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Abstract

In this paper, we consider a simple chemostat model involving a single species feeding on redundant substrate with a

constant yield term. Many experiments indicate that very high substrate concentrations actually inhibit growth. Instead

of assuming the prevalent Monod kinetics for growth rate of cells, we use a non-monotonic functional response

function to describe the inhibitory effect. A detailed qualitative analysis about the local and global stability of its

equilibria (including all critical cases) is carried out. Numerical simulations are performed to show that the dynamical

properties depend intimately upon the parameters.

� 2004 Elsevier Ltd. All rights reserved.
1. Introduction

The chemostat is an important laboratory apparatus used to culture microorganisms (see, for example, [1–6,9–12]

and the references therein). Species grow in continuously stirred homogenous fermenters which are fed continuously by

a nutrient and the cells are drawn off continuously. It is of both ecological and mathematical interest since its appli-

cability in many areas, for example, waste water treatment and the operation of industrial fermenters. The continuous

culture model with Monod kinetics for nutrient uptake has received a great deal of attention since it was first introduced

and a complete mathematical theory of this model has been developed. In addition, the model has been modified

frequently in order to account for various phenomena that are relevant in the actual experiments. A detailed exposition

of the mathematical theory of the chemostat that includes nine modifications to the original model is given in [11].

When such modifications are made, it is always a central question of interest to find criteria under which the new model

predicts that the microorganisms will be able to persist at a steady state in the culture vessel for an indefinitely long

period of time. An accompanying question is to determine the steady-state microorganism and nutrient concentrations

as functions of the model parameters.

So far, for the nutrient uptake rate, large numbers of models are established on the basis of Monod kinetics

function (Michaelis-Menten or Holling type II), which takes the form of lðSÞ ¼ lmS=ðkm þ SÞ and satisfies the following

conditions:
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Here lm > 0 is called the maximal specific growth rate; km is the half-saturation constant, such that lðkmÞ ¼ lm=2.
Clearly, lðSÞ is an increasing function of S over the entire interval 06 S < 1. However, in some cases, very high

substrate concentrations actually inhibit the growth of cells. Moreover, with the substrate concentrations increase

unlimitedly, some kind of microorganism will die eventually. To describe this phenomenon accurately, we consider lðSÞ
from a different point of view. Assume that, there exists a constant 0 < S� < 1 such that lðSÞ is increasing over the

interval 06 S < S�, lðSÞ � lm for all S less than but sufficiently close to S�, and is decreasing on the interval

S� < S < 1. More precisely, we use the so-called Tissiet functional response of the form of lðSÞ ¼ lmSe
�S=ki=ðkm þ SÞ

(see, for example, [3]).

This paper is organized as follows. The model is described in Section 2. In Section 3, we study the existence of

equilibria and their local stability in details. The global dynamics are considered in Section 4. Some discussions are

given in Section 5.
2. Statement of the model

Owing to the fact that nutrient is supplied continuously at a constant rate, we can take for granted that substrate

concentration and microorganism concentration are all continuous functions of time. Let SðtÞ and X ðtÞ denote,

respectively, the concentration of substrate and microorganism at time t. Our model is described by the following

ordinary differential equations (see [3–5,11,12]):
_SðtÞ ¼ DðS0 � SÞ � 1
d lðSÞX ;

_X ðtÞ ¼ ðlðSÞ � DÞX ;

(
ð2:1Þ
where S0 denotes the input concentration of nutrient, D is referred to as the dilution rate, d is yield term,

lðSÞ ¼ lmSe
�S=ki=ðkm þ SÞ describes the specific growth rate of cells. It is biologically natural to assume that all of the

parameters are non-negative and the initial conditions of (2.1) are given as
Sð0Þ ¼ S0 P 0; X ð0Þ ¼ X0 P 0: ð2:2Þ
It is convenient to introduce dimensionless variables. In particular, we define
X ¼ dS0x; S ¼ S0y; t ¼ s=D; m ¼ lm=D; b ¼ S0=ki; a ¼ km=S0;
and still denote s with t, then system (2.1) becomes
_xðtÞ ¼ mxye�by

aþy � x;

_yðtÞ ¼ 1� y � mxye�by

aþy ;

(
ð2:3Þ
and the initial conditions of (2.3) are
xð0Þ ¼ x0; yð0Þ ¼ y0: ð2:4Þ
where 06 x0 ¼ X0=ðdS0Þ < þ1, 06 y0 ¼ S0=S0
6 1.

From the biological meanings, we consider (2.3) on the following set X:
X ¼ fðx; yÞ jxP 0; 06 y6 1g:
It is easily to be shown that X is positive invariant with respect to (2.3). In fact, note that on the part of oX where y ¼ 0,

the vector field is pointing strictly inside X since y0 � 1 > 0. The set L1 ¼ fðx; yÞ jx ¼ 0; 06 y6 1g consists of the

trajectories of (2.3). Let L2 ¼ fðx; yÞ jy ¼ 1; xP 0g. It has that y0 ¼ mxye�by

aþy < 0, which implies that any trajectory of (2.3)

started from X will still stay in X for all tP 0. This proves the positive invariance of X.
If one adds the two equations of (2.3), then one obtains a single equation
ðxðtÞ þ yðtÞÞ0 ¼ 1� ðxðtÞ þ yðtÞÞ ð2:5Þ
with xð0Þ þ yð0ÞP 0. Obviously
xðtÞ þ yðtÞ ¼ 1þ ðxð0Þ þ yð0Þ � 1Þ expð�tÞ
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for all tP 0, this gives the dissipativeness of (2.3) and that
lim
t!þ1

ðxðtÞ þ yðtÞÞ ¼ 1:
It also has that the set L3 ¼ fðx; yÞ jxþ y ¼ 1; xP 0; yP 0g is positive invariant with respect to (2.3).
3. Existence and local stability of equilibria

For the existence of the equilibria of (2.3), we have the following results.

Theorem 1. (2.3) always has a washout equilibria E0 ¼ ð0; 1Þ. For the existence of the positive equilibrium, there are four
cases:

(1) If 0 < m6 1 or m > 1, b6 2, me�bð1� bÞP 1, me�b
6 aþ 1, or m > 1, me�bð1� bÞ < 1, me�b < aþ 1,

b�y2 þ ab�y � a < 0, then there does not exist any positive equilibrium, where �y denoted the root of
f 0ðyÞ ¼ me�byð1� byÞ � 1 ¼ 0.

(2) If m > 1, me�b > aþ 1 or m > 1, me�bð1� bÞ < 1, me�b ¼ aþ 1, then there exists a single positive equilibrium,
denoted by Eþ

1 ¼ ð1� y�1 ; y
�
1Þ.

(3) If m > 1, me�b < aþ 1, me�bð1� bÞ < 1, b�y2 þ ab�y � a ¼ 0, then there also exists a single equilibrium, denoted by
Eþ
3 ¼ ð1� y�3 ; y

�
3Þ.

(4) If m > 1, me�b < aþ 1, me�bð1� bÞ < 1, b�y2 þ ab�y � a > 0, then there exist two equilibria, denoted, respectively, by
Eþ
21 ¼ ð1� y�21; y

�
21Þ and Eþ

22 ¼ ð1� y�22; y
�
22Þ.

Proof. From the right part of Eq. (2.3), we can get the washout solution ð0; 1Þ easily, which we denotes as E0 ¼ ð0; 1Þ.
As far as other equilibria are concerned, the analysis of the equation mye�by=ðaþ yÞ ¼ 1 is needed. We define
f ðyÞ ¼ mye�by � a� y;
then, accordingly we have
f 0ðyÞ ¼ me�byð1� byÞ � 1; f 00ðyÞ ¼ mbe�byðby � 2Þ:
Firstly, we study the function f 00ðyÞ. f 00ðyÞ ¼ 0 has a simple root y ¼ 2
b and f 00ðyÞ < 0 for 06 y < 2

b, which informs that

f 0ðyÞ decreases monotonously over this interval; f 00ðyÞ > 0 for y > 2
b, which informs that f 0ðyÞ increases monotonously

over this interval. Notice that f ð0Þ ¼ �a < 0, f ð1Þ ¼ me�b � a� 1, f 0ð0Þ ¼ m� 1, f 0ð1Þ ¼ me�bð1� bÞ � 1,

f 0 2
b

� �
¼ �me�2 � 1 < 0, we proceed our discussions into five steps:

(1) (see Fig. 1) When 2
b < 1, i.e. b > 2, at the same time, m < 1, then f 0ðyÞ decreases from m� 1ð< 0Þ to f 0 2

b

� �
< 0, then

rises from f 0 2
b

� �
< 0 to f 0ð1Þ, where f 0ð1Þ < 0 can be judged easily. On the whole, f 0ðyÞ < 0; 8y 2 ½0; 1�, accordingly,

f ðyÞ will decreases from �a to f ð1Þ, and it is impossible for f ðyÞ to intersect axis y. So, in this case, there will be no

root at all for f ðyÞ 8y 2 ½0; 1�.
(2) (see Fig. 2) When 2

b < 1, i.e. b > 2, at the same time, m > 1, thenf 0ðyÞ decreases from m� 1ð> 0Þ to f 0 2
b

� �
< 0, after

that, rises from f 0 2
b

� �
< 0 to f 0ð1Þ, where f 0ð1Þ < 0 can be judged easily. Because f 0ð0Þ > 0, f 0 2

b

� �
< 0, and in the

interval of y 2 0; 2b
� �

; f 0ðyÞ monotonously decreases, there must exist a point, at which f 0ðyÞ ¼ 0. We denote this

point by �y, and notice that f 0ðyÞ > 0; 8y 2 ½0; �y�, which implies that f ðyÞ increases monotonously over this interval,

and f 0ðyÞ < 0 8y 2 ½�y; 1�, which implies that f ðyÞ decreases monotonously over this interval. So far, we can only

detect that f ð�yÞ > f ð1Þ but the sign of f ð1Þ is still uncertain, which needs to be discussed in three steps:

(a) If me�b > aþ 1, i.e. f ð1Þ > 0, then incontrovertibly f ð�yÞ > 0. Because f ð0Þ < 0, f ð�yÞ > 0, and in the interval of

y 2 0; 2b
� �

, f ðyÞ increases monotonously, there must exist a point in the interval y�1 2 ½0;�y�, such that f ðy�1Þ ¼ 0.

Furthermore, we can perceive that f 0ðy�1Þ > 0 from the tendency of f 0ðyÞ.
(b) If me�b > aþ 1, i.e. f ð1Þ ¼ 0, then using the same argument as in (a), we can get that there is a root y�1 on the

interval ½0; 1Þ.
(c) If me�b < aþ 1, i.e. f ð1Þ < 0, then the sign of f ð�yÞ becomes changeable, so we should break it down into three

steps. As has been noted that �y is the solutions of f 0ð�yÞ ¼ 0, so it must satisfy that me�b�yð1� b�yÞ ¼ 1, i.e.

me�b�y ¼ 1=ð1� b�yÞ. Substitute it into f ðyÞ, we have f ð�yÞ ¼ m�ye�b�y � a� �y ¼ ðb�y2 þ ab�y � aÞ=ð1� b�yÞ, here

1� b�y must be positive, or else f 0ð�yÞ will permanently negative, which contradicts with f 0ð�yÞ ¼ 0. But the sign

of b�y2 þ ab�y � a is insecure either, so the discussion in three steps is necessary.
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(c1) If b�y2 þ ab�y � a > 0, then on the interval ½0; �y�, f ðyÞ increases monotonously, and f ð0Þ < 0, f ð�yÞ > 0, there

must exist a point in the interval y�21 2 ½0; �y�, such that f ðy�21Þ ¼ 0. Furthermore, we can perceive that

f 0ðy�21Þ > 0 from the tendency of f 0ðyÞ; Conversely, on the interval ½�y; 1�; f ðyÞ decreases monotonously,

and f ð�yÞ > 0; f ð1Þ < 0 there must also exist a point in the interval y�22 2 ½�y; 1�, such that f ðy�22Þ ¼ 0 Also,

we can perceive that f 0ðy�22Þ < 0 from the tendency of f 0ðyÞ.
(c2) If b�y2 þ ab�y � a < 0, then on the interval ½0; 1�, all values of f ðyÞ are negative because f ð�yÞ is the maximum

value of f ðyÞ when y belongs to ½0; 1�, and it is impossible for f ðyÞ to intersect axis y. So, in this case, there

will be no root at all for f ðyÞ 8y 2 ½0; 1�.



(c

G. Fu et al. / Chaos, Solitons and Fractals 23 (2005) 873–886 877
3) If b�y2 þ ab�y � a ¼ 0, then on the interval ½0; 1�, �y is the only zero of f ðyÞ. We denote this point as y�3 ,
Furthermore, we can perceive that f 0ðy�3Þ ¼ 0 from the tendency of f 0ðyÞ.
In terms of 2
b P 1, i.e. b6 2, f 0ðyÞ will always decrease over the interval y 2 ½0; 1�;

(3) (see Fig. 3) When b6 2, at the same time, m < 1, then f 0ðyÞ decreases from m� 1ð< 0Þ. On the whole,

f 0ðyÞ < 0; 8y 2 ½0; 1�, accordingly, f ðyÞ will decreases from �a to f ð1Þ, and it is impossible for f ðyÞ to intersect axis

y. So, in this case, there will be no root at all for f ðyÞ 8y 2 ½0; 1�.
On the other hand, if b6 2, at the same time, m > 1, then f 0ðyÞ decreases from m� 1ð> 0Þ to f 0ð1Þ, but the sign of

f 0ð1Þ is doubtful, so a further discussion in (4) and (5) is needed.

(4) (see Fig. 4) When b6 2, at the same time, m > 1, and f 0ð1Þ ¼ me�bð1� bÞ � 1P 0, then although f 0ðyÞ decreases, it
will not traverse y axis, which inform that f ðyÞ increases monotonously on the interval ½0; 1�. But the sign of f ð1Þ
needs the following discussions:

(a) If me�b > aþ 1, i.e. f ð1Þ > 0, then, obviously there must exist a point y�1 2 ½0; 1� such that f ðy�1Þ ¼ 0. Further-

more, we can perceive that f 0ðy�1Þ > 0 from the tendency of f 0ðyÞ.
(b) If me�b ¼ aþ 1, i.e. f ð1Þ ¼ 0, then y ¼ 1 is the only solution of f ðyÞ ¼ 0 8y 2 ½0; 1�. Actually, it coincides with

the washout point, so we ignore it.

(c) If me�b < aþ 1, i.e. f ð1Þ < 0, then obviously, it is impossible for f ðyÞ to intersect axis y. So, in this case, there

will be no root at all for f ðyÞ ¼ 0.

(5) (see Fig. 5) When b6 2, at the same time, m > 1, and f 0ð1Þ ¼ me�bð1� bÞ � 1 < 0, then it follows from f 0ð0Þ > 0

and f 0ð1Þ < 0 that f 0ðyÞ monotonously decreases on the interval [0, 1]. There must exist a point, in which f 0ðyÞ ¼ 0.

We denote this point by �y. Notice that f 0ðyÞ > 0 8y 2 ½0;�y�, which implies that f ðyÞ increases monotonously over

this interval, and f 0ðyÞ < 0; 8y 2 ½�y; 1�, which implies that f ðyÞ decreases monotonously over this interval. So far, we

can only detect that f ð�yÞ > f ð1Þ, but the sign of f ð1Þ is still uncertain. Using the same argument as (2), we have:

(a) If me�b > aþ 1, there must exist a point in the interval ½0; �y�, in which f ðyÞ ¼ 0. We denote this point as y�1 with
f 0ðy�1Þ > 0.
Fig. 3.

Fig. 4.
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(b) If me�b ¼ aþ 1, there still be one root on the interval ½0; 1Þ, we also denote it as y�1 .
(c) If me�b < aþ 1, the sign of b�y2 þ ab�y � a is uncertain too, the discussions of three steps is necessary.

(c1) If b�y2 þ ab�y � a > 0, then on the interval ½0; �y�, there must exist a point in the interval y�21 2 ½0; �y�, in which

f ðy�21Þ ¼ 0, with f 0ðy�21Þ > 0; Conversely, on the interval ½�y; 1�, there must also exist a point in the interval

y�22 2 ½�y; 1�, in which f ðy�22Þ ¼ 0, with f 0ðy�22Þ < 0.

(c2) If b�y2 þ ab�y � a < 0, there will be no root at all for f ðyÞ 8y 2 ½0; 1�.
(c3) If b�y2 þ ab�y � a ¼ 0, then on the interval ½0; 1�, �y is the only zero of f ðyÞ. We denote this point as y�3 , with

f 0ðy�3Þ ¼ 0.

Substitute all values of y into the right part of Eq. (2.3), we easily derive x ¼ 1� y, accordingly, we obtain all

equilibrium points.

This completes the proof of Theorem 1. �

Theorem 2

(i) If aþ 1 < me�b, E0 is a saddle point; If aþ 1 > me�b, E0 is locally asymptotically stable; If aþ 1 ¼ me�b, the stability
of E0 belongs to the degenerate case, which needs further discussion.

(ii) Eþ
1 and Eþ

21 are locally asymptotically stable, when they exist; Eþ
22 is unstable, when it exists; and the stability of Eþ

3 (if
exists), belongs to the degenerate case, which needs further discussion.
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Proof. To study the local stability of E0, we first consider the coefficient matrix J0 of the linearizing system (2.3) about

E0, where
J0 ¼
me�b�ðaþ1Þ

aþ1
0

�me�b

aþ1
�1

 !
the two eigenvalues are k1 ¼ �1, and k2 ¼ ðme�b � ðaþ 1ÞÞ=ðaþ 1Þ. Obviously, the two eigenvalues are all real

numbers, and if aþ 1 < me�b, J0 has one positive real eigenvalue root and one negative real eigenvalue root, which

infers that E0 is a saddle point; If aþ 1 > me�b, J0 has two negative real eigenvalue roots, which infers that E0 is locally

asymptotically stable; If aþ 1 ¼ me�b, J0 has one zero eigenvalue, which infers that E0 is degenerate.

On the other hand, the local stability of positive equilibrium involves the coefficient matrix J1 of the linearizing

system (2.3) about Eþ
i (i ¼ 1; 21; 22; 3). We denotes ðx�; y�Þ as the assemblage of all positive equilibria. Note that

x� ¼ 1� y�.
J1 ¼
0

�x� by�2þaby��að Þ
y�ðaþy�Þ

�1
�x� by�2þaby��að Þ

y�ðaþy�Þ �1

:

0
BBBB@

1
CCCCA
The two eigenvalues are k1 ¼ �1 and k2 ¼ x� by�2 þ aby� � að Þ=ðy�ðaþ y�ÞÞ. Obviously, the two eigenvalues are all real

numbers. As noted that y� is the solution of f ðyÞ ¼ 0, so it must satisfy that my�e�by� � a� y� ¼ 0, i.e.

me�by� ¼ ðaþ y�Þ=y�, substitute it into f 0ðyÞ, we have f 0ðy�Þ ¼ me�by� ð1� by�Þ � 1 ¼ by�2 þ aby� � að Þ=ð�y�Þ. In the

proof of Theorem 1, we have shown that f 0ðy�1Þ > 0, which implies that by�21 þ aby�1 � a < 0. Similarly, f 0ðy�21Þ > 0

implies that by�221 þ aby�21 � a < 0; f 0ðy�22Þ < 0 implies that by�222 þ aby�22 � a > 0; and f 0ðy�3Þ ¼ 0 implies that

by�23 þ aby�3 � a ¼ 0. Thus, the local asymptotical behavior of Eþ
i depends on the sign of by�2 þ aby� � a. We have the

following conclusions:

Eþ
1 and Eþ

21 are locally asymptotically stable, as long as they exist; Eþ
22 is unstable, as long as it exists; E

þ
3 is degenerate

if it exists. This completes the proof of Theorem 2. �

The two degenerate cases referred in Theorem 2 are considered in the following two theorems.

Theorem 3. For the degenerate case of E0, i.e. when me�b ¼ aþ 1, the phase portrait of (2.3) in the vicinity of E0 is given in
Fig. 6, here E0 is a saddle-node.

Proof. Firstly, we translate the washout critical point to the origin. Define u ¼ x, v ¼ y � 1, still denote u, v with x, y,
and (2.3) can be written as the following system:
Fig. 6. The phase portrait of (2.3) in the vicinity of E0 when me�b ¼ aþ 1, i.e., E0 is degenerate.
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_xðtÞ ¼ mxðyþ1Þe�bðyþ1Þ

aþyþ1
� x;

_yðtÞ ¼ �y � mxðyþ1Þe�bðyþ1Þ

aþyþ1
:

(
ð3:1Þ
Using polar coordinates, define x ¼ r cosðhÞ, y ¼ r sinðhÞ, we have
_rðtÞ ¼ �rða� mre�bðr sinðhÞþ1Þ sinðhÞ cos2ðhÞ þ r sinðhÞ þ 1

aþ r sinðhÞ þ 1
þ mre�bðr sinðhÞþ1Þ cosðhÞ � mre�bðr sinðhÞþ1Þ cos3ðhÞ

aþ r sinðhÞ þ 1

� me�bðr sinðhÞþ1Þ cos2ðhÞ þ me�bðr sinðhÞþ1Þ sinðhÞ cosðhÞÞ
aþ r sinðhÞ þ 1

; ð3:2Þ

_hðtÞ ¼ �me�bðr sinðhÞþ1Þðr sinðhÞ þ 1ÞðcosðhÞ sinðhÞ þ 1� sin2ðhÞÞ
aþ r sinðhÞ þ 1

: ð3:3Þ
We denote UðhÞ as the coefficient of the minimum power about r in Eq. (3.3), and RðhÞ as the coefficient of the

minimum power about r in Eq. (3.2). Then, we obtain
UðhÞ ¼ �me�bðsinðhÞ cosðhÞ þ cos2ðhÞÞ
aþ 1

;

RðhÞ ¼ �aþ me�b cos2ðhÞ � 1� me�b cosðhÞ sinðhÞ
aþ 1

;

then, accordingly
U 0ðhÞ ¼ �
ffiffiffi
2

p
cos 2h
�

þ p
4

�
:

When h ¼ p
2
and 3p

2
, they satisfy UðhÞ ¼ 0, RðhÞ < 0, U 0ðhÞ > 0 (see [13]). We know that the trajectories of system (3.1)

approach (0, 0) along h ¼ p
2
and 3p

2
as t ! 1, that is, the trajectories of (2.3) along y axis approach E0.

For other trajectories, make the transformation of coordinates
x ¼ ��x;
y ¼ �xþ �y;

�
ð3:4Þ
and time transformation t ¼ �s. (3.1) becomes
_�xðtÞ ¼
�x �me�bð�xþ�yþ1Þþ1ð Þ�x�me�bð�xþ�yþ1Þ�y�me�bð�xþ�yþ1Þaþ�yþ1ð Þ

aþ�xþ�yþ1
;

_�yðtÞ ¼ �y:

(
ð3:5Þ
As referred in [7], we get
uð�x; �yÞ ¼ �m�x2e�bð1þ�yþ�xÞ

aþ �xþ �y þ 1
� m�x�ye�bð1þ�yþ�xÞ

aþ �xþ �y þ 1
� m�xe�bð1þ�yþ�xÞ

aþ �xþ �y þ 1
þ �xaþ �x2 þ �x�y þ �x

aþ �xþ �y þ 1
;

and wð�x; �yÞ ¼ 0 can be easily discerned from the second equation of (3.5), so �y ¼ 0 is incontrovertible. Substitute �y ¼ 0

into pð�x; �yÞ, and make a Taylor expansion for uð�x; 0Þ in (0,0), then the coefficient of the square term about �x is
g2 ¼
�m

ðaþ 1Þeb < 0:
At the same time, noticing the time transformation t ¼ �s, the coordinate transformation �x ¼ �x, �y ¼ xþ y, and u ¼ x,
v ¼ y � 1, in the x–y plane, we give the phase portrait showed in Fig. 6 from which we find that Eþ

0 is a saddle-node

(see [7,13]). This completes the proof. h

Theorem 4. For the degenerate case of Eþ
3 , i.e. when the case (3) of Theorem 1 holds, the phase portrait of (2.3) in the

vicinity of Eþ
3 is given in Fig. 7, here Eþ

3 is a saddle-node.

Proof. Firstly, we translate Eþ
3 to the origin. Define u ¼ x� x�3, v ¼ y � y�3 . Still denote x, y for u, v, then (2.3) can be

transformed to



Fig. 7. The phase portrait of (2.3) in the vicinity of Eþ
3 when the case (3) of Theorem 1 holds, i.e., Eþ

3 is degenerate.
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_xðtÞ ¼
m xþ1�y�

3ð Þ yþy�
3ð Þe�b yþy�

3ð Þ
aþyþy�

3

� x� 1þ y�3 ;

_yðtÞ ¼ 1� y � y�3 �
m xþ1�y�

3ð Þ yþy�
3ð Þe�b yþy�

3ð Þ
aþyþy�

3

:

8>>><
>>>:

ð3:6Þ
Then, make the following transformation of coordinates:
x ¼ ��x;
y ¼ �xþ �y;

�
ð3:7Þ
and time transformation t ¼ �s. As in Theorem 3, the square coefficient about �x is
g2 ¼
mae�by�

3 y�23 þ ða� 2Þy�3 � a
� �
2y�3 aþ y�3ð Þ3

:

To determine the sign of g2, define
f1ðyÞ ¼ 2y2 þ ða� 2Þy � a:
Obviously, over the interval ½0; 1Þ, the quadratic function f1ðyÞ < 0, and because 0 < y�3 < 1, we have f1ðy�3Þ < 0, that is

g2 < 0. At the same time, owing to the time transformation t ¼ �s, the coordinate transformation �x ¼ �x, �y ¼ xþ y,
and u ¼ x� x�3, v ¼ y � y�3 , in the x–y plane, we can draw the phase portrait Fig. 7 from which we find that E�

3 is a

saddle-node. This completes the proof. h
4. Global behavior of equilibria

Theorem 5

(i) If the case (1) of Theorem 1 holds, then E0 is globally asymptotically stable with respect to X for me�b < aþ 1, and
globally attractive with respect to X for me�b ¼ aþ 1.

(ii) If m > 1, me�b > aþ 1 (one of the conditions in the case (2) of Theorem 1) holds, then Eþ
1 is globally asymptotically

stable with respect to X1 ¼ fðx; yÞ j ðx; yÞ 2 X; x > 0g.
(iii) If the case (3) of Theorem 1 holds, then E0 attracts all solutions with initial condition ðx0; y0Þ satisfying

ðx0; y0Þ 2 X2 ¼ fðx; yÞ j06 x6 x�3; 06 y6 1g n fEþ
3 g.
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(iv) If the case (4) of Theorem 1 holds, then E0 attracts all solutions with initial condition ðx0; y0Þ satisfying
ðx0; y0Þ 2 X3 ¼ fðx; yÞ j0 < x6 x�22; y�22 < y6 1g; Eþ

21 attracts all solutions with initial condition ðx0; y0Þ satisfying
ðx0; y0Þ 2 X4 ¼ fðx; yÞ j0 < y6 y�22; 1� y6 x < þ1g n fEþ

22g.

Proof. (i) We only need to show that E0 is globally attractive. We shall use the Liapunov–LaSalle invariant principle to

prove attractivity. Consider the non-negative function V ¼ x on the compact set X. It is clear that V ¼ x is continuous
on X and the derivative along the solutions of (2.3) satisfies
_V ¼ _x ¼ x y me�by � 1ð Þ � a½ �
aþ y

¼ xf ðyÞ
aþ y

6 0:
This implies that V ¼ x is a Liapunov function of (2.3) on X. Define the subset G of X as
G ¼ fðx; yÞ j ðx; yÞ 2 X; _V ¼ 0g;
and let M be the largest invariant set of (2.3) in X.
If me�b < aþ 1, it has that f ðyÞ < 0 for any 06 y6 1 and hence,
G ¼ fðx; yÞ j ðx; yÞ 2 X; _V ¼ 0g ¼ fðx; yÞ j ðx; yÞ 2 X; x ¼ 0g:
By the invariance of M and (2.3), we can easily show that
G ¼ fð0; 1Þ 2 Xg ¼ fE0g:
If me�b ¼ aþ 1, it has that f ðyÞ < 0 for any 06 y < 1 and that f ðyÞ ¼ 0 for y ¼ 1. Hence,
G ¼ fðx; yÞ j ðx; yÞ 2 X; _V ¼ 0g ¼ fðx; yÞ j ðx; yÞ 2 X; x ¼ 0 or y ¼ 1g:
Also from the invariance of M and (2.3), we can show that
G ¼ fð0; 1Þ 2 Xg ¼ fE0g:
Therefore, it follows from well-known Liapunov–LaSalle invariant principle (see, for example, [7]) that E0 is globally

attractive.

(ii) When m > 1 and me�b > aþ 1 (one of the conditions of the case (2) of Theorem 1 holds), we have known that the

equilibrium E0 is a saddle point and that the equilibrium Eþ
1 is locally asymptotically stable. For any ðx0; y0Þ 2 X1, it has

that the solution ðxðtÞ; yðtÞÞ of (2.3) with (2.4) belongs to X1 for all tP 0 and that ðxðtÞ; yðtÞÞ is bounded. Thus, it follows
from well-known Poincare–Bendixson theorem (see, for example, [7,8,13]) that one of the following cases holds: (a) the

x limit set, denoted by Q, of ðxðtÞ; yðtÞÞ is an equilibrium; (b) Q is a periodic orbit; (c) Q is a singular closed orbit. On the

other hand, note that E0 is a saddle point and that Eþ
1 is locally asymptotically stable, and that limt!þ1ðxðtÞ þ yðtÞÞ ¼ 1,

we see that Q must be the equilibrium Eþ
1 . This shows that Eþ

1 is globally asymptotically stable with respect to

X1 ¼ fðx; yÞ j ðx; yÞ 2 X; x > 0g.
As Theorem 1 has shown that Eþ

1 is locally asymptotically stable if the case (2) of Theorem 1 holds. Now we derive

that when m > 1 and me�b > aþ 1, Eþ
1 is globally asymptotically stable. On the other hand, as for another condition of

Theorem 1: m > 1, me�bð1� bÞ < 1 and me�b ¼ aþ 1, E0 will also attract some trajectories of (2.3). Hence, E1 cannot be

globally attractive. We give a numerical simulation in Fig. 12.

(iii) In the case of (3) in Theorem 1, we know that f ðyÞ < 0 for 06 y < y�3 and y�3 < y6 1. If ðx0; y0Þ 2 X2 and x0 ¼ 0,

it easily has that limt!þ1ðxðtÞ; yðtÞÞ ¼ ð0; 1Þ. If ðx0; y0Þ 2 X2 and x0 > 0, it has that
_x ¼ x
aþ y

f ðyÞ6 0 ð4:1Þ
for ðxðtÞ; yðtÞÞ 2 X2, from which we can easily have that ðxðtÞ; yðtÞÞ 2 X2 for all tP 0. Hence, limt!þ1 xðtÞ ¼ x� and

limt!þ1 yðtÞ ¼ 1� x� for some x�. Clearly, it must have ðx�; 1� x�Þ ¼ ð0; 1Þ. This shows that E0 attracts all solutions

with ðx0; y0Þ 2 X2.

(iv) In the case of (4) in Theorem 1, we know that f ðyÞ < 0 for 0 < y6 y�21 and y�22 6 y < 1 and f ðyÞ > 0, for

y�21 < y < y�22. For convenience, we let
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C1 ¼ fðx; yÞ j1� y < x6 x�22; y�22 < y6 1g;
C2 ¼ fðx; yÞ j0 < x6 1� y; y�22 < y6 1g;
C3 ¼ fðx; yÞ j1� y6 x < 1; y�21 < y < y�22g;
C4 ¼ fðx; yÞ j1� y6 x < 1; 0 < y6 y�21g;
C5 ¼ fðx; yÞ jx�22 < x < 1; y�22 < y6 1g;
C6 ¼ fðx; yÞ j0 < x < 1� y; 0 < y6 y�22g:
Then we have the following discussions in five steps:

(1) If ðx0; y0Þ 2 C1, we have y�22 < y0 6 1. Hence, from (4.1) we see that xðtÞ strictly decreases as t increases and

ðxðtÞ; yðtÞÞ 2 C1. Note that the orbit cannot across the line xþ y ¼ 1. By a similar argument as in (iii), we can show

that limt!þ1ðxðtÞ; yðtÞÞ ¼ ð0; 1Þ.
(2) If ðx0; y0Þ 2 C2 and x0 þ y0 ¼ 1, from (2.5) we see that ðxðtÞ; yðtÞÞ 2 C2 and ðxðtÞ; yðtÞÞ ¼ 1 for all tP 0. Hence,

_xðtÞ < 0 and
_yðtÞ ¼ 1� y � x� x
aþ y

f ðyÞ > 0 ð4:2Þ
for tP 0. From the monotonicity of xðtÞ and yðtÞ, we can also easily see that
lim
t!þ1

ðxðtÞ; yðtÞÞ ¼ ð0; 1Þ:
If ðx0; y0Þ 2 C2 and x0 þ y0 < 1, we see that xðtÞ þ yðtÞ < 1 for all tP 0. Furthermore, it has from y�22 < y0 6 1 that

xðtÞ strictly decreases and yðtÞ strictly increases as t increases and ðxðtÞ; yðtÞÞ 2 C2. From the monotonicity of xðtÞ
and yðtÞ, we can also easily see that ðxðtÞ; yðtÞÞ 2 C2 for all tP 0 and that limt!þ1ðxðtÞ; yðtÞÞ ¼ ð0; 1Þ.

(3) If ðx0; y0Þ 2 C3 and x0 þ y0 ¼ 1, it also has that ðxðtÞ; yðtÞÞ 2 C3 and xðtÞ þ yðtÞ ¼ 1 for all tP 0. Hence, _xðtÞ > 0 and
_yðtÞ ¼ 1� y � x� x
aþ y

f ðyÞ < 0
for tP 0. Also from the monotonicity of xðtÞ and yðtÞ, we have that limt!þ1ðxðtÞ; yðtÞÞ ¼ ð1� y�21; y
�
21Þ.

If ðx0; y0Þ 2 C3 and x0 þ y0 > 1, it has that xðtÞ þ yðtÞ > 1 for all tP 0. It follows from y�21 < y0 < y�22 that xðtÞ strictly
increases and yðtÞ strictly decreases as t increases and ðxðtÞ; yðtÞÞ 2 C3. Thus, the orbit ðxðtÞ; yðtÞÞ either stays in C3

for all tP 0 or enters into C4. Clearly, if the orbit ðxðtÞ; yðtÞÞ stays in C3 for all tP 0, it must have

limt!þ1ðxðtÞ; yðtÞÞ ¼ ð1� y�21; y
�
21Þ.

(4) If ðx0; y0Þ 2 C4 and x0 þ y0 ¼ 1, it also has that ðxðtÞ; yðtÞÞ 2 C4 and xðtÞ þ yðtÞ ¼ 1 for all tP 0. Hence, _xðtÞ < 0 and

_yðtÞ > 0 for all tP 0. We also have that limt!þ1ðxðtÞ; yðtÞÞ ¼ ð1� y�21; y
�
21Þ.

If ðx0; y0Þ 2 C4 and x0 � y0 > 1, it has from 0 < y0 6 y�22 that xðtÞ strictly decreases and yðtÞ strictly increases as t
increases and ðxðtÞ; yðtÞÞ 2 C4. Hence, it must also have that limt!þ1ðxðtÞ; yðtÞÞ ¼ ð1� y�21; y

�
21Þ.

(5) If ðx0; y0Þ 2 C5 or ðx0; y0Þ 2 C6, there exits orbit ðxðtÞ; yðtÞÞ such that it tends E0 or Eþ
21.

Now let X2 ¼ C1 [ C2 and X3 ¼ C3 [ C4, we see that the conclusion (iv) of Theorem 5 holds. This completes the proof of

Theorem 5. �
5. Discussion

In this paper, we have explored a model involving a single species feeding on a redundant substrate with the Tissiet

functional response as the specific growth rate of cells, which accounts for some natural phenomena more reasonably.

Our results show the dynamical properties depend intimately upon the value of its experimental parameters. For some

values, the continuous fermentation can succeed. We also give some numerical simulations for some fixed parameter

(see Fig. 8–14). Fig. 8–10 belong to the case (1) of Theorem 1, in the case E0 is globally asymptotically stable. Fig. 11

belongs to the first case of the case (2) of Theorem 1, in this case Eþ
1 is globally asymptotically stable.

Fig. 12 is approximate to the second of the case (2) of Theorem 1, in this case Eþ
1 attracts majority of trajectories and

theoretically E0 also attracts some Fig. 13 belongs to the case (3) of Theorem 1, in this case Eþ
3 and E0 are attractors of

some trajectories. Fig. 14 belongs to the case (4) of Theorem 1, in this case Eþ
21 and E0 are attractors of some trajectories.



Fig. 9. a ¼ 9, b ¼ 0:2, m ¼ 12, me�b � 9:82 < aþ 1 ¼ 10, me�bð1� bÞ ¼ 7:8598, �y does not exist. The only equilibrium of (2.3) is E0.

Fig. 8. a ¼ 0:9, b ¼ 0:2, m ¼ 0:2, me�b � 0:1637 < aþ 1 ¼ 1:9, me�bð1� bÞ ¼ 0:131, �y does not exist. The only equilibrium of (2.3)

is E0.

Fig. 10. a ¼ 0:9, b ¼ 0:2, m ¼ 1:2, me�b � 0:9825 < aþ 1 ¼ 1:9, me�bð1� bÞ ¼ 0:786, �y ¼ 0:445, b�y2 þ ab�y � a ¼ �0:7802. The only

equilibrium of (2.3) is E0.
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Fig. 12. a ¼ 0:9, b ¼ 2, m ¼ 14:0392, me�b � 1:9 ¼ aþ 1 ¼ 1:9, me�bð1� bÞ ¼ �1:9, �y ¼ 0:4179, b�y2 þ ab�y � a ¼ 0:2013. The equi-

libria of (2.3) are E0 and Eþ
1 � ð0:9175; 0:0825Þ.

Fig. 11. a ¼ 0:9, b ¼ 0:2, m ¼ 12, me�b � 9:82 < aþ 1 ¼ 1:9, me�bð1� bÞ ¼ 7:85, �y does not exist. The equilibria of (2.3) are E0 and

Eþ
1 � ð0:9167; 0:0833Þ.

Fig. 13. a ¼ 0:0435, b ¼ 0:2, m ¼ 1:2, me�b � 0:98 < aþ 1 ¼ 1:0435, me�bð1� bÞ ¼ 0:786, �y ¼ 0:445, b�y2 þ ab�y � a ¼ 0. The equi-

libria of (2.3) are E0 and Eþ
3 � ð0:565; 0:435Þ.
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Fig. 14. a ¼ 0:9, b ¼ 2, m ¼ 12, me�b � 1:62 < aþ 1 ¼ 1:9, me�bð1� bÞ ¼ �1:62, �y ¼ 0:4, b�y2 þ ab�y � a ¼ 0:1609. The equilibria of

(2.3) are E0 and Eþ
21 � ð0:8943; 0:1057Þ, Eþ

22 � ð0:1026; 0:8974Þ.
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On the other hand, as far as the variant yield term and growth delays due to cells cycle are concerned (see, for

example, [1,2,5,9,11] and the references therein), the model need further discussed in details.
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Appendix A

Let f ðyÞ ¼ mye�by � a� y, f ð0Þ ¼ �a, f ð1Þ ¼ me�y0 � a� 1, f 0ðyÞ ¼ me�byð1� byÞ � 1, f 0ð0Þ ¼ m� 1, f 0ð1Þ ¼
me�bð1� bÞ � 1, f 00ðyÞ ¼ mbe�byðby � 2Þ and �y be the solution of f 0ðyÞ ¼ 0. After a detailed discussion, we have

Figs. 1–5.
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