {(H,V, h, v) ∈ R4p
+ : hi ≤ Hi, vi ≤ Vi, i = 1, . . . , p},

system (2.1) has a unique nonnegative bounded solution through z for all t ≥ 0.

Proof. Let G(t, z) be the vector field described by (2.1) with z(t) ∈ Γ. Then G(t, z)
is continuous and Lipschitzian in z on each compact subset of R1 × Γ. Clearly,
Gk(t, z) ≥ 0 whenever z ≥ 0 and zk = 0, k = 1, . . . , 4p. It follows from Theorem
5.2.1 in Smith [34] that there exists a unique nonnegative solution for system (2.1)
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through z ∈ Γ in its maximal interval of existence. The total numbers for hosts and

vectors, Nh(t) =
p∑
i=1

Hi(t) and Nv(t) =
p∑
i=1

Vi(t), satisfy

dNh(t)

dt
=

p∑
i=1

p∑
j=1

mij(t)Hj(t) =

p∑
i=1

p∑
j=1

mji(t)Hi(t) = 0

and

dNv(t)

dt
=

p∑
i=1

(εi(t)− di(t)Vi(t)) ≤ ε̂− d̄Nv(t),

respectively, where ε̂ = max
0≤t≤ω

( p∑
i=1

εi(t)
)

and d̄ = min
0≤t≤ω

(
min

1≤i≤p
di(t)

)
are positive

constants. Thus Nh(t) ≡ Nh(0). The comparison principle (see Theorem B.1 in
Smith and Waltman [35]) implies that Nv(t) is ultimately bounded. Hence every
solution of (2.1) exists globally.

3. Mathematical analysis. In this section, we first show the existence of a unique
disease-free periodic solution and then evaluate the basic reproduction number for
the periodic system. By using the theory of monotone dynamical systems (Smith
[34], Zhao [40]) and internally chain transitive sets (Hirsch, Smith and Zhao [15],
Zhao [40]), we establish the global dynamics of the system. The following result is
analogous to Lemma 1 in Cosner et al. [7] for the autonomous case.

Lemma 3.1. The human migration model (2.1a) with Hi(0) ≥ 0 for i = 1, . . . , p
and Nh(0) > 0 has a unique positive ω-periodic solution H∗(t) ≡ (H∗1 (t), . . . ,H∗p (t)),
which is globally asymptotically stable. The mosquito growth model (2.1b) with
Vi(0) ≥ 0 for i = 1, . . . , p has a unique positive ω-periodic solution V ∗(t) ≡
(V ∗1 (t), . . . , V ∗p (t)), which is globally asymptotically stable.

Proof. Note that the travel rate matrix M(t) ≡ (mij(t))p×p has nonnegative off-
diagonal entries and the matrix (

∫ ω
0
mij(t)dt)p×p is irreducible. Let φ(t) be the fun-

damental matrix of system (2.1a) which satisfies dφ(t)/dt = M(t)φ(t) and φ(0) = Ip.
Then the pω period fundamental matrix φ(pω) is a strongly positive operator (Smith
[34]). By using the pω period fundamental matrix φ(pω) in the proof of Theorem 1
in Aronsson and Kellogg [2], we see that the pω periodic system (2.1a) has a positive
pω periodic solution H∗(t), which is globally asymptotically stable with respect to
all nonzero solutions. By using the global attractivity of the pω periodic solution,
we can further show it is also ω periodic by using a similar argument in Weng and

Zhao [37]. Moreover, it is easy to see that
p∑
i=1

H∗i (t) = Nh(0).

The i-th equation of (2.1b) has a unique positive periodic solution

V ∗i (t) = e
−

t∫
0

di(s)ds
(
V ∗i (0)+

t∫
0

e

s∫
0

di(τ)dτ
εi(s)ds

)
with V ∗i (0) =

ω∫
0

e

s∫
0

di(τ)dτ
εi(s)ds

e

ω∫
0

di(s)ds
− 1

,

which is globally asymptotically stable.

Remark 3.1. We can relax the positivity assumption on εi(t) to [εi] > 0 where
[εi] = 1

ω

∫ ω
0
εi(t)dt is the average value of εi(t) over [0, ω], or equivalently, εi(t̃) > 0
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for some t̃ ∈ [0, 2π). See Lemma 2.1 in Zhang and Teng [39] for results on a general
nonautonomous system of the form dVi(t)/dt = εi(t)− di(t)Vi(t).

The above result guarantees that system (2.1) admits a unique disease-free peri-
odic solution

E0(t) = (H∗1 (t), . . . ,H∗p (t), V ∗1 (t), . . . , V ∗p (t), 0, . . . , 0, 0, . . . , 0).

Biologically, both human and mosquito populations in each patch are seasonally
forced due to periodically changing human migration and seasonal birth, death
and biting rates of mosquitoes, respectively. Now we consider the asymptotically
periodic system for malaria transmission

dhi(t)

dt
= biai(t)

H∗i (t)− hi(t)
H∗i (t)

vi(t)− rihi(t) +

p∑
j=1

mij(t)hj(t), 1 ≤ i ≤ p,

dvi(t)

dt
= ciai(t)

hi(t)

H∗i (t)
(V ∗i (t)− vi(t))− di(t)vi(t), 1 ≤ i ≤ p.

(3.1)

In what follows, we use the definition of Bacaër and Guernaoui [4] (see also
Bacaër [5]) and the general calculation method in Wang and Zhao [36] to evaluate
the basic reproduction number R0 for system (3.1). Then we analyze the threshold
dynamics of system (3.1). Finally we study global dynamics for the whole system
(2.1) by applying the theory of internally chain transitive sets (Hirsch, Smith and
Zhao [15] and Zhao [40]).

Let x = (h1, . . . , hp, v1, . . . , vp) be the vector of all infectious class variables. The
linearization of system (3.1) at the disease-free equilibrium P0 = (0, . . . , 0, 0, . . . , 0)
is

dx

dt
= (F (t)− V (t))x, (3.2)

where

F (t) =

[
0 A
B 0

]
and V (t) =

[
C 0
0 D

]
.

Here A = (δijai(t)bi)p×p, B = (δijai(t)ciV
∗
i (t)/H∗i (t))p×p, C = (δijri −mij(t))p×p,

D = (δijdi(t))p×p, and δij denotes the Kronecker delta function (i.e., 1 when i = j
and 0 elsewhere).

Let Y (t, s), t ≥ s, be the evolution operator of the linear ω-periodic system

dy

dt
= −V (t)y.

That is, for each s ∈ R1, the 2p× 2p matrix Y (t, s) satisfies

dY (t, s)

dt
= −V (t)Y (t, s), ∀t ≥ s, Y (s, s) = I2p,

where I2p is the 2p× 2p identity matrix.
Let Cω be the ordered Banach space of all ω-periodic functions from R1 to R2p

equipped with the maximum norm. We define a linear operator L : Cω → Cω by

(Lφ)(t) =

∫ t

−∞
Y (t, s)F (s)φ(s)ds

=

∫ ∞
0

Y (t, t− a)F (t− a)φ(t− a)da, ∀t ∈ R1, φ ∈ Cω.
(3.3)

It is easy to verify that conditions (A1)-(A7) in Wang and Zhao [36] are satisfied.
Therefore, the basic reproduction number of the periodic system (3.1) is then defined
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as R0 := ρ(L), the spectral radius of L. The following lemma shows that the basic
reproduction numberR0 is the threshold parameter for local stability of the disease-
free steady state.

Lemma 3.2 (Theorem 2.2 in Wang and Zhao [36]). Let ΦF−V (t) and ρ(ΦF−V (ω))
be the monodromy matrix of system (3.2) and the spectral radius of ΦF−V (ω), re-
spectively. The following statements are valid:

(i) R0 = 1 if and only if ρ(ΦF−V (ω)) = 1.
(ii) R0 > 1 if and only if ρ(ΦF−V (ω)) > 1.

(iii) R0 < 1 if and only if ρ(ΦF−V (ω)) < 1.

Thus, the disease-free equilibrium P0 of system (3.1) is locally asymptotically stable
if R0 < 1 and unstable if R0 > 1.

Lou and Zhao [20] presented a global qualitative analysis for system (3.1) with a
single patch. We will show that the system with multiple patches does not exhibit
more complicated dynamics.

Lemma 3.3. Let Dt = {(h, v); 0 ≤ h ≤ H∗(t), 0 ≤ v ≤ V ∗(t)}. For each x(0) =

(h(0), v(0)) ∈ R2p
+ , system (3.1) admits a unique solution x(t) = (h(t), v(t)) ∈ R2p

+

through x(0) for all t ≥ 0. Moreover, x(t) ∈ Dt, ∀t ≥ 0, provided that x(0) ∈ D0.

Proof. Let K(t, x) denote the vector field described by (3.1). Since K(t, x) is con-
tinuous and locally Lipschitizan in x in any bounded set. By Theorem 5.2.1 in
Smith [34] and Theorem 2.1, system (3.1) has a unique solution (h(t), v(t)) through

x(0) ∈ R2p
+ which exists globally.

To prove the second statement, we let u(t) = H∗(t)−h(t) and w(t) = V ∗(t)−v(t),
where (h(t), v(t)) is the solution through x(0) ∈ D0. Then (u(t), w(t)) satisfies the
following system with u(0) = H∗(0)− h(0) ≥ 0 and w(0) = V ∗(0)− v(0) ≥ 0:

dui(t)

dt
= −ai(t)bi

ui(t)

H∗i (t)
(V ∗i (t)− wi(t))− riui(t) + riH

∗
i (t) +

p∑
j=1

mij(t)uj(t),

dwi(t)

dt
= εi(t)− ai(t)ci

H∗i (t)− ui(t)
H∗i (t)

wi(t)− di(t)wi(t),

for i = 1, . . . , p. It then follows from Theorem 5.1.1 in Smith [34] that (u(t), w(t)) ≥
0. That is, the solution for system (3.1) x(t) = (h(t), v(t)) ≤ (H∗(t), V ∗(t)) holds
for all t ≥ 0 whenever x(0) ∈ D0.

Theorem 3.1. System (3.1) admits a unique positive ω-periodic solution, de-
noted by P ∗(t) = (h∗(t), v∗(t)) = (h∗1(t), . . . , h∗p(t), v

∗
1(t), . . . , v∗p(t)), which is globally

asymptotically stable with initial values in D0\{0} if R0 > 1 and the disease-free
equilibrium P0 is globally asymptotically stable in D0 if R0 ≤ 1.

Proof. To show the global asymptotic stability of P ∗(t) or P0, it suffices to verify
that K(t, x) : R1

+ × D0 → R2p satisfies (A1)-(A3) in Theorem 3.1.2 in Zhao [40].
For every x = (h, v) ≥ 0 with hi = 0 or vi = 0, t ∈ R1

+, we have

Ki(t, x) = ai(t)bivi +
∑

1≤j≤p,j 6=i

mij(t)hj ≥ 0

or

Kp+i(t, x) = ai(t)ci
hi

H∗i (t)
V ∗i (t) ≥ 0,

for i = 1, . . . , p. So (A1) is satisfied.
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By Lemma 3.3, the system (3.1) is cooperative in Dt, and the ω-periodic semi-
flow is monotone. We can further prove that the pω-periodic semiflow is strongly
monotone in IntD0, the interior of D0, due to the irreducibility of (

∫ ω
0
mij(t)dt)p×p.

For each t ≥ 0, i = 1, . . . , p, there hold

Ki(t, αx) = ai(t)bi
H∗i (t)− αhi

H∗i (t)
αvi − riαhi +

p∑
j=1

mij(t)αhj

> α

(
ai(t)bi

H∗i (t)− hi
H∗i (t)

vi − rihi +

p∑
j=1

mij(t)hj

)
= αKi(t, x)

and

Kp+i(t, αx) = ai(t)ci
αhi
H∗i (t)

(V ∗i (t)− αvi)− di(t)αvi

> α

(
ai(t)ci

hi
H∗i (t)

(V ∗i (t)− vi)− di(t)vi
)

= αKp+i(t, x)

for each x� 0, α ∈ (0, 1). That is, K(t, ·) is strictly subhomogeneous on R2p
+ .

Moreover, K(t, 0) ≡ 0 and all solutions are ultimately bounded. Therefore, by
Theorem 3.1.2 in Zhao [40] or Theorem 2.3.4 in Zhao [40] as applied to the pω
solution map associated with (3.1), the proof is complete.

Using the theory of internally chain transitive sets (Hirsch, Smith and Zhao [15]
or Zhao [40]), as argued in Lou and Zhao [22], we find that the disease either dies
out or persists and stabilizes at a periodic state.

Theorem 3.2. For system (2.1), if R0 > 1 then there is a unique positive ω-
periodic solution, denoted by E∗(t) = (H∗(t), V ∗(t), h∗(t), v∗(t)), which is globally
asymptotically stable; if R0 ≤ 1 then the disease-free periodic solution E0(t) is
globally asymptotically stable.

Proof. Let P be the Poincaré map of the system (2.1) on R4p
+ , that is,

P (H(0), V (0), h(0), v(0)) = (H(ω), V (ω), h(ω), v(ω)).

Then P is a compact map. Let Ω =Ω(H(0), V (0), h(0), v(0)) be the omega limit
set of Pn(H(0), V (0), h(0), v(0)). It then follows from Lemma 2.1′ in Hirsch, Smith
and Zhao [15] (see also Lemma 1.2.1′ in Zhao [40]) that Ω is an internally chain
transitive set for P . Based on Lemma 3.1, we have

lim
t→∞

(H(t), V (t)) = (H∗(t), V ∗(t))

for any H(0) > 0 and V (0) > 0. Thus, Ω = {(H∗(0), V ∗(0))} × Ω1 for some

Ω1 ⊂ R2p
+ and

Pn|Ω(H∗(0), V ∗(0), h(0), v(0)) = (H∗(0), V ∗(0), Pn1 (h(0), v(0))),

where P1 is the Poincaré map associated with the system (3.1). Since Ω is an
internally chain transitive set for Pn, then Ω1 is an internally chain transitive set
for Pn1 . Next, we will discuss different scenarios when R0 ≤ 1 and R0 > 1.

Case 1. R0 ≤ 1. In this case, the zero equilibrium P0 is globally asymptotically
stable for system (3.1) according to Theorem 3.1. It then follows from Theorem 3.2
and Remark 4.6 of Hirsch, Smith and Zhao [15] that Ω1 = {(0, 0)}, which further
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implies that Ω = {(H∗(0), V ∗(0), 0, 0)}. Therefore, the disease free periodic solution
(H∗(t), V ∗(t), 0, 0) is globally asymptotically stable.

Case 2. R0 > 1. In this case, there are two fixed points for the map P1, (0, 0)
and (h∗(0), v∗(0)). We claim that Ω1 6= {(0, 0)} for all h(0) > 0 or v(0) > 0.
Assume that, by contradiction, Ω1 = {(0, 0)} for some h(0) > 0 or v(0) > 0. Then
Ω = {(H∗(0), V ∗(0), 0, 0)} and we have

lim
t→∞

(H(t), V (t), h(t), v(t)) = (H∗(t), V ∗(t), 0, 0).

Since R0 > 1, there exists some δ > 0 such that the following linear system is
unstable

dhi(t)

dt
= biai(t)(1− δ)vi(t)− rihi(t) +

p∑
j=1

mij(t)hj(t), 1 ≤ i ≤ p,

dvi(t)

dt
= ciai(t)(1− δ)

V ∗i (t)

H∗i (t)
hi(t)− di(t)vi(t), 1 ≤ i ≤ p.

(3.4)

Moreover, there exists some T0 > 0 such that

|(H(t), V (t), h(t), v(t))− (H∗(t), V ∗(t), 0, 0)| < δ min
0≤t≤ω

{H∗(t), V ∗(t)}, ∀t > T0.

Hence we have

dhi(t)

dt
≥ biai(t)(1− δ)vi(t)− rihi(t) +

p∑
j=1

mij(t)hj(t), 1 ≤ i ≤ p,

dvi(t)

dt
≥ ciai(t)(1− δ)

V ∗i (t)

H∗i (t)
hi(t)− di(t)vi(t), 1 ≤ i ≤ p,

when t > T0. According to the instability of system (3.4) and the comparison princi-
ple, hi(t) and vi(t) will go unbounded as t→∞, which contradicts the boundedness
of solutions (Theorem 2.1).

Since Ω1 6= {(0, 0)} and (h∗(0), v∗(0)) is globally asymptotically stable for Pn1 in

R2p
+ \{(0, 0)}, it follows that Ω1

⋂
W s((h∗(0), v∗(0))) 6= ∅, where W s((h∗(0), v∗(0)))

is the stable set for (h∗(0), v∗(0)). By Theorem 3.1 and Remark 4.6 in Hirsch, Smith
and Zhao [15], we then get Ω1 = {(h∗(0), v∗(0))}. Thus, Ω = {(H∗(0), V ∗(0), h∗(0),
v∗(0))}, and hence the statement for the case when R0 > 1 is valid.

4. Simulations and discussions. In this section, we provide some numerical sim-
ulations for the two-patch case to support our analytical conclusions. The following
matrix and lemma will be used in numerical computation for the basic reproduc-
tion number R0. Let W (t, λ) be the monodromy matrix (see Hale [14]) of the
homogeneous linear ω-periodic system

dx

dt
=
(
− V (t) +

F (t)

λ

)
x, t ∈ R1

with parameter λ ∈ (0,∞).

Lemma 4.1 (Theorem 2.1 in Wang and Zhao [36]). The following statements are
valid:

(i) If ρ(W (ω, λ)) = 1 has a positive solution λ0, then λ0 is an eigenvalue of L
and hence R0 > 0, where L is the next generation operator defined in (3.3);

(ii) If R0 > 0, then λ = R0 is the unique solution of ρ(W (ω, λ)) = 1;
(iii) R0 = 0 if and only if ρ(W (ω, λ)) < 1 for all λ > 0.



PERIODIC ROSS-MACDONALD MODEL 3141

According to Lemma 4.1(ii), we can show that the basic reproduction number

for (3.1) is proportional to the biting rate, that is, R̃0 = kR0 if β̃i(t) = kβi(t) for
k > 0 and 1 ≤ i ≤ p (see Lou and Zhao [21] or Liu and Zhao [18]).

To implement numerical simulations, we choose the baseline parameter values as
follows: bi = 0.2, ri = 0.02, ci = 0.3, di(t) = 0.1 for i = 1, 2. For the first patch,

ε1(t) = 12.5−(5 cos( 2πt
365 )+2.5 sin( 2πt

365 ))−(5 cos( 4πt
365 )−2.5 sin( 4πt

365 )) ≥ 12.5−5
√

5 > 0,

a1(t) = 0.028ε1(t) > 0. In the second patch, ε2(t) = 15 − 12 cos( 2πt
365 ), a2(t) =

0.18 − 0.12 cos( 2πt
365 ). Then, using Lemma 4.1, we can numerically compute that

the respective reproduction numbers of the disease in patches 1 and 2 are R10 =
1.7571 > 1 and R20 = 0.8470 < 1 and the disease persists in the first patch but dies
out in the second patch (see Figure 1(a)). When humans migrate between these two
patches with m12(t) = 0.006 − 0.004 cos( 2πt

365 ) and m21(t) = 0.006 + 0.004 cos( 2πt
365 ),

the basic reproduction number is R0 = 1.3944 > 1. Thus, the disease becomes
endemic in both patches (see Figure 1(b)).
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Figure 1. Numerical solution of system (3.1) with initial con-
ditions: H1(0) = 200, V1(0) = 50, h1(0) = 15, v1(0) = 10 and
H2(0) = 300, V2(0) = 30, h2(0) = 30, v2(0) = 5. The curves of
the number of infected humans in patches 1 and 2, respectively,
are blue solid and red dashed. (a) when there is no human move-
ment, R10 = 1.7571 > 1 and R20 = 0.8470 < 1 indicate the disease
persists in patch 1 but dies out in patch 2; (b) when human move-
ment presents, R0 = 1.3944 > 1 indicates the disease persists in
both patches, and will stabilize in a seasonal pattern.

The basic reproduction number for the corresponding time-averaged autonomous
system (see Wang and Zhao [36] and Zhang et al. [38]) is R̄0 = 1.2364. By Lemma



3142 DAOZHOU GAO, YIJUN LOU AND SHIGUI RUAN

4.1 or the linearity of R0 in the mosquito biting rates, we can multiply the biting
rates by an appropriate constant such that R̄0 below 1 while R0 above 1. Thus, the
autonomous malaria model may underestimate disease severity in some transmission
settings.

In order to investigate the effect of possible travel control on the malaria risk,
we determine the disease risk when shifting the phases of the movement functions,
while keeping their respective mean values and forcing strengths to be the same.
With the same parameter values and initial data except that the migration rates
m12(t) = 0.006 − 0.004 cos( 2πt

365 + φ1) and m21(t) = 0.006 + 0.004 cos( 2πt
365 + φ2),

we evaluate the annual malaria prevalence over the two patches for φ1, φ2 ∈ [0, 2π].
Then Figure 2 presents the effect of phase shifting for movement functions on disease
prevalence. The approximate range of malaria prevalence is from 17% to 23%. This
result indicates that appropriate travel control can definitely reduce the disease risk,
and therefore, an optimal travel control measure can be proposed.
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Figure 2. Effect of phase shift for movement rates between two
patches on disease risk.

In this project, we have developed a compartmental model to address seasonal
variations of malaria transmission among different regions by incorporating seasonal
human movement and periodic changing in mosquito ecology. We then derive the
basic reproduction number and establish the global dynamics of the model. Math-
ematically, we generalize the model and results presented in Cosner et al. [7] and
Auger et al. [3] from a constant environment to a periodic environment. Biologi-
cally, our result gives a possible explanation to the fact that malaria incidence show
seasonal peaks in most endemic areas (Roca-Feltrer et al. [30]). The numerical
examples suggest that a better understanding of seasonal human migration can
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help us to prevent and control malaria transmission in a spatially heterogeneous
environment.

It would be interesting to assess the impacts of climate change on the emerging
and reemerging of mosquito-borne diseases, especially malaria. It is believed that
global warming would cause climate change, while climatic factors such as precip-
itation, temperature, humidity and wind speed affect the biological activity and
geographic distribution of the pathogen and its vector. It sometimes even affects
human behavior through sea-level rise, more extreme weather events, etc.

The current and potential future impact of climate change on human health
has attracted considerable attention in recent years. Many of the early studies
(see Ostfeld [27] and the references cited therein) claimed that recent and future
trends in climate warming were likely to increase the severity and global distribu-
tion of vector-borne diseases, while there is still substantial debate about the link
between climate change and the spread of infectious diseases (Lafferty [16]). The
controversy is partially due to the fact that although there is massive work us-
ing empirical-statistical models to explore the relationship between climatic factors
and the distribution and prevalence of vector-borne diseases, there are very few
studies incorporating climatic factors into mathematical models to describe disease
transmission.

The research that comes closest to what we expect to do has been conducted by
Parham and Michael in [28], where they used a system of delay differential equations
to model malaria transmission under varying climatic and environmental conditions.
Model parameters are assumed to be temperature-dependent or rainfall-dependent
or both. Due to the complexity of their model, mathematical analysis was not
possible and only numerical simulations were carried out. Furthermore, the basic
reproduction number is also difficult to project through their model. We would
like to extend our model to a mathematically tractable climate-based model in the
future.
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