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ABSTRACT.We consider the second order matrix differential systems 
(1) (P(t)Y1)'+ Q(t)Y = 0 and (2) Y" + Q(t)Y = 0 where Y, P , and Q 
are n x n real continuous matrix functions with P(t) , Q(t) symmetric and 
P(t) positive definite for t E [to, cc) (P(t)  > 0 ,  t > to) . We establish suf- 
ficient conditions in order that all prepared solutions Y(t) of (1) and (2) are 
oscillatory. The results obtained can be regarded as generalizing well-known 
results of Kamenev in the scalar case. 

Consider the second order linear differential system 

where t > to and Y ( t ), P ( t ), and Q ( t )  are n x n real continuous matrix 
functions with P ( t ), Q ( t )  symmetric and P ( t )  positive definite for t E [ t o ,m) 
( P ( t )> 0 ,  t  2 to ). When P ( t )- I for t 2 to where I is the n x n identity 
matrix, we consider 

A solution Y ( t )  of ( 1 . 1 )  (or (1.2)) is said to be nontrivial if det Y ( t )# 0 for 
at least one t E [ t o ,  co) and a nontrivial solution Y ( t )  of (1.1) is said to be 
prepared if 

where for any matrix A ,  the transpose of A is denoted by A * .  System ( 1 . 1 )  
is said to be oscillatory on [ t o ,  co) in case the determinant of every nontrivial 
prepared solution vanishes on [ T :co) for each T > to. 

For the corresponding scalar equation of system (1.2), 
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the most important simple oscillation criterion is the well-known Fite-Wintner 
theorem which states that if q ( t )E C [ t o ,m)  and satisfies 

then equation (1.4) is oscillatory. In fact Fite [8]assumed in addition that q ( t )  
is nonnegative, while Wintner [19]proved a stronger result which required a 
weaker condition involving the integral average, i.e., 

q(s )  d s d t  = m. 

In a different direction, Hartman [9]showed that (1.4) is oscillatory in case 

Another type of criterion was given by Kamenev [12]who showed that if for 
some positive integer m > 2 ,  

then equation ( 1.4) is oscillatory. 
For matrix systems ( 1 . 1 )  and (1.21, many authors, cf. Allegretto and Erbe 

[ 1 ] ,  Etgen and Lewis [7],Hartman [ l o ] ,Hinton and Lewis [ I l l ,Tomastik [17] 
and Walters [18],etc., have obtained that ( 1 . 1 )  (or (1.2)) is oscillatory if a 
corresponding scalar equation obtained by applying a positive linear functional 
is oscillatory. Other recent oscillation criteria for ( 1 . 1 )  and (1.2) have involved 
conditions on the eigenvalues of P ( t )  and Q ( t )  or their integrals. 

It was conjectured by Hinton and Lewis [ l 1 1  that equation (1.2)is oscillatory 
if 

(1.9) t-03 ds]  =lim il[lot~ ( s )  m 

where ,I1( A )  2 & ( A )  2 . . , > ,In(A) denotes the usual ordering of the eigen- 
values of the symmetric matrix A . This conjecture was settled with additional 
assumptions on the rate of growth of the trace of J: Q(s)ds by Mingarelli [15], 
Kwong et al. [14],and Butler and Erbe [3, 41. The conjecture was finally settled 
in the case n = 2 by Kwong and Kaper [13]and for arbitrary n by Byers, 
Harris, and Kwong [6]. 

Recently, Butler, Erbe, and Mingarelli [5]gave additional criteria for oscil- 
lation of (1.2) based on Riccati techniques and variational principles. These 
criteria extended the scalar criteria (1.6) and (1.7). In this paper, using Ric- 
cati techniques we establish oscillation criteria for system ( 1 . 1 )  and extend the 
Kamenev type criterion (1.8) to the matrix equation (1.2). 

Theorem 1. Let H ( t ,  s )  and h( t  ,s )  be continuous on D = { ( t, s )  : t 2 s > t o )  
such that H ( t ,  t )  = 0  for t  2 to and H ( t ,  s )  > 0  for t  > s 2 t o .  We 
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assume further that the partial derivative ( t, s )  - H s ( t ,  s )  is nonpositive and 
is continuous for t 2 s > t o ,  and h ( t ,  s )  is dejined by 

H s ( t ,  s )  = -h ( t ,  s ) [ H ( t ,  s)] ' I2 for aII ( t ,  s )  E D. 

Finally, assume that 

1
il[lot 1 I(2.1) limsup ( x ( t . s )Q(s )- - h 2 ( t ,  s )P(s )  d s  = CO. 

t+w H ( t , to) 4 

Then system (1.1) is oscillatory. 

Proof. Suppose to the contrary that there exists a prepared solution Y ( t )  of 

( 1 . 1 )  which is not oscillatory. Without loss of generality, we may suppose that 
det Y ( t )# 0 for t > to . Define V ( t )= Y 1 ( t )~ ( t )  Y - ' ( t )  . We obtain the Riccati 
equation 

(2.2) Q ( t )= - V 1 ( t )- v ( t , ~ - ' ( t ) v ( t ) ,  t 2 to. 
Multiplying (2.2),with t replaced by s , by H ( t , s )  and integrating from to 
to t ,we obtain 

t 

H ( t , s )V(S)P- ' ( s )  V ( s )  ds. 

Since P ( t )> 0,let R ( t )= [P-' ( t ) ] ' I2. We have 

lot= H ( t , to) V( t0)  - h( t , s ) [ H ( t, s)]'12R-I( s ) [ R ( s ) v ( s ) R ( s ) ] R - I  ( s )  d s  

Hence we have 

It follows that 
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Since h ( t, to)> 0 for t > s 2 to,  dividing (2.4)by H ( t  , to)  we get 

Taking the upper limit in both sides of (2.5)as t + m , the right-hand side is al-
ways bounded, which contradicts condition (2.l ) .  This completes the proof. 

Under a modification of the hypotheses of Theorem 1 ,  we can obtain the 
following result. 

Theorem 2. In Theorem 1, ifcondition (2.1) is replaced by the conditions 

and 

lim sup 
1 

h 2 ( t ,s )P(s )d s  < ccI 
lim sup 11 [ l o t ~ ( t ,S ) Q ( ~ )ds  = m ,  

t-m H ( t ,  to) I 
then system ( 1 . 1 )  is oscillatory. 

Let P ( t )  = diag(pl( t ),p2( t ), ... ,pn ( t ) )  where pi(t)  is continuous and pos-
itive for t 2 to,  i = 1 ,  2 ,  .. . , n .  Let p ( t )  = maxll i ln{pi( t)} .  

Theorem 3. In Theorem 2, ifcondition (2.6) is replaced by 

lim sup 
t i o o  H ( t  , to) 

then system (1.1) is oscillatory provided (2.7) holds. 

If P ( t )e I for t 2 to,  we have the following result. 

Theorem 4. Let H and h be as in Theorem 1 .  Assume that 

lim sup 
1 

t-m H ( t  7 to) loth 2 ( t ,S )  d s  < m 

and (2.7)holds. Then system (1.2) is oscillatory 

Choosing different functions H ( t  , s )  and h ( t,s )  in Theorems 1 ,  2, 3, and 
4, we can obtain various oscillation criteria for systems ( 1 . 1 )  and (1.2). 

First, let us consider the function H defined by 

where m is an integer with m > 2 .  Then H ( t  , t )  = 0 ,  H ( t ,  s )  > 0 for 
t > s 2 to , and H,(t ,  s )  = - ( m  - l ) ( t- s)rn-2 is nonpositive and continuous 
for t 2 s 2 to. Then 

h ( t ,  s )  = ( m  - l ) ( t- s ) ( " - ~ ) / ~, t 2 s 2 t o .  

Hence, by Theorem 4, we obtain 
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Theorem 5. Let m > 2 be an integer. Assume that 

lim sup -I 
1 

[ t - s)m-1 Q ( S )  dsI = m .  
t+m 

Then system (1.2) is oscillatory. 
Remark 1 .  If Q ( t )  = q ( t ), a scalar function, then system (1.2) becomes the 
scalar equation (1.41,and the oscillation criterion (2.11)becomes the Kamenev 
criterion (1.8). It is well known that the weaker condition 

is not a sufficient condition for oscillation of the scalar equation (1.41, and 
consequently, the condition (cf. [5] )  

lirn sup I l  [lotQ(s)  ds] = cc 
t i m  

is not a sufficient condition for oscillation of the matrix system (1.2). Our 
Theorem 5 extends the Kamenev type criterion (1.8)to the matrix system (1.2). 

Next, consider the function 

(2.14) H ( t , s ) =  [ln-: I m - '  , t 2 s L t o .  

Then 

By Theorem 4, we have 

Theorem 6. Let m > 2 be an integer. Assume that 

(2.15) limt+msup (In tIm-l I [/'(ln i ) " 'Q(s )  ds]  = cc. 

Theiz system ( 1.2) is oscillatory. 

Now, let H ( t ,  s )  r p(t - s )  where p(u) is a continuously differentiable 
function on [ 0 ,  co) , p(0) = 0 ,  p(u) > 0 ,  p f (u )  2 0 for u > 0 .  Then 

By Theorem 4 we have the following results. 

Theorem 7. Assume that there exists a continuously diflerentiable function p(u) 
on 10, m), p(0) = 0, p(u) > 0 ,  and p f (u )  2 0 for u > 0 such that 

1'[ P ' ( ~-s?12 d s  <lim sup -
t+m ~ ( t ?  ~ ( ts )0 -

and 

Then system (1.2) is oscillatory. 
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Remark 2. Theorem 7 extends Corollary 9 of Kwong and Kaper [13], where 
system (1.2) with n = 2 is considered. By Theorem 1, we can also establish a 
similar result which extends Theorem 8 of [13]. 

Remark 3. More general Kamenev type criteria in Philos [16] and Yan [20] can 
be extended to matrix system (1.2) similarly. 
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