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In this paper, we investigate the question of uniform persistence for retarded
functional differential equations. By utilizing Liapunov-like functions, Razumikhin
techniques, and differential inequalities, we are able to establish criteria for uniform
persistence analogous to those obtained by others for ordinary differential equa-
tions, difference equations, and reaction—diffusion equations. We apply these
criteria to some well known biological models with delay. Our results indicate that
the conditions which guarantee the existence of an interior equilibrium are enough
to ensure uniform persistence. Moreover, these conditions are equivalent to uniform
persistence for the cases without delay as well. € 1995 Academic Press, Inc.

1. INTRODUCTION

In recent years the concept of persistence has played an important role
in mathematical ecology. Biologically, when a system of interacting species
is persistent in a suitable sense, it means that all the species survive in the
long term. Mathematically, persistence of a system means that strictly
positive solutions do not have any omega limit points on the boundary of
the nonnegative cone.

Various definitions of persistence have been developed in order to
analyze mathematical models. (Weak) persistence was considered by
Freedman and Waltman [{20] and Gard and Hallam [26], and was
defined as strong flow-invariance by Gard [25] and Fernandes and
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Zanolin [127]. Persistence was defined and discussed by Freedman and
Waltman [21, 22]. Uniform persistence was first introduced by Schuster
et al. [51]. A dissipative and uniformly persistent system was called
cooperative by Hofbauer [33], and permanent by Hofbauer and Sigmund
[35] and Hutson [37, 38]. The latter is now often used in the literature.
Even through permanence and uniform persistence are equivalent for most
purposes, Yang and Ruan [56] have shown that a uniformly persistent
system is not necessarily dissipative. The connections of various definitions
of persistence have been discussed by Butler et al. [5], and recently by
Freedman and Moson [17] who also introduced the concept of weakly
weak persistence.

Most of the applications of persistence have been to ordinary differential
equations (cf. Gard and Hallam [26], Fernandes and Zanolin [14], and
the references cited therein), and to difference equations (cf. Hutson and
Moran [39]). Dunbar er a/ [11], Hutson and Moran [40], and Cantrell
et al. [7] investigated persistence for reaction—diffusion models. Burton
and Hutson [2] obtained some very interesting results on persistence of
autonomous functional differential equations with infinite delay. Criteria
for one or more forms of persistence to hold in general dynamical systems
were given by Butler and Waltman [6], Fonda [15], Freedman et al.
[19], Garay [24], Hofbauer [34] and Hofbauer and So [36], among
others. Also, Freedman and So [18] dealt with discrete dynamical systems
and Hale and Waltman [31] developed persistence criteria for infinite-
dimensional systems. For more details and more references on this subject,
we refer the reader to the recent survey paper of Hutson and Schmitt
f41].

Recently, Freedman and Wu [23] discussed persistence in a delayed
system by using the monotone dynamical systems theory developed by
Smith [53]. By constructing suitable persistence functionals, Wang and
Ma [54] obtained uniform persistence conditions for Lotka—Volterra
predator—prey systems with a finite number of discrete delays. Their results
suggested that delays are “harmless” for uniform persistence. Similar
phenomena were observed by Zanolin [58] in delayed Kolmogorov com-
peting species systems. By utilizing the results in Hale and Waltman [31],
Cao et al. [8] studied uniform persistence for Kolmogorov-type predator—
prey and competition models with per capita net growth rates that are
dependent on time-delayed population densities. Kuang and Tang [44]
also established sufficient conditions for uniform persistence in non-
autonomous Kolmogorov-type delayed population models. See also Cao
and Gard [9], Kuang and Tang [45] and Ruan [49]. However, all
together there are very few general results on persistence in delay equations
which have a significant background in biology (cf. Cushing [10],
Gopalsamy [27], MacDonald [48], etc.).
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The methods of Liapunov-like functions and differential inequalities are
standard techniques in studying stability, flow-invariance, and the existence
of periodic solutions (cf. Fernandes and Zanolin [12,13] and the
references cited therein), and have been proposed as techniques in the
investigation of persistence (cf. see Hofbauer [33], Hutson [37], etc.). The
Razumikhin technique is an important method which is utilized in studying
the stability of functional differential equations (see Haddock and Terjéki
[28] and Hale [29]). By this technique, one only needs to choose a
Liapunov function (instead of a Liapunov functional) and to verify the
nonpositivity of the derivative function for some initial data (instead of all
initial data) under certain restrictions in order to have stability.

In the present paper, motivated by the work of Fernandes and Zanolin
[13, 147 for nonautonomous ordinary differential equations, we investigate
retarded functional differential equations. Liapunov-like functions, the
Razumikhin technique, and differential inequalities are used to derive
uniform persistence criteria for the retarded functional differential equation
(RFDE). Our uniform persistence theorems are analogous to that for
ordinary differential equations (Hofbauer [33], Hutson [37], and
Fernandes and Zanolin [14]), difference equations (Hutson and Moran
[391) and reaction-diffusion equations (Hutson and Moran [40]). Some
well known examples are analyzed to illustrate the obtained results. Our
result in the first example indicates that the conditions which guarantee
the existence of an interior equilibrium are enough to ensure uniform
persistence. In Examples 2 and 3, the criteria we obtained are equivalent to
uniform persistence for the cases without delay.

2. PRELIMINARIES

Suppose r =0 is a given real number, R=(—o0, o), C=C([ —r, 0], R")
is the Banach space of continuous functions mapping the interval [ —r, 0]
into R” with the topology of uniform convergence. For an element ¢ € C,
designate the norm of ¢ by |loll=sup_,<,<ol@@). If t,eR, A>0 and
xeC([tg—r, ty+ A], R"), then for any t€ [1,, t,+ A] let x,e C be defined
by x,(0)=x(t+8), —r<6<0. f f:RxC— R" is a given function, we
have a RFDE

x(1)=f(1, x,). (2.1)

For given (13, )€ Rx C, by x,(ty, ¢) we denote a solution of RFDE (2.1)
with initial value ¢ at 7y, ie. x, (¢, )= ¢@. We assume that solutions of
RFDE (2.1) globally exist and are unique and continuous.

Let (X, |-}|) be the metric space with pe X if 9 eC, ||| exists and
each component ¢,;{(s)20 for —r<s5<0. Then X is a subset of C which
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contains the only biologically meaningful elements. In the following we also
use d to denote || -{| sometimes.

Let N< X be closed relative to X and suppose that N is a flow-invariant
set with respect to RFDE (2.1); that is, if x,(¢,, ¢) is any (noncontinuable)
solution of (2.1) through (¢, ¢)e Rx N, then x,(t,, @)e N for all tel, =
[t,t,), where I, is the right maximal interval of existence. For given
M < N, we denote by inty M, fry, M and cl, M respectively the interior,
boundary (frontier), and closure of M relative to N.

DerNITION 2.1. Given a set M < N with inty M # ¥, we say RFDE
(2.1) is persistent relative to M if for each (z,, ¢)e Rxinty M and x,(,, @)
the solution of (2.1), we have x,(t,, ¢)einty M for each te[1t,, t,), such
that

lim inf d(x,(¢,, @), fry M)>0.

! — 1‘,
If there 1s a 6 > 0 such that

lim inf d(x,(tq, @), fry M)} >0

=1y

for any x,[(t,, @)einty M, te[t,,t,), we say system (2.1) is uniformly
persistent relative to M.

The concept of uniform persistence essentially involves two conditions:
flow-invariance of inty M and repulsivity of fry M with respect to the
solutions of (2.1) with values in int, M. Flow-invariance was studied by
Gard [25] and Fernandes and Zanolin [12, 13] (and the references cited
therein) for ODE, and by Seifert [52] for RFDE. Now we suppose that
& #Gc N is a set open relatively to N and Sc N, SnG = . We shall
find conditions for the repulsivity of S with respect to the solutions of (2.1)
lying in G. Define S"=Snfry G.

DeriNiTION 2.2. Let Z< N\G, we say Z is uniformly repelling with
respect to G if there exist an open neighbourhood ./ of Z and ¢, € [ ¢, ¢,),
such that for any solution x,(fy, ¢) of (2.1) with x,(¢y, ¢)e G for all
te [ty, t,), we have x,(ty, @)¢ o for all te [z, ¢t,). In the particular case
that Z= {u}, with u¢ G, the point u is said to be uniformly repulsive with
respect to G.

Following Fernandes and Zanolin [14], we have the following

ProposITION 2.3. If S§* is compact and each point ue S* is uni-
Jormly repulsive with respect to G, then S is uniformly repelling. If S is
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compact and uniformly repelling with respect to G, then there is 6 >0 such
that

lim inf d(x (t,, @), S} > &

=0

Jor each x,(ty, @) solution of (2.1) with x(t,, p)e G, te [ty 1)
Choosing G=inty M and S=fry, M in Proposition 2.3, we get the
following,

ProPosITION 24. Let M < N, such that inty M# Q& and fr, M is
compact. Suppose that int, M is flow-invariant with respect to the RFDE
(2.1) and each point of fr(int, M) is uniformly repulsive with respect to
int, M. Then the RFDE (2.1) is uniformly persistent.

If ¥: Rx R" — R is a continuous function, then the derivative of V along
the solutions of (2.1) is defined as

. 1
VAt 9(0)) =lim inf » [V(1+h x, 4{to, @) = V{1, 0(0)].

In the following, we suppose that 1,>0 and consider t1eJ=[1t,, b),
b< .
A special case of (2.1) is the autonomous RFDE

x=f(x,). (22)

Similarly we can define a space X for (2.2). If a map n: X' x J— X satisfies
for all ue X that
(1) m(u,0)=u,
(1) w(w(u, s), t)=n(u, t+s) for t, seJ,
(i) = is continuous,

then (m, X, J) is a semidynamical system (see Saperstone [50] and Hale
{30]). For convenience we often write n(w, t)=u,, where u is a unique
solution of (2.2). The semi-orbit through « is denoted by

y )= {ured},
and for a subset M < X,

T (M)={J y* ()
ueM
The omega limit set of « is defined to be

w(u)y= () cl | u,

520 1zs
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and for a set M < X, the omega limit set is defined as
o(M)= U wl(u).
weM

It is known that if y * («) is relatively compact, then w(u) is nonempty,
connected, compact, and invariant (see Hale [30]).

3. MAIN RESULTS

THEOREM 3.1. Assume that f:JxC— R" is completely continuous,
ueflry G, and there is an open neighbourhood X, < X of u and two continuous
functions V(t, x) and g(t, z) with V:J x R" — R locally Lipschitzian in x and
g:Jx(—cc,0)—> R such that

(i) K={yeX nfryG:limsup, - ,_, V(1 ¢(0))=0} is compact
and ue Kc X ;
(i) lim,_ ,- ¥(¢, (0)) =0 uniformly for ¢ € G and d(¢, K) - 0,
(i) limsup, ,,- , ., V(t, @(0)) <0 for all (o, y)eJx(GnX,),

(V) Vanlh eO)<glt, Vit o(0))  if  V(i+8, o(8)) < V(1, 9(0)),
Qe[ —r, 0] for all (t, p)eJx(GAX,);

(v) for every k>0, there exist n,>0 and 6> 0 such that for each
to < a<b, the problem

i=glt,z), zo)=—k (3.1)
has a maximial solution z(t) on [y, t.) with

sup z(t) < —n, and liminfz(t) < —é.

tzo =1

Then u is uniformly repulsive with respect to G.

Proof. For p>0, denote

B[K, pl={yeX:3peck |[¥y—0|<p}

Let ¢, be fixed such that 0 <¢; <4. Since K< X, is compact, there is a
po> 0 such that B[ K, p,]1< X,. Condition (ii) implies that there are §, and
p; with 1, < B, < b, 0< p, < po such that

inf{ V{1, 9(0)): € [B1. b), €GN BK, p,1} = —e,. (3.2)
Claim I. There is §, with f, < 8, <b such that

sup{V(t, 9(0)): te [B,, b), e Gnfr B[K, p,]} = —¢,<0.
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Indeed, condition (iii) implies that there is a f, such that —e,<0. If
¢,=0, then we can find a sequence (¢,, @,)e[B, b) x (G fr B[K, p,])
with ¢, — b, such that V(z,, ¢,(0)) —0. Without loss of generality, we
assume that ¢,—>yecl, GnfrB[K,p,JcclyGnX,. Since Yy ¢ K, by
condition (i), we have ¥ e€G, which contradicts condition (iii). Hence
Claim I is proved.

According to condition (v), let 5, >0 be chosen. Condition (ii) again
implies that there are f, and p with f,< fi,<b, 0< p < p, such that

inf{V(z, 9(0)):te[B1,0), e GNB[K, pl} = —&3> —n,,. (3.3)

Define of = B(K, p)={yeX:dpeK, |{ — || < p}, an open neighbour-
hood of u. Since cl &/ =B[K,p]c X is a closed set and f is completely
continuous, if 7, < b, then by the continuation of solutions (see Hale [29],
Theorem 3.2 in Chapter 2), there is ¢, >, such that x,(ty, ¢)¢ ./ for
te[t,,t,). Hence we assume ¢, =5 and set y=max{z, f;}, x(1)=
xr(to’ (P)

If x(t)¢ B[K,p,] for all te[y, b), then for t, =7y, x(¢)¢ o/ for all
te [t,, b) and we prove the theorem. Now suppose that there is 7, =y such
that x(7,)e B[K, p,].

Claim II. There is y, > 7, such that x(y,) ¢ B[K, p,].
In fact, suppose by contradiction that x(¢)e B[K, p,] for all re [y,, b),
define a function

v(t) = V(t, x(1)).

For all re [y,, b), condition (iii) implies

v(t) <0, (3.4)
inequality (3.2) implies
v(t) = —ey, (3.5)
and by condition (iv) we have
v(1) < g(t, v(1)) (3.6)

if (&)< (1) for t—T<EL L Let z(t) = z(t, y,, z°) be the maximal solution
of

2=g(t, z), z(y ) =uv(y;)

on [y,,t,) according to condition (v). Since v(y,)=z(y,,7,,z% =2
v(&)<z2(&, 7, 2°) < z2(yy, 745 (7)) = v(y,) for Ee [y, —r,7,], we have

0(y)) < g(yr, 0(y1))=2(71. 71s ZO),

505/115/1-13
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which means that at r=1y,, the derivative of v(z) —z(¢, y;, z°) is negative,
but

o(71) = 2(y1, 71, 2°) =0.
Hence, by continuity, there exists /> 0 sufficiently small such that
o(t) < z(t, 74, 2°) for y,<t<y, +1
We claim that
v(1) < z(t) forall y, <t<ut..
Suppose that there is ¢, >y, +/ such that
v(t)>z(t,9,,2%  for t=1¢,.

Let z,,(t) be any solution of
: 1 0
z=g(t,z)+;, z(y,) =2 =v(y,), m=1,2, ...

We know that the maximal solution z(z) can be expressed as (see
Lakshmikantham and Leela [46])

z{t)= lim z,(t).

Then there is a sufficiently large m > 0 such that
v(t)>z,,(t) for some t>1,.
Since z,(t) is nondecreasing and v(y,)<z,(y,), by continuity, there is

t,e[y,,1,] such that v(1,)=z,(t), v(t)<z,(1)<z,(1)=0(t;) for all
te[y,,1,], and moreover

1 1
ﬁ(tZ) > Z.m(tZ) = g(t2’ zm(’Z)) +—= g(tza U(t2))+—
m m

On the other hand, since v(#,) =1z,(1,) = z,,(y,) = v(y,), i.e. v(&) <v(t,) for
t, —r< E<t,, by condition (iv) we have

0(1,) < g(ty, v(13)),
a contradiction. Therefore

v(1)<z(4,9,,2%)=z(t) for y, <1<y,
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By (3.2) and (3.5) it follows that

lim inf z(7) =lim inf v(1) > —&, > -4,

t—t, t—1,

which contradicts condition (v). Claim II is proved.

Thus x(y,) ¢ B[K, p,] for some y,>7y,. If x(7)¢ B(K, p,) for all 1>y,
then for ¢, =7v,, x(¢t)¢.« for all t>¢, and we prove the theorem. So,
suppose there is >y, such that x{(7)e B(K, p,); define

)7=sup{te [72, [-])C(t)¢B[K, pl]}’

then y,<j<{, x(y)eGnfr B[K, p,], and x(t)e B(K, p,] for te[7, ]
Similarly, v(¢) satisfies (3.4), (3.5), (3.6), and, by Claim I, v(}) < —e¢,.
Let Z(t) be the maximal solution of

2=g(l,2), Z('?)='—82

on [7,t;) according to condition (v), then z(t)< —p,, for all 1€ [}, t;).
Again by the comparison technique used above, we have v(r) < Z(t) for
1> 7. Now by the continuity of v(7) we have 7 <. Hence v(¢) < Z(r) for all
te[7, f] and v(f) < —n %

Finally by (3.3) we get x(f) ¢ /. Since { is arbitrary we have proved that

x(t)¢ o forall 1zt =vy,.

This completes the proof. |

Remark 3.2. The assumptions in Theorem 3.1 also guarantee that the
point u is not reachable through G; that is, there is no solution of RFDE
(2.1) with p e G such that x,,(#,, ¢)=u for some t,e/l, and x,(,, ¢)eG
for all ze 14, t)).

COROLLARY 3.3. In Theorem 3.1 if
g(t, z)=—p(1) q(I2]) (3.7)

with ¢: (0, + ©) — (0, + o0) and p: J— R continuous functions such that

.o 1
jl_rpof# aGe=te (1>0) (3.8)
and
Jb p(s)ds= + o0, j.sz p(s) ds> —m = constant (3.9)
10 St

Jor all s, s5,€J with s, <s,, then the conclusion of Theorem 3.1 holds.
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Proof. Let z(1) be a maximal solution of (3.1) with (3.7) and let ¢t.<b

be such that z(t)<O0 for all te [0, t,), with ¢, maximal. From (3.7) and
(3.9), for re[o, t.) and k = |z(a)| we have

L:”Ide: j - BEAC) Jp(s)ds<m

4(©) 2D
that is,
ko 1 : [ |
— s — dé&|. .10
L 1 (&) @<= Lp(v)ds+ L q(f)dé\ (3:10)
Define
(u)~j E de.

Observe that @: R* — (— L, + o) is decreasing and

Iminf @(u)= +

n—0"
by condition (3.8), where L = _[ (1/g(&)) dé. Now the second inequality in
(3.9) implies that
D(z())y<sm+ —dE|.
(121} ‘ . = 5) 5’

Hence there is 7, =@~ '(m+ |[° (1/g(Z)) d¢]) > 0, such that
z(ty< —n, <0 forall tefo, 1) (3.11)

If 1, <b, then lim,_ ,-z(t)= —oo. If 1.=5, taking limits as 1—b" in
both sides of (3.10) and using the first equality in (3.9), we get

izl
lim —dé =+ o0,

t= b7 Yy q(é)
and by (3.11), we have L=+ oc and
lim |z(¢)| = + 0.
b

Hence assumption (v) follows. [

Suppose that ¥ can be chosen independent of 7, i€, V=V(x): R" > R,
set Vo={peX: V(p(0))=0}.
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THEOREM 3.4. Assume that f:JxC— R" is completely continuous,
fry M is a compact set, and, for each ucfr(inty M), there is a differentiable
function V: R" — R such that

(i) V(u(0))=0 for uefr, M and V(p(0)) <0 for peint, M.

Assume that there exist a continuous function g:Jx (—o0,0)— R and an
open neighbourhood X, of Vo fry(inty M), such that

(i) Vean(e(0) < g1, V(9(0))) if V(e(0))< V(9(0)), €[ —r, 0] for
all (1, p)eJx(X,ninty M);

(iii) condition (v) of Theorem 3.1 holds.
Then the RFDE (2.1) is uniformly persistent.

Proof. Define the open set G =int, M, the closed sets S=fr, M and
S*=fr, G. First we note that G is flow-invariant for the RFDE (2.1).
Indeed, by Remark 3.2, no point of S* is reachable through G. Since, for
each ue S*, the set Vynfry G< X is compact, Theorem 3.1 ensures that
each point #eS" is uniformly repulsive with respect to int, M. Thus
Proposition 2.2 implies the conclusion. |

In Theorem 3.4, we suppose that fr, M, a subset of C, is compact. Here
we introduce the following definition.

DermNiTION 3.5. A system of the RFDE (2.1) is dissipative (or equiv-
alently uniformly ultimately bounded) if for any solution x,(¢,, ¢) of (2.1)
there is a constant B such that, for any (¢,, ¢) e R x C, there is a constant
T(15, @) >0 such that |x,(ty, @) < Bfor t=z1,+ T(to, @)

Remark 3.6. The above definition of dissipativeness is equivalent to
bounded dissipativeness in Hale [30].

Suppose that x,(!,, ¢) inherits the nonnegative property; that is, if
@€ X, then any solution x(z, ¢) defined for r>0 satisfies x'(z5, ¢) =0
for 0<t<ow and i=1,2,.,n if ¢;(s)=0. Let B be defined as in
Definition 3.5, define X,={@eX: |p|<B}, and let N={y: >0,
dp e Xy, ¥ =x,{1g, ¢)}. Similar to Lemmas 3.4, 3.5 and 3.6 of Burton and
Hutson [2], we know that N is flow-invariant and is compact in the ||
norm.

Let S be a closed subset of N consisting of those ¢ such that ¢,(0)=0
for at least one j. For the sake of biological relevance, assume that RFDE
(2.1) is such that S and M = N\S are flow-invariant. Since S=fr, M is a
closed subset of compact set ¥, it is compact. Hence we have the following
result.
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THEOREM 3.7. Suppose that . Jx C— R" is completely continuous and
system (2.1) is dissipative. Let P:R"— R be a differentiable function

satisfying
(1) P(p(0))=0 for pefr, M, P(¢(0))>0 for peint, M.

Assume further that there exist a continuous function p:J— R and a
neighborhood X, of fry M such that for every pe Xsninty M and te J,

(i) Poi)(@(0))= P(@(0)) p(t) if P(x(¢)) = P(x(2)) for t—r<E<t;
(iii) §2 p(¢t)dr=+o0 and [ p(s) ds> —m for every ty<t,<t,<b.

Then the RFDE (2.1) is uniformly persitent.
Proof. Setting
V(p(0)) = — P(9(0)),
glt, z)=—p(t) |zl
then by Corollary 3.3 and Theorem 3.5 the theorem follows. |

Remark 2.8. Varieties of Theorem 3.7 have been proved by Hofbauer
[33] and Hutson [37] for autonomous ODE, by Fernades and Zanolin
[14] for nonautonomous ODE, by Hutson and Moran [39] for difference
equations, by Hutson and Moran [40] for reaction—diffusion equations,
and by Burton and Hutson [2] for autonomous equations with infinite
delay.

Remark 39. 1If f:JxC— R"is T-periodic in the time variable, then the
hypothesis on the function p(z) in Theorem 3.7 is satisfied provided that

1 T
<p>=;j0 p(s) ds > 0.

Under minor modifications, the above results hold for the autonomous
retarded functional differential equation (2.2). Especially, as in Hutson
[37], Burton and Hutson [2], and Fonda [15], the differential
inequalities in Theorems 3.1 and 3.4 only need to hold in w(x) and in the
omega limit set of u€ S, and in Theorem 3.7 assumption (ii) only needs to
be true for ¢ € w(S), the omega limit set of the boundary S. In fact, we
have the following.

TaeorReM 3.10. Suppose that f: C — R" is completely continuous and
system (2.2) is dissipative. Let P:R"— R be a differentiable function

satisfying
(i) P(p(0))=0 for pe S, P(p(0))>0 for peinty M.
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Assume further that there exists a continuous function p:J — R such that for
every @ € w(S)

(ii) Pra2y(@(0)) = P(9(0)) p(1) if P(x(¢))> P(x(1)) for t—r<E<;
(iii) |2 p(t)di=+o0 and {}? p(s) ds> —m for every to<t, <t,<b.
Then RFDE (2.2) is uniformly persistent.

Remark 3.11. As in the classical Razumikhin-type theorems in stability
theory (see Hale [29] and Haddock and Terjéki [28]), we do not require
that the differential inequalities in the above persistence theorems hold for
all initial values, but for some initial values under the restriction
P(x(&))= P(x(t)) for t —r < &< t. This kind of condition is usually called
Razumikhin condition (see Haddock and Terjéki [28]).

If P(-) is a Liapunov-like functional, as in Burton and Hutson [2], we

have the folowing.

THEOREM 3.12. Suppose that f:C— R" is completely continuous and
system (2.2) is dissipative. Let P:C— R be a differentiable functional

satisfying
(1) P(e(0))=0 for pe S, P(p(0))>0 for peint, M,
(i) W(u)= P(u)/P(u) >0 for ue w(S).

Then the autonomous RFDE(2.2) is uniformly persistent.

4. APPLICATIONS

1. Consider the predator—prey model with delay proposed by Leung
[47] (see also Kuang [42])

%= x(t)[a—bx(1) — cy(1)]
y=ay()x(t—1)— B,

(4.1)
where 4, b, ¢, o, B, and 7 are positive constants. The initial population sizes
are provided in the form

x(s)=0(s)20, se[—1,0], y(0)=y,=0.

It is known that if
a—bf>0 (4.2)
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then system (4.1) has a unique equilibrium E* = (x*, y*) where

._ *=a—bﬁ
x*=8 vy P

In [46], Leung showed that, under (4.2) and other conditions, there exist
periodic solutions, hence coexistence could occur. We shall see that actually
(4.2) implies uniform persistence of system (4.1).

Let

x(1)=X(t) + x*, yy=Y(t)+y*
System (4.1) can be transformed into

X=X(t)+x¥)[-bX(t)—cY(1)]

. (4.3)
Y=o Y(¢)+ y*) X(t—1)
Choose a Liapunov function as follows
V(X(2), Y(£))=X(t)—x*In (1 +X—(:)) +i[ Y(¢)— y*In (1 +X-(;t~)):,,
x* ) aq y

where ¢ > 1 is a given constant. If X(¢)= Y(z)=0, then V=0, and V is
positive definite for bounded X(z)> B, Y(¢)> (a —bf)/c. We have

y X . Yi
Vs X0, Y0) =i K

= —bX*(1) - cX(1) Y(2) +§X(t— 7) Y(1)

< —=bX1)

if (X(r—t)<qlX(2)] and (X() =8, | Y(£)| =(a—bB)/c (see Hale [29,
Chapter 5]). Thus by the classical Liapunov—Razumikhin theorem for
boundedness (see Hale [29], Theorem 4.3 in Chapter 5), system (4.3} and
hence system (4.1) is dissipative.

THEOREM 4.1. If (4.2) holds, then system (4.1) is uniformly persistent.

Proof. System (4.1) has two boundary equilibria, E,=(0,0) and
E,=(a/b,0). For (x, y)ew(S), the omega limit set of the boundary S, if
y=0, from the first equation of (4.1) it follows that n(x, t) = x, — (a/b) as
t— 0. If x(0)=0 then n(x, t)=0 and n(y, t)=y,—> 0 as t = o0. Thus the
omega limit set of S is the union of E,= (0, 0) and E, = (a/b, 0).
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Now choose P(x, y)=x*y*, where o, and «, are positive undetermined
constants. Defining

p(t)=a[a—bx(t) —cp(t)] + ara[x(1) — B],

we have

P(x, y)=P(x, y) - {o,[a—bx(t)—cy(t)] + o[ x(t — 1) — B])}
= P(x, y) p(1)

if x(&) = x(¢) for t —1 <& < t. The choice «, =1 ensures that p(r) >0 at E,.
If (4.2) holds, the second term in p(z) is positive at E,. Hence there is
always a choice of x, to ensure p(f)>0. The result follows from
Theorem 3.10. |

2. For the Lotka-Volterra competition model with delay

X=x(t)(ri—ax(t—1)=b,y(t—1)) (4.4)
()= y(2)(ry— a, x(t— 1)~ by y(t — 1)) '

under initial conditions
x(s)=¢,(s) =0, se[—1,0], ®»,(0)>0
y(s)=@,(s) =0, se[~1,0], ©2(0)>0,

where r;, a,, b; (i=1, 2) and t are positive constants, both ¢,(s) and ¢,(s)
are continuous on [ —1,0]. System (4.4) has three boundary equilibria
E,=(0,0), E,=(r,/a,,0) and E, = (0, r,/b,).

THEOREM 4.2. If

raa; —r a,>0, (4.5)

ryby,—ryb >0, (4.6)

then system (4.4) is uniformly persistent.

Proof. 1t is not difficult to prove that system (4.3) is dissipative. Now
for ue w(S), if 4,(0)=0, then n(u,, 1)=0 and n(u,, t) >r, /b, as t - 0. If
u,(0)=0, then n(u,, t)=0 and n(u,, t) - r,/a, as t » co. Thus the omega
limit set of S is the union of E,, E, and E,.

Choosing P(u)=uf'u3}, where w=(u;,u,), 2, and «, are positive
undetermined constants, we have

P(u)
W(u) =P_(u_)= a [ry—ayuy(0) — b uy(0)] + ay[r; —ayu (0) — bruy(0) ]
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For any positive «, and a«,, ¥ is always positive at E,. If (4.5) holds, the
second term of Y is positive at E|; if (4.6) holds the first term of { is
positive at E,, hence we can choose o, and «, to ensure ¥ >0. By
Theorem 3.12, system (4.4) is uniformly persistent. |

Remark 4.3 It is well known that (4.5) and (4.6) are persistence condi-
tions for system (4.4) without delay (see Hallam [32]). Recently, Cao,
et al. [8] showed that

rya;—riae" >0, (4.7)

rlbz—r2b19r21>0 (48)
are sufficient for uniform persistence in system (4.4). Obviously (4.5) and
(4.6) are sharper than (4.7) and (4.8).

3. Now consider the following delayed Gause-type predator-prey
model with Michaelis—Menten functional response

b
x=x(t) Iiy —ax(1) _ﬁyc(%)}

dx(r—1) ]
L+ex(t—1) )

(4.9)
y‘=y(t)[—v+

where a, b, y, v, and 1 are positive constants, x(t)=¢(t)=0 on [—1,0],
y(0)=y,=0. Zhao er al. [59] showed that system (4.9) is dissipative and
has a Hopf bifurcation under certain restrictions on the parameters. Here
we have the following result.

THEOREM 4.4 If
dy
a+cy

>, (4.10)

then system (4.9) is uniformly persistent.

Proof. Similar to the proof of Theorem 4.1, we know that the omega
limit set of the boundary S=fr, M is the union of the boudary equilibria
E,=(0,0) and E, = (y/a, 0). We choose P(x(t), y(t})=x(t)*' y(¢)*, where
o, and o, are undetermined positive constants, then

: b

dx(t—1)
+a2<—-v+ 1 +cx(t—r)>]

= P(x(1), y(1)) p(t)
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if x(&)=x(2) for t—1<E<1, where

by )

The choice o, =1 ensures that p(t) is positive at E,. If (4.10) holds, the
second term of p(¢) is positive at £,. Hence there is always a choice of o,
such that p(¢) > 0. The result again follows from Theorem 3.10. |

Note that condition (4.10) is equivalent to the uniform persistent
criterion for system (4.9) without delay; that is the delay in system (4.9) is
also “harmless” for uniform persistence.

5. DISCUSSION

By using Liapunov-like functions, Razumikhin technique, and differen-
tial inequalities, we have obtained criteria for the uniform persistence of
retarded functional differential equations. These criteria are quite general
in their applicability to ecological systems. The conditions for uniform
persistence do not require any special assumptions on the interaction terms
and the conclusions are very precise in specific cases.

The examples described in Section 4 show that for some models uniform
persistence criteria are exactly the conditions used previously to establish
the existence of an interior equilibrium. Similar results were obtained by
Cantrell et al. [7] for reaction—diffusion systems. It is well known (see
Butler et al. {5] and Hutson [38]) that uniform persistence actually implies
the presence of an interior equilibrium. Generaily, however, possessing an
interior equilibrium is neither necessary nor sufficient for persistence. We
see that in a rather wide range of problems the conditions which guarantee
the existence of an interior equilibrium are in fact enough to ensure
uniform persistence.

For the Lotka-Volterra competition model with delay and the delayed
Gause-type predator—prey model, our results indicate that the criteria for
uniform persistence in the delay models are equivalent to criteria for
uniform persistence in the ODE cases. Hence, as shown by Wang and Ma
[521, the delay is “harmless” for uniform persistence.
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