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Abstract

Infections caused by antibiotic-resistant pathogens are a global public health problem. Numerous individual- and population-level

factors contribute to the emergence and spread of these pathogens. An individual-based model (IBM), formulated as a system of

stochastically determined events, was developed to describe the complexities of the transmission dynamics of antibiotic-resistant bacteria.

To simplify the interpretation and application of the model’s conclusions, a corresponding deterministic model was created, which

describes the average behavior of the IBM over a large number of simulations. The integration of these two model systems provides a

quantitative analysis of the emergence and spread of antibiotic-resistant bacteria, and demonstrates that early initiation of treatment and

minimization of its duration mitigates antibiotic resistance epidemics in hospitals.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Approximately 5–10% of patients admitted to a hospital
will develop an infection directly related to their hospita-
lization. These infections contribute to over 90,000 deaths
per year in the United States. It is estimated that 70% of
the causative pathogens are resistant to one or more
antimicrobials (Burke, 2003). Compared to infections
caused by susceptible strains, infections caused by resistant
strains increase the risk of death, require treatment with
more toxic and costly antibiotics, and prolong hospitaliza-
tions (Holmegerg et al., 1987).

Epidemics caused by antimicrobial-resistant bacteria,
such as methicillin-resistant Staphylococcus aureus and
vancomycin-resistant enterococci, in hospitals are increas-
ing throughout the world (Holmegerg et al., 1987; Bonten
et al., 2001; Farr et al., 2001; Grundmann et al., 2006;

Hiramatsu, 2001). This world-wide crisis is the result of an
incomplete understanding of the transmission dynamics of
antimicrobial-resistant bacteria which are complex and
necessitate the integration of a large number of dynamic
and interdependent characteristics of patients, healthcare
workers (HCW) and their interactions. Antibiotic expo-
sure, central to the emergence and spread of these resistant
bacteria, also needs to be incorporated to fully understand
the factors propagating the epidemic of antimicrobial-
resistant bacteria.
Population-level analyses, using mathematical modeling,

have been instrumental in defining the transmission
dynamics of these resistant bacteria (Austin et al., 1999;
Bonhoeffer et al., 1997; Bootsma et al., 2006; Cooper et al.,
1999; D’Agata et al., 2002, 2005, 2006; Grundmann and
Hellriegel, 2006; Lipsitch et al., 2000; Smith et al., 2004;
Temime et al., 2003; Webb et al., 2005). Most of these
studies have used differential equations models (DEM)
(Grundmann and Hellriegel, 2006), which aggregate
patient and HCW populations into compartments such
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as colonized or uncolonized patients and contaminated or
uncontaminated HCW. DEM assume compartment homo-
geneity and deterministic interactions, in contradiction to
the stochastic transmission dynamics occurring during
patient–HCW interactions (Koopman et al., 2002). In-
dividual-based models (IBM), in contrast, view patients
and HCW as individual agents, and can therefore simulate
the heterogeneity of patient and HCW behavior. IBM have
been used extensively in the last decade to study various
biological problems (DeAngelis and Mooij, 2005), includ-
ing the spread of infectious agents (Hotchkiss et al., 2005).
The increase in behavioral detail provided by IBM,
however, leads to much greater computational intensity
and much greater difficulty in analyzing the significance of
parameters.

We developed an IBM to identify the key parameters
contributing to the spread of a typical antimicrobial-
resistant bacteria in a typical hospital setting. A corre-
sponding DEM was also developed to interpret the IBM.
The IBM and DEM are complimentary representations of
the same system at two different levels of abstraction. The
IBM can be viewed as a virtual representation of a specific
hospital setting. The DEM can be viewed as an aggregate
representation of disparate hospital settings. The effects of
key parameters in the DEM, obtained from IBM simula-
tions, are incorporated into a single parameter-dependent
formula called R0, defined as the average number of
secondary cases generated by one infectious patient. If
R0o1 then the epidemic extinguishes and if R041 then the
epidemic becomes endemic. The model employs two
population levels: (1) at the bacteria level, non-resistant
and resistant strains are generated by patients infected with
these strains; and (2) at the patient level, susceptible
patients are infected by infected patients through contacts
with contaminated HCW. Since selective antibiotic pres-
sure is instrumental in the emergence and spread of
resistant strains, we specifically analyze the role of
antimicrobial therapy, including the scheduling of treat-
ment initiation and its duration.

2. The IBM

In the IBM (see the computer code for the IBM at http://
awal.univ-lehavre.fr/magal/) we consider three processes:
(1) the admission and exit of patients; (2) the infection of
patients by HCW; and (3) the contamination of HCW by
patients. These processes occur in the hospital over a
period of months or years as the epidemic evolves day by
day. Each day is decomposed into three shifts of 8 h for the
HCW. Each HCW begins a shift uncontaminated, but may
become contaminated during a shift. During the shift we
use a time step Dt to delimit the stochastic processes
occurring during the shift for each patient and each
HCW. Individual patients are classified as uninfected
ðUÞ, infected only by the non-resistant strain ðNÞ, or
infected by the resistant strain ðRÞ. The bacterial load of

infected patients during antibiotic treatment is monitored
in order to describe the influence of treatment on the
infectiousness of patients. At the individual patient
level the bacterial load is decomposed into two classes:
(1) bacteria ðNÞ which are non-resistant to the antibiotic
treatment; and (2) bacteria ðRÞ which are resistant to the
antibiotic treatment.
In Fig. 1 we illustrate the infection and contamination

processes for a HCW visiting four patients during one shift.
The HCW begins the shift uncontaminated and starts the
shift by visiting patient 1. During the first visit the HCW
becomes contaminated by non-resistant bacteria and then
visits patient 4. During the second visit patient 4 is infected
by non-resistant bacteria carried by the HCW. The visits
continue until the end of the shift with the infection and
contamination events determined probabilistically. From
Fig. 1, one can see that the length of visit is stochastic. We
assume that the length of visit follows an exponential law
with average length of visit AV . We assume during the visit
that the HCW may be contaminated or uncontaminated.
The time of contamination of a HCW follows an
exponential law with average length of contamination
AC . The index of the patient visited is chosen randomly
(within the patients free of HCW). The contamination of
the HCW by an infected patient happens with probability
PC per visit and the infection of a patient by a
contaminated HCW happens with probability PI per visit.
The baseline values of the parameters for the IBM are
summarized in Table 1.
In Table 1 the average time of visit AV is taken to be

85min in order to illustrate a hospital endemic state of
patients infected by the resistant strain at approximately
10% (see Fig. 5). The parameter AV plays an important
role in the IBM, since it regulates the number of visits
(hence contacts) during a shift. Indeed, when AV increases
the average number of visits decreases, the HCW spend
more time during and between visits, and thus have contact
with fewer patients.
HCW are divided into four classes: uncontaminated
ðHU Þ, contaminated only with non-resistant bacteria ðHN Þ,
contaminated with both non-resistant and resistant bacter-
ia ðHNRÞ, and contaminated only with resistant bacteria
ðHRÞ (Fig. 2, top panel). The fluxes from HN ;HNR;HR,
into HU occur as HCW revert to the uncontaminated state.
The other fluxes arise as HCW have contact with infected
patients. Patients are divided into five classes: uninfected
patients ðPU Þ, patients infected only by the non-resistant
strain ðPN Þ, and three classes of patients infected by
resistant bacteria ðPRSÞ, ðPNRÞ, and ðPRRÞ (Fig. 2, bottom
panel). PRS consists of super-infected patients, that is,
patients who were in class PN and later become infected
with resistant bacteria. PRR consists of patients who were
uninfected and then became infected only by resistant
bacteria. PNR consists of patients who were uninfected and
then became infected with both non-resistant and resistant
bacteria. Since resistant bacteria may revert to the non-
resistant strain by loss of the plasmids that confer
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resistance (Webb et al., 2005), patients infected only by the
resistant strain will eventually harbor the non-resistant
strain.

Previously, we developed a model describing the evolu-
tion of the bacterial load in individual patients undergoing
treatment (D’Agata et al., 2006; Webb et al., 2005). We
used this work here to monitor the infectiousness of

infected patients. We assumed a total body inoculation
dose for infected patients of both non-resistant and
resistant bacteria to be between 106 and 107 (Sorenberg et
al., 2001). For the class of super-infected patients PRS,
however, the load of non-resistant bacteria is much larger
at inoculation of resistant bacteria than for the classes PRR

and PNR. We assumed for a representative case that in the
absence of treatment the non-resistant strain
ðintrinsic doubling time ¼ 2 hÞ has a selective advantage
over the resistant strain ðintrinsic doubling time ¼ 6 hÞ, but
during treatment the non-resistant strain is reduced to a
very low level. We assumed that a patient is infectious
when the total body bacterial load is greater than a
threshold TH ¼ 1011. In Fig. 3 we represent the inoculation
doses, bacterial loads, and the infectiousness periods for
each type ðN;NR;RÞ of infected patient undergoing
treatment.
We summarize the elements of the IBM: (i) each HCW

begins the first visit of the shift uncontaminated and
subsequent patient visits are randomly chosen; (ii) at the
end of a visit a HCW becomes contaminated from an
infectious patient with probability PC and a patient
becomes infected from a contaminated HCW with prob-
ability PI ; (iii) the bacterial load of an infected patient is
dependent on treatment scheduling and infected patients

ARTICLE IN PRESS

Table 1

List of baseline parameters of the IBM

Symbol Interpretation Value Units

NBP Number of patients 400*

NBH Number of HCW 100*

AU Average length of stay for U patients 5* days

AN Average length of stay for N patients 14* days

AR Average length of stay for R patients 28* days

AV Average time of visits 0.06 (85min) days

PC Probability of contamination per visit 0.4**

PI Probability of infection per visit 0.06**

AC Average time of contamination 0.042* (60min) days

The values with � correspond to the values estimated for the Beth Israel

Deaconess Medical Center (D’Agata et al., 2005). The values with ��

correspond to estimated values (Austin et al., 1999).

Fig. 1. Patient–HCW contact diagram for four patients and one HCW during one shift. Patient status: uninfected (green), infected with the non-resistant

strain (yellow), infected with the resistant strain (red). HCW status: uncontaminated (______ ), contaminated with the non-resistant strain (yyy),

contaminated with the resistant strain (- - - - - ).

E.M.C. D’Agata et al. / Journal of Theoretical Biology 249 (2007) 487–499 489
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are infectious to a HCW when their bacterial load is above
a threshold TH ; (iv) each time step Dt a contaminated
HCW exits contamination with probability 1�
expð�Dt=ACÞ and exits a visit with probability
1� expð�Dt=AV Þ; (v) each time step Dt a patient of type
L exits the hospital with probability 1� expð�Dt=ALÞ,
where L ¼ U ;N ;R. The number of patients in the hospital

is assumed constant, so that a patient leaving the hospital is
immediately replaced by a new patient in class ðUÞ.

3. Simulation of the IBM

We simulate the IBM to illustrate the effects of changing
the start day of treatment and the duration of the treatment

ARTICLE IN PRESS

Fig. 2. Flux diagram for HCW (top) and patients (bottom).

Fig. 3. Infectiousness periods when the antibiotic treatment starts on day 3 and stops on day 21 (inoculation occurs on day 0). The blue and red curves

represent, respectively, the bacterial load of resistant and non-resistant bacteria during the period of infection. The green horizontal lines represent the

threshold of infectiousness TH ¼ 1011. The green bars represent the treatment period. The yellow, red, and orange bars represent the periods of

infectiousness for the non-resistant, resistant, and both non-resistant and resistant classes, respectively.
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period on the development of the epidemic. From the two
IBM simulations in Fig. 4 we see that when treatment
starts earlier and has a shorter period, both non-resistant
and resistant strains are eliminated. Earlier initiation
of treatment reduces the non-resistant bacterial load
and shorter treatment intervals reduce the time that
patients infected by the resistant strain are infectious for
this strain.

4. The DEM

We describe a DEM that corresponds to the average
behavior of the IBM over a large number of simulations
(a derivation of the DEM is given in Appendix A).
We denote by PU ðtÞ (respectively PN ðtÞ and PRðtÞÞ the
fraction of patients in the class ðUÞ (respectively ðNÞ and
ðRÞ). To describe the infectiousness status of patients, we
use the age of infection a, which represents the time already
spent in the class of infected patients ðNÞ, ðRSÞ, ðRRÞ, or
ðNRÞ. For K ¼ N;RS;RR;NR, we denote by pK ðt; aÞ the
density of the fraction of patients with infectiousness status
ðKÞ and with infection-age a at time t. Thus, for K ¼

N;RS;RR;NR

PK ðtÞ ¼

Z þ1
0

pK ðt; aÞda.

The equations of the DEM are the following (see
Tables 1–3 for an explanation of the parameters and
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Table 2

List of parameters in the DEM

Symbol Interpretation

bV ¼ NBH=NBP Probability for a patient to be visited by a HCW

nV ¼ 1=AV Rate at which a HCW exits a visit

nC ¼ 1=AC Rate at which a HCW becomes uncontaminated

nN ¼ 1=AN Rate at which a class N patient exits the hospital

nR ¼ 1=AR Rate at which a class R patient exits the hospital

Fig. 4. Simulation of the IBM over 1 year, when (left) treatment starts on day 3 and stops on day 21, and (right) treatment starts on day 1 and stops on

day 8. In the former case the resistant strain becomes endemic and in the latter case both strains are eliminated. All parameters have baseline values as in

Table 1.

Table 3

State variables of the DEM

Symbol Interpretation

HU ðtÞ Fraction of HCW uncontaminated

HN ðtÞ Fraction of HCW contaminated only by the non-resistant

strain

HNRðtÞ Fraction of HCW contaminated by both the resistant and the

non-resistant strains

HRðtÞ Fraction of HCW contaminated only by the resistant strain

PU ðtÞ Fraction of patients uninfected

PN ðtÞ Fraction of patients infected only by the non-resistant strain

PRSðtÞ Fraction of patients infected first by the non-resistant strain

and then by the resistant strain

PNRðtÞ Fraction of patients infected by both the resistant and the

non-resistant strain

PRRðtÞ Fraction of patients infected only by the resistant strain

pK ðt; aÞ Infection age density of the fraction of infected patients of

class K ¼ N;RS;RR;NR

PI
K ðtÞ Fraction of patients infectious at time t with the strain

K ¼ N;NR;R

E.M.C. D’Agata et al. / Journal of Theoretical Biology 249 (2007) 487–499 491
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variables):

dPU ðtÞ

dt
¼ ðnNPNðtÞ þ nRPRðtÞÞ � nVbV PI ðHNðtÞ

þHNRðtÞ þHRðtÞÞP
U ðtÞ;

q
qt

pN þ
q
qa

pN

� �
ðt; aÞ ¼ �ðnN þ nVbV PI ðHRðtÞ

þHNRðtÞÞÞp
Nðt; aÞ;

pN ðt; 0Þ ¼ nVbV PI HNðtÞP
U ðtÞ;

q
qt

pRS þ
q
qa

pRS

� �
ðt; aÞ ¼ �nRpRSðt; aÞ;

pRSðt; 0Þ ¼ nVbV PI ðHRðtÞ þHNRðtÞÞP
NðtÞ;

q
qt

pRR þ
q
qa

pRR

� �
ðt; aÞ ¼ �nRpRRðt; aÞ;

pRRðt; 0Þ ¼ nVbV PI HRðtÞP
U ðtÞ;

q
qt

pNR þ
q
qa

pNR

� �
ðt; aÞ ¼ �nRpNRðt; aÞ;

pNRðt; 0Þ ¼ nVbV PI HNRðtÞP
U ðtÞ;

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

(1)

where ðHU ðtÞ;HNðtÞ;HNRðtÞ;HRðtÞÞ is the unique non-
negative solution of the following system of equations:

0 ¼ �nV PC ½P
I
NðtÞ þ PI

NRðtÞ þ PI
RðtÞ�HU ðtÞ þ nC ½HN ðtÞ

þHNRðtÞ þHRðtÞ�;

0 ¼ nV PCPI
NðtÞHU ðtÞ � nV PC ½P

I
NRðtÞ þ PI

RðtÞ�HN ðtÞ

�nCHNðtÞ;

0 ¼ nV PC ½P
I
NRðtÞ þ PI

RðtÞ�HN ðtÞ þ nV PCPI
NRðtÞHU ðtÞ

þnV PC ½P
I
NðtÞ þ PI

NRðtÞ�HRðtÞ � nCHNRðtÞ;

0 ¼ �nV PC ½P
I
NðtÞ þ PI

NRðtÞ�HRðtÞ þ nV PCPI
RðtÞHU ðtÞ

�nCHRðtÞ;

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

(2)

with the constraint HU ðtÞ þHN ðtÞ þHNRðtÞ þHRðtÞ ¼ 1:
Formula (2) is motivated by a singular perturbation
technique applied to the differential equations in Appendix
A.3. The idea is that the time scale of the HCW is much
smaller than the time scale for the evolution of the
epidemic at the patient level. Here PI

NðtÞ (respectively
PI

NRðtÞ and PI
RðtÞÞ is the fraction of patients infectious with

the non-resistant strain (respectively, both the resistant and
non-resistant strains and only the resistant strain) obtained
from the following formulas:

PI
N ðtÞ ¼

Rþ1
0 gN

N ðaÞp
N ðt; aÞ þ gRS

N ðaÞp
RSðt; aÞ

�
þgRR

N ðaÞp
RRðt; aÞ þ gNR

N ðaÞp
NRðt; aÞda

�
;

PI
RðtÞ ¼

Rþ1
0 gN

R ðaÞp
N ðt; aÞ þ gRS

R ðaÞp
RSðt; aÞ

�
þgRR

R ðaÞp
RRðt; aÞ þ gNR

R ðaÞp
NRðt; aÞda

�
;

PI
NRðtÞ ¼

Rþ1
0 gN

NRðaÞp
N ðt; aÞ

�
þgRS

NRðaÞp
RSðt; aÞ þ gRR

NRðaÞp
RRðt; aÞ þ gNR

NRðaÞp
NRðt; aÞda

�
:

8>>>>>>>>>><
>>>>>>>>>>:

(3)

The functions gL
K ðaÞ are plotted in Fig. 3 and are defined

by

gL
K ðaÞ ¼

1 if a patient of class L is infectious with

bacteria of type K at age of infection a;

0 otherwise.

8><
>:

In Fig. 3 the infectiousness functions gN
N ðaÞ; g

RS
N ðaÞ; g

RR
N ðaÞ,

and gNR
N ðaÞ are the curves delimited by the yellow bars,

gRS
NRðaÞ; g

RR
NRðaÞ, and gNR

NRðaÞ are delimited by the orange
bars, and gRS

R ðaÞ; g
RR
R ðaÞ, and gNR

R ðaÞ are delimited by the
red bars. The functions gN

R ðaÞ and gN
NRðaÞ are both

identically 0, so they are not represented in Fig. 3.
A major advantage of the DEM is that the parametric

input can be analyzed through the basic reproductive
numbers R0, which predict the expected number of
secondary cases per primary case. When R0o1, then the
epidemic extinguishes and when R041, then the epidemic
expands (Anderson and May, 1991; Brauer and Castillo-
Chavez, 2000; Diekmann and Heesterbeek, 2000; Thieme,
2003). The basic reproductive number RN

0 for patients
infected only by the non-resistant strain is given by

RN
0 ¼
ðnV Þ

2bV PI PC

nC

Z þ1
0

gN
NðaÞ expð�nNaÞda. (4)

When RN
0 o1; the basic reproductive number RR

0 for
patients infected only by the resistant strain is given by

RR
0 ¼
ðnV Þ

2bV PI PC

nC

rðAÞ, (5)

where rðAÞ is the largest eigenvalue of the following matrix:

A ¼

Rþ1
0

gRR
R ðaÞ expð�nRaÞda

Rþ1
0

gNR
R ðaÞ expð�nRaÞdaRþ1

0 gRR
NRðaÞ expð�nRaÞda

Rþ1
0 gNR

NRðaÞ expð�nRaÞda

0
@

1
A.

(6)

We provide a comparison of the IBM and the DEM to
demonstrate the validity of the deterministic DEM as an
average representation of the IBM simulations. In Fig. 5
we observe a good concordance of the two models,
particularly in the speed at which the trajectories approach
equilibrium. In particular, the non-resistant strain de-
creases to a very low level and the resistant strain becomes
endemic at a level of nearly 60% of all patients in the
hospital in approximately 200 days. We note that the DEM
gives a slight overestimation of the IBM trajectories. This
overestimation implies that extinction of the strain in the
deterministic model implies extinction of the strain for the
average of the IBM. For comparison, in Fig. 6 we show
DEM simulations to corresponding IBM simulations in
Fig. 4. Again, we see the concordance of the two models in
predicting the epidemic outcome.
Fig. 7 illustrates the effects of changing the day on which

treatment begins and how long treatment lasts on the
values of the basic reproductive numbers RN

0 and RR
0 . In

Fig. 7 RN
0 o1 always, which means that the non-resistant
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strain is always extinguishing for these treatments’ starting
days and durations. On the other hand, RR

0o1 or RR
041

depending on the starting day and the duration of
treatment. Both RN

0 and RR
0 are increasing when the

starting day of treatment increases. The reason is that the
bacterial loads of both strains are higher if treatment is
delayed and thus more likely to reach threshold (see Fig. 3).
Further, RN

0 decreases and RR
0 increases as the length of

treatment duration increases. The reason is that the
resistant strain prevails during treatment, since it is not
affected by the drug.

Fig. 8 illustrates the dependence of RN
0 and RR

0 on the
average length of visit AV and the average length of
contamination AC . Both RN

0 and RR
0 decrease as AV

increases and increase as AC increases, but the dependence
is linear in AC and quadratic in 1=AV . The reason is that

AC is specific only to HCW, but AV is specific to both
patients and HCW.

5. Summary and discussion

We developed a comprehensive IBM to describe the
complex transmission dynamics of antimicrobial-resistant
bacteria in hospitals. We simplified the interpretation of the
IBM by developing a corresponding DEM, which describes
the average behavior of the IBM over a large number of
simulations. For the DEM we provided formulas to
compute the basic epidemic reproductive numbers, which
are thus applicable to the IBM. A detailed description of
the relationship between the IBM and the DEM will be
presented elsewhere.

ARTICLE IN PRESS

Fig. 5. Numerical simulation of the IBM (left) and the deterministic model (right) over 1 year, when the treatment starts on day 3 and stops on day 21, and

AV ¼ 60min. All other parameters are at baseline. In the IBM the time step for stochastic events is Dt ¼ 5min.

Fig. 6. The deterministic model over 3 years, when (left) treatment starts on day 3 and stops on day 21, and (right) treatment starts on day 1 and stops on

day 8. In the former case the resistant strain becomes endemic and in the latter case both strains are eliminated, as in Fig. 4.

E.M.C. D’Agata et al. / Journal of Theoretical Biology 249 (2007) 487–499 493
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The most important elements to include in the IBM
involve HCW contamination by patients and patient
infection by HCW. The availability of extensive hospital
data quantifying this information allows application to
variable hospital scenarios. The IBM is formulated as a
system of stochastically determined events based on the
relevant parameters (Table 1) obtained from such hospital
data. The computer code for the IBM is available at http://
awal.univ-lehavre.fr/magal/ and readily adaptable to para-
meterization for specific hospital settings. The derivation of
the basic reproductive numbers RN

0 and RR
0 is also given at

this web site.
In the IBM an important element of the transmission

dynamics involves the infectiousness of patients under-

going antibiotic therapy. Indeed, it is the very use of
antibiotics that drives the transmission dynamics of
antimicrobial-resistant bacteria. In the absence of treat-
ment, and selective antimicrobial pressure, the wild-type
non-resistant bacteria have a selective advantage over the
resistant strain. During treatment, however, the resistant
bacteria gain the advantage as the non-resistant strain
is eliminated and the resistant strain rises to the host
carrying capacity. Since the consequences of treatment
scheduling are pivotal for the dynamics of infection
transmission as the two strains compete in infected
patients, we have incorporated into the IBM the shifting
bacterial loads of patients undergoing treatment (Webb
et al., 2005).

ARTICLE IN PRESS

Fig. 7. The basic reproductive numbers RN
0 and RR

0 as functions of the beginning of treatment and the length of treatment. RN
0 increases as the beginning

day of treatment increases and decreases as the length of the treatment period increases, whereas RR
0 increases with both. All other parameters have

baseline values.

Fig. 8. The basic reproductive numbers RN
0 and RR

0 as functions of the average time of visit AV and the average time of contamination of healthcare

workers AC .

E.M.C. D’Agata et al. / Journal of Theoretical Biology 249 (2007) 487–499494
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The formulation of the IBM, based on individual
behavior and observable events, is advantageous for its
implementation to specific hospital settings. But each
simulation of the IBM yields a different outcome, and
the general interpretation of the role of individual
parameters is difficult. We developed the corresponding
DEM to provide an analytical description of the average
behavior of the IBM over repeated simulations. The
interpretation of the DEM is distilled into simple formulas
for the basic epidemic reproductive numbers, which
includes all the parametric input in a single value. If the
basic reproductive number is less than 1, then the epidemic
extinguishes, and if greater than 1, it becomes endemic. We
developed formulas for the basic epidemic reproductive
numbers for both the non-resistant strain ðRN

0 Þ and
the resistant strain ðRR

0 Þ. These formulas allow analysis of
the dynamic elements in the DEM, and consequently in the
IBM.

Endemicity of resistant strains, with near exclusion of
non-resistant strains, has been observed throughout the
evolutionary history of antimicrobial resistance (e.g., the
replacement of penicillin-susceptible Staphylococcus aureus

and vancomycin-susceptible Enterococcus faecium with the
corresponding resistant strains) (D’Agata et al., 2001;
McDonald, 2006). The basic epidemic reproductive num-
bers explain why this happens and provide insight into how
it may be controlled. In Fig. 4 (top panel) the basic
reproductive numbers RN

0 and RR
0 for the non-resistant and

resistant strains are graphed as functions of the day of
treatment initiation and the length of treatment. Control of
these variables offers the possibility of forestalling en-
demicity of the resistant strain, as long as the non-resistant
strain maintains selective advantage in the absence of
treatment. The goal is to start treatment as soon as possible
after infection is diagnosed and minimize its duration. The
optimal length of antimicrobial therapy has not been
extensively studied for a great majority of infections.
Recent trials suggest that the duration of antimicrobial
therapy can be decreased substantially in the treatment of
certain community- and hospital-acquired infections with
equivocal patient outcomes (Casey and Pichichero, 2005;
Chastre et al., 2003; el Moussaoui et al., 2006; Goff, 2004;
Pass et al., 2005; Schrag et al., 2001; Singh et al., 2000). The
increasing concern for overuse of antimicrobials and its
correlation with emergence of antimicrobial resistance, and
the findings of this model, support the need for further
research to specifically determine if shorter courses of
antimicrobial therapy are as effective as the longer courses
of therapy currently prescribed.

The basic reproductive numbers RN
0 and RR

0 provide a
means for a sensitivity analysis of the estimated key
parameters (see formulas (4) and (5) and Figs. 7 and 8).
The dependence of RN

0 and RR
0 on the HCW contamination

parameters AV (average length of visit) and AC (average
length of contamination) is graphed in Fig. 4 (bottom
panel). Control of these variables, and thus the severity of
the epidemic, is tied to the scheduling of HCW and their

compliance with hygienic measures. Because RN
0 and RR

0

depend linearly on AC and quadratically on 1=AV ,
extending the average length of visits (which is correlated
to the allocation of HCW resources) may have less
benefit than reducing the average length of the contamina-
tion (which is correlated to improvement in hygienic
measures). The care of individual patients and the
general patient population welfare must be balanced. The
IBM provides a framework to analyze these various
elements and quantify their impact in specific hospital
environments.
Extensions of this study should incorporate other

complexities of the transmission dynamics of antimicro-
bial-resistant bacteria in the hospital setting. These include,
(1) differentiating between types of HCW, for example
nurses and physicians, and differences in their interactions
with patients; (2) spatial movement of patients in the
hospital and their sequestering in spatial zones, such as
intensive care units; (3) bacterial resistance to multiple
antimicrobials; (4) variability in antibiotic administration
and response in patients; and (5) environmental reservoirs
of antimicrobial-resistant bacteria.
Although bacterial characteristics, susceptibility data,

and site of infection usually dictate the type and duration
of antimicrobial therapy, social and economic factors
contribute substantially to misuse of antimicrobials (Avorn
and Solomon, 2000). Our model emphasizes the impact of
timely antibiotic administration and minimal duration
of antibiotic exposure in decreasing the emergence and
spread of antimicrobial resistant bacteria. Our study
emphasizes the urgency of optimizing antimicrobial pre-
scribing practices at the microbiological, hospital, and
societal level.
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Appendix A

We describe here the construction of the DEM, which
is derived from the IBM. We construct separately a
DEM to describe: (1) admission and exit of patients;
(2) contamination of HCW; and (3) infection of
patients. We describe each of these three processes
when the other processes are fixed, and we then combine
them to the full DEM using fast and slow processes
considerations.

A.1. The admission and exit of patients

The population of patients is assumed to be constant and
thus, a patient leaving the hospital is immediately replaced
by a new patient in the class ðUÞ. In the absence of
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contamination and infection, the fractions of patients in
the classes U ;N ;R can be described by the following
system of ordinary differential equations (see Tables 1–3
for explanation of the terms):

dPU ðtÞ

dt
¼ nNPN ðtÞ þ nRPRðtÞ;

dPNðtÞ

dt
¼ �nNPNðtÞ;

dPRðtÞ

dt
¼ �nRPRðtÞ:

8>>>>>>><
>>>>>>>:

(A.1)

In Fig. 9 we compare simulations of the IBM and DEM in
this case.

A.2. The contamination of HCW by patients

The infectiousness periods of patients are described in
Fig. 3: N-infectious (yellow), NR-infectious (orange), and
R-infectious (red). We first consider the case when there is
only the non-resistant strain, no changes in patient
infectiousness status, and no admission and exit of patients
during the shift ðPI

N is assumed constant in time). We can
use the following model to describe the evolution of the
contamination status of HCW:

dHU ðtÞ

dt
¼ �nV PCPI

NHU ðtÞ þ nCHNðtÞ;

dHNðtÞ

dt
¼ nV PCPI

NHU ðtÞ � nCHNðtÞ:

8>><
>>:

(A.2)

When both non-resistant and resistant strains are present,
we use similar arguments to obtain the following system of
equations for the fractions of uncontaminated and
contaminated HCW ðPI

N ;P
I
NR;P

I
R are assumed constant

in time):

dHU ðtÞ

dt
¼ �nV PC ½P

I
N þ PI

NR þ PI
R�HU ðtÞ þ nC ½HN ðtÞ

þHNRðtÞ þHRðtÞ�;

dHN ðtÞ

dt
¼ nV PCPI

NHN ðtÞ � nV PC ½P
I
NR

þPI
R�HN ðtÞ � nCHN ðtÞ;

dHNRðtÞ

dt
¼ nV PC ½P

I
NR þ PI

R�HNðtÞ þ nV PCPI
NRHU ðtÞ

þnV PC ½P
I
N þ PI

NR�HRðtÞ � nCHNRðtÞ;

dHRðtÞ

dt
¼ �nV PC ½P

I
N þ PI

NR�HRðtÞ

þnV PCPI
RHU ðtÞ � nCHRðtÞ:

8>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>:

(A.3)

In Fig. 10 we compare simulations of the IBM and DEM in
this case.
We note that it is important to fix the time step Dt small

enough to avoid distortions due to the choice of time step.
In particular, we seek to minimize the dependence of the
IBM or discretized DEM numerical simulations on the
time step. By choosing the time step sufficiently small, as in
Fig. 10, we can interpret the IBM model in terms of the
continuum limit as Dt goes to 0 with parametric input
independent of Dt. In Fig. 10 we observe another aspect of
the behavior of the DEM, namely, that the HCW fractions
converge relatively rapidly to their equilibrium values.
From Fig. 10 we see that the equilibrium values of the
HCW classes lie mostly above those in the IBM simula-
tions. We use this behavior to construct the full epidemic
model, wherein we consider a shift as a time step on the
scale of a year. We then approximate the fractions HU ðtÞ,
HN ðtÞ, HRðtÞ, and HNRðtÞ, over one shift by their
equilibrium values. Thus, in the full epidemic model, we
slightly overestimate the average fractions of contaminated
HCW while use the equilibrium values for the HCW in the
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Fig. 9. The left (respectively the right) figure represents the IBM and DEM over 100 days for 1 simulation (respectively the average over 10 trajectories)

with the patient population held constant and with no new infections. Parameters are as in Table 1. Since no new infections occur, the uninfected class

fraction approaches 100% and both infected class fractions approach 0%.
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DEM during one shift. Taking the same parameter values,
the solutions of the DEM are above the solutions of the
IBM. As a consequence, in the full epidemic model, we also
slightly overestimate the fractions of infected patients.

A.3. The infection of patients by HCW

Here we describe the infection of patients during one
shift, assuming no admission and no exit of patients, and
no change in HCW contamination status during the shift.
If we first consider the situation with no resistant strains,

we can write the following model (see Tables 1–3 for
notation):

dPU ðtÞ

dt
¼ �nVbV PI HN ðtÞP

U ðtÞ;

dPN ðtÞ

dt
¼ nVbV PI HNðtÞP

U ðtÞ:

8>>><
>>>:

(A.4)

Similarly, we use the relationship PRðtÞ ¼ PRSðtÞ þ

PRRðtÞ þ PNRðtÞ to obtain the differential equations for
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Fig. 10. The left (respectively the right) figure corresponds to 1 trajectory (respectively the average over 80 trajectories) of the IBM during one shift, with

no exit and admission of patients, and no changes in the infection status of patients. Here Dt ¼ 0:00347 days, AV ¼ AC ¼ 0:042 days,

PI
N ¼ 0:2;PI

NR ¼ 0:3;PI
R ¼ 0:4.

Fig. 11. A numerical simulation of the IBM and the DEM over one shift, assuming no admission and exit of patients and no change in HCW

contamination status, with AC ¼ 0:042 days, AV ¼ 0:021 days, PI ¼ 0:6;HN ¼ 50%;HNR ¼ 0%;HR ¼ 20%.
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the patient fractions in this case as follows:

dPU ðtÞ

dt
¼ �nVbV PI ½HRðtÞ þHNRðtÞ þHN ðtÞ�P

U ðtÞ;

dPNðtÞ

dt
¼ nVbV PI HNPU ðtÞ � nVbV PI ½HRðtÞ þHNRðtÞ�P

N ðtÞ;

dPRSðtÞ

dt
¼ nVbV PI ½HRðtÞ þHNRðtÞ�P

NðtÞ;

dPRRðtÞ

dt
¼ nVbV PI HRðtÞP

U ðtÞ;

dPNRðtÞ

dt
¼ nVbV PI HNRðtÞP

U ðtÞ:

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

(A.5)

In Fig. 11 we compare simulations of the IBM and DEM in
this case.

Since we seek a model to describe the spread of the
hospital epidemic over several years, we observe that on the
scale of 1 year, a shift ð¼ 8 hÞ corresponds to a very short
period of time. We thus use the idea of slow–fast processes
to write the full DEM as (1), (2), (3). The fast process
corresponds to HCW contamination, and the slow processes
correspond to patient infection, admission, and exit.
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