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a b s t r a c t

The model presented here modifies a susceptible-infected (SI) host–pathogen model to determine the
influence of mating system on the outcome of a host–pathogen interaction. Both deterministic and
stochastic (individual-based) versions of the model were used. This model considers the potential
consequences of varyingmating systems on the rate of spread of both the pathogen and resistance alleles
within the population. We assumed that a single allele for disease resistance was sufficient to confer
complete resistance in an individual, and that both homozygote and heterozygote resistant individuals
had the same mean birth and death rates. When disease invaded a population with only an initial small
fraction of resistant genes, inbreeding (selfing) tended to increase the probability that the disease would
soon be eliminated from a small population rather than become endemic, while outcrossing greatly
increased the probability that the population would become extinct due to the disease.

Published by Elsevier Inc.

1. Introduction

A major objective of epidemiological modeling of plant
populations has been to understand the factors and mechanisms
that affect the spread of disease (e.g. Gibson (1997), Kleczkowski
et al. (1997), Power (1991), Xu and Ridout (1998) and Zhang et al.
(2000)). Here we examine the effect of plant mating system on the
rate of spread of resistance to disease. Plant populations vary in
the relative rates of selfing and outcrossing (Schemske and Lande,
1985; Vogler and Kalisz, 2001). Previous theoretical work has
shown that variation in the mating system affects both probability
of fixation (Caballero and Hill, 1992; Charlesworth, 1992) and the
time to fixation (Caballero and Hill, 1992) for mutant alleles under
positive selection.

Disease is an important agent of natural selection (Bergelson
et al., 2001; Roy andKirchner, 2000). Resistance genes are expected
in plant populations exposed to diseases, but these can also be
expected to have negative effects on other fitness aspects of
individuals carrying them (Bergelson et al., 1996; Tian et al., 2003).
In previous workwe developed an epidemiological host–pathogen
model of a diploid population that contained both a susceptible and
a resistant allele at a single locus, where the resistant allele carried
a negative tradeoff in terms of a lower intrinsic population growth
rate in the absence of disease (Koslow and DeAngelis, 2006). In
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that model we were able to consider the potential consequences
of varying mating systems on the equilibrium values of absolute
numbers and proportions of resistance alleles and diseased
individuals in the population. We found that if a single allele for
disease resistance is sufficient to confer complete resistance in
an individual, and if both homozygote and heterozygote resistant
individuals have the same mean birth and death rates, then for
any parameter set, the selfing or inbreeding rate (probability of
an individual being fertilizing by itself versus being fertilized by
another individual) does not affect the proportions of resistant,
susceptible, or infected individuals at equilibrium. If homozygote
and heterozygote individual birth rates differ, however, themating
system can make a difference in these proportions. In that case,
depending on other parameters, increased selfing can either
increase or decrease the rate of infection in the population. Results
from this model also predict higher frequencies of resistance
alleles in predominantly selfing as compared to predominantly
outcrossing populations.

In the present work we use the same model, but we now study
the rate of spread of the resistance allele in a plant population
as a function of the mating system. The effect of selfing on
the prevalence of disease and rate of spread of resistance in a
population is of broad conservation interest. How fast a resistant
allele can spread in a population could determine whether a plant
species can survive a deadly disease and reach some equilibrium
with the pathogen. Humans are causing loss and fragmentation
of habitat of many species, which is likely to have an effect on
the amount of selfing, and in turn affect spread of resistance.

0040-5809/$ – see front matter Published by Elsevier Inc.
doi:10.1016/j.tpb.2008.07.001
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For example, if a plant population has been free of disease for
some time, so that resistance genes are low in proportion, the
mating system may affect how rapidly those genes can spread
to prevent major decline in the population or influence its
rate of recovery. Another issue, prompted by the development
of genetic engineering, is the possibility that resistance genes
developed for protecting crops escape to natural plant populations,
including weedy species, increasing their resistance to natural
biological controls (Dale, 1992; Hails and Morley, 2005; Pollack,
2006; Wolfenbarger and Phifer, 2000). In that case also, the
mating system of the plant may affect the rate at which the
resistance allele spreads in the populations. Our model is aimed
at intermediate time scales. In our model, the spread of the
pathogen throughout the population can potentially occur well
within a generation, while the dynamics of allele spread may
take tens of generations. Thus our model covers a time scale
longer than the time scale of the disease spread, but shorter than
that of evolutionary dynamics; mutations are not modeled. It is
aimed at following the dynamics of allele frequencies under the
selective pressure of occasional occurrence of a disease over many
generations.

Relevant to these issues, we consider three specific questions:

Question 1. Will the degree of selfing influence the rate at which
the frequencies of alleles in the population approach their new
equilibrium values in response to the introduction of a pathogen
into the population?

Weused amodeling approach to address this question by initiating
a population with a high frequency of susceptible (r) alleles, with
only a small number of resistance (R) alleles present. Then we
introduced the pathogen and determined the temporal response
of the resistance alleles in approaching the new equilibrium. We
anticipated that a high degree of selfing might slow the spread of
resistance genes.

Question 2. Will the new equilibrium be stable? We examined
this question using Routh–Hurwitz stability criteria on the model.

Question 3. Will the degree of selfing influence the persistence of
disease in the population after an outbreak, or the possibility of
extinction of a local population if a disease enters the population
after it has been free of disease for long enough that the resistant
allele is in low relative numbers?

We examined this question using an individual-based version
of the model (DeAngelis and Mooij, 2005; Grimm and Railsback,
2005) that allowed for demographic stochasticity. We anticipated
that a high degree of selfing, by slowing the rate of spread of
resistance genes,might increase the persistence time of the disease
in the population and also increase the probability of extinction of
the population from the disease.

2. The model

Models with compartments containing susceptible, infected,
and recovered individuals are frequently used in epidemiology
(for example Anderson and May (1981)), including the spread of
pathogens in plant populations (Segarra et al., 2001). The model
presented here modifies a continuous time SIR host–pathogen
model to determine the influence ofmating systemon the outcome
of the host–pathogen interaction. We added a genetic component
of host resistance to infection and a hostmating system that can be
varied.We assumed a diploid hostwith a single locus for resistance
to infection. A dominant resistance allele (R) confers complete
resistance. Themodel is suitable for pathogens that spread through
horizontal, density-dependent pathogen transmission, where the

host is a perennial. The pathogen was assumed to have no
alternative hosts, and all of the offspring were healthy, regardless
of the infection status of the parent(s). Justifications for these
assumptions are given in Koslow and DeAngelis (2006). Resistant
individuals had lower fecundity than susceptible individuals,
which is consistent with empirical work showing a cost of
resistance (Bergelson and Purrington, 1996; Burdon and Thrall,
2003; Tian et al., 2003). However, we also extend our analysis to
more general assumptions.

The model considers three genotypes, one of which can be
either in the infected state or in the uninfected (susceptible) state.
Following Anderson and May (1981), a possible set of differential
equations for the system is:

dXRR

dt
= new XRR − bXRR (1a)

dXRr

dt
= new XRr − bXRr (1b)

dXrr

dt
= new Xrr − (b + βYrr)Xrr (1c)

dYrr

dt
= βYrrXrr − (b + α)Yrr (1d)

where XRR, XRr , and Xrr are the numbers of healthy individuals
carrying two R alleles, one R and one r allele, and two r alleles,
while Yrr is the number of infected individuals with two r
alleles. Because we assumed that individuals with an R allele are
completely resistant, or immune, to infection, there is no need for
equations for YRR and YRr . Other assumptions incorporated into the
above equations are as follows.

It was assumed that the infection is systemic, so that once
an individual host was infected it either remained infected or
died. Although recovery by plants from some diseases is possible
through shedding of leaves or other organs, we followed here the
observation that in plants, unlike many vertebrates, recovery from
a systemic pathogen infection is extremely rare.

The pathogen was transmitted directly and equally from any
infected individual. An Xrr individual’s chance of getting the
pathogen depended on the number of infected individuals in the
population, with an infection rate coefficient, β .

For healthy individuals (XRR, XRr , and Xrr ) the death rate was b,
so that 1/b is roughly the natural turnover time of the population,
whereas for infected individuals (Yrr) the death rate was (b + α),
where α is referred to as ‘aggressiveness’ in the plant pathology
literature. The parameter α was varied over a range of values.

New individuals were figured as the number of gametes
produced for resistant and susceptible genotypes, such that the
birth rates for the two gametes were

gamXR =
aRRXRR + 0.5aRrXRr

1 + ρN
(2a)

gamXr =
arrXrr + arr,disYrr + 0.5aRrXRr

1 + ρN
. (2b)

Here aRR, aRr , and arr , are the birth rates of the three genotypes,
while the reproductive rate of diseased plants is 0 ≤ arr,dis < arr .
Thus the reproductive cost of infection could be varied. In the
analyses that follow, we considered the case in which aRR = aRr <
arr . Generalization to cases in which aRR < aRr < arr or aRR <
aRr = arr is possible (see Koslow and DeAngelis (2006)), although
those cases are less tractable analytically. The factor ρN represents
density-dependent self-limitation on reproduction, where

N = XRR + XRr + Xrr + Yrr . (3)

Other forms of density dependent regulation can be used if
desired.
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In animal-pollinated plants, the mating system can be con-
sidered a continuous variable from complete selfing to complete
outcrossing (Vogler and Kalisz, 2001). The mating system of a
population can be estimated using the inbreeding coefficient (F),
which ranges from 0 to 1 (Hartl and Clark, 1997). In comparison to
a population composed of randomly mating (i.e. outcrossing) in-
dividuals, complete selfing halves the frequency of heterozygotes
each generation (Wright, 1921). Selfing decreases the frequency of
heterozygotes by F , which is the probability that two alleles in the
same individual are identical by descent (Hartl and Clark, 1997).
Therefore, offspring genotype frequencies are determined by the
following equations:

f seed XRR = (f gam XR)
2
+ F × f gam XR × f gam Xr (4a)

f seed XRr = 2 × (1 − F) × f gam XR × f gam Xr (4b)

f seed Xrr = (f gam Xr)
2
+ F × f gam XR × f gam Xr . (4c)

The frequencies, f gam XR and f gam Xr , of each gamete in the popu-
lation are simply gamXR/(gamXR+gamXr) and gamXr/(gamXR+

gamXr), respectively. The total numbers of the three offspring
genotypes, new XRR, new XRr , and new Xrr , used in Eqs. (1a)–(1c) are
determined, respectively, by multiplying each of the above func-
tions, f seed XRR, f seed XRr , and f seed Xrr by the total number of off-
spring, (gamXR + gamXr). This completes the development of the
model.

3. Results: Analysis of model equations

It is difficult to analyze or even anticipate the behavior of the
model in the above form. However, with our assumption that
the R-allele not only carries immunity to disease, but that the
RR-homozygote and R, r-heterozygote share the same birth rate
coefficient (i.e., aRR = aRr < arr ), the above equations can be
reduced to a form from which one can more readily see how F
influences the equations and thus affects the spread of the R-
allele. In particular, the basic equations can then be reduced to the
following set, after a change to the set of variables that includes the
number of R-alleles (AlleleR), as well as N, Xrr , and Yrr :

d(AlleleR)
dt

=

(
aRR

1 + ρN
− b

)
AlleleR (5a)

dN
dt

=
aRR(N − Xrr − Yrr) + arrXrr + arr,disYrr

1 + ρN
− bN − αYrr (5b)

dXrr

dt
=

[
(gamXr)

2
+ F(gamXR)(gamXr)

gamXr + gamXR

]
− (b + βYrr)Xrr (5c)

dYrr

dt
= βYrrXrr − (b + α)Yrr (5d)

where (3) also holds and the number of R-alleles in the population
is

AlleleR = 2XRR + XRr . (5e)

The other terms are the following:

gamXR =
aRRXRR + 0.5aRRXRr

1 + ρN
=

0.5aRR AlleleR
1 + ρN

(5f)

gamXr =
arrXrr + arr,disYrr + 0.5aRRXRr

1 + ρN

or, using (5e) to substitute for XRr in gamX r ,

gamXr =
aRR(N − Xrr − Yrr) + arrXrr + arr,disYrr

1 + ρN

−
0.5aRR AlleleR

1 + ρN
. (5g)

Table 1
Parameter values for numerical evaluation of Eqs. (5a)–(5g)

aRR = 0.7
aRr = 0.7
arr = 0.8
arr,dis = 0.8
b = 0.2
α = 0.1
β = 0.0004
ρ = 0.0002

Note that the only place where F occurs is in Eq. (5c). Only the
total population size N has a direct effect on the rate of change
of the R-allele. However, the rate of change of N depends on Xrr ,
and thus implicitly on F through the reproductive rate of these
susceptibles.

4. Results: Model evaluations and simulations

The equilibrium values for this system are presented in on-
line Appendix. We did not try to analyze the model Eqs. (5a)–(5g)
any further, but resorted directly to numerical simulations to
study the behavior of this system. Two types of model simulations
were used. First, the deterministic version of the model was
studied by numerically evaluating Eqs. (5a)–(5g) for different sets
of parameter values. The purpose was to determine whether the
type of breeding system had any effects on the spread of the
R-allele during a disease outbreak. Second, a stochastic version of
the model was created by developing an individual-based model
(IBM) that is analogous to the above model, except that each
individual plant in the population was simulated, rather than
continuous variables for the four classes of plants. The purposewas
to determine if the type of breeding system had any effect on the
persistence of the disease in the population or the possibility of
extinction of a small population.
Deterministic model numerical evaluation

We numerically evaluated Eqs. (5a)–(5g) in the following way
using, for a typical case, the parameter values shown in Table 1,
which produced an equilibrium population size of 15,000 suscep-
tibles in the absence of disease. We began the simulation in the
absence of disease. According to Eq. (1d), the disease can spread in
the population when the number of susceptibles, Xrr > (b + α)/β
(which is equivalent to the well-known R0 criterion for epidemics,
that each infected produce more than one secondary infection).
But in our simulations the population was allowed to be free of
disease for a long enough period of time, 400 time steps (or 80
generations, given that the mean turnover time of the population
is approximately 1/b, or 5 time units, in the simulations here),
that resistant individuals were reduced to a tiny fraction (about
the same in all simulations) of the total alleles in the population,
and Xrr was more than 99% of the total population size N . The
subsequent dynamics shown by the simulations, starting at time
t = 400, can be divided into five temporal phases (Fig. 1a, b
for outcrossing and selfing, respectively). First, there was a
rapid spread of disease through the whole non-immune pop-
ulation, with Yrr sharply increasing and Xrr sharply decreas-
ing to around 1400. Second, there was a rapid decline in Yrr
to a lower ‘plateau’ of about 8000 individuals after the re-
duction of the susceptibles. Third, there was a period of ap-
proximate steady state, or quasi-equilibrium, of Yrr on this
plateau, during which R-alleles were still only a small part
of the population and the number of diseased individuals,
Yrr , stayed roughly constant at around 8000. Although the
R-alleles were increasing exponentially during that period, as
Eq. (5a) implies and is seen in the increases in XRR and XRr in the
figures, they were still a relatively small component of the pop-
ulation. Fourth, as the R-alleles increased to be a sizable fraction
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Fig. 1. Numerical evaluation of Eqs. (5a)–(5g) for the case of (a) complete
outcrossing (F = 0), and (b) complete selfing (F = 1). Parameter values are given
in Table 1. Explanation is in the text.

of the total alleles, and approached an inflection point, the num-
ber of diseased individuals declined rapidly. In the fifth phase, the
new equilibrium of about 12,000 total individuals was then ap-
proached slowly. The population in this case consisted mostly of
resistant individuals, but also of about 700 susceptible and 300 dis-
eased individuals, as disease remained endemic in the population.
As in Koslow and DeAngelis (2006), it is clear here that the same
equilibrium values Xrr*, Yrr*, N*, and XRR ∗ +XRr∗ are approached,
regardless of whether F = 0 or F = 1. However, as can be seen in
comparing Fig. 1a, b, the AlleleR is greater in the selfing case. Solu-
tions always exhibited local stability. Although we did not attempt
to prove that is the case in general, an on-line Appendix provides
a proof for the limiting case of pure selfing, F = 1. The outcross-
ing case, F = 0, is too complex to evaluate in general, but use of
Routh–Hurwitz criteria over a range of parameter values produced
only stability. This suggests that the answer to Question 2 is ‘‘yes’’;
the equilibrium will be stable.

Although the breeding system did not affect the potential final
equilibrium values, the breeding system did affect the dynamics.
The two extremes, F = 0 and F = 1, are compared here. When
there was complete selfing (F = 1, Fig. 1b), the diseased part of
the population was maintained at a high level (about 8000) for
a somewhat longer period of time (greater than 100 time steps)
than when there is outcrossing (F = 0, less than 100 time steps,
Fig. 1a). Another difference is visible in comparison of the F = 0
and F = 1 cases (Fig. 1a, b): As the number of diseased individuals
declined to smaller values, after about 600 time steps, the approach
to the new equilibrium became slower, or more gentle, in the
case of outcrossing than for complete selfing. In fact, in the case
of selfing, the decline in Yrr produced a slight undershoot of
the new equilibrium before increasing again and asymptotically
approaching the final state, although this undershoot is not easily
visible in Fig. 1b.

Table 2
Parameter values for simulations of individual-based analog of Eqs. (5a)–(5g)

aRR = 0.7
aRr = 0.7
arr = 0.8
arr,dis = 0.8
b = 0.3
α = 0.35
β = 0.009
ρ = 0.0025

Simulations with different costs of disease resistance were
performed to determine the effect on dynamics. When the cost of
resistance was decreased (e.g., reproduction increased from aRR =

aRr = 0.7 to 0.75), the time required for resistant alleles to nearly
disappear from the system increased by slightly over 50%, and
the time for resistant alleles to reach 1/2 their asymptotic level
following disease outbreak decreased by about 20%.
Individual-based (stochastic) model simulations

The results of the deterministic model suggest that there may
be differences between selfing and outcrossing populations in
whether the disease in a small population is likely to persist in or
disappear from the population after an outbreak, or whether one
or the other of the alleles, or even the population as a whole, might
be threatened with extinction. We drew the former inference
concerning disease persistence from the observation that in the
case of selfing the number of infecteds, Yrr , declined in numbers
faster than for outcrossing after the plateau period of Yrr in
Fig. 1a, b was passed, slightly undershooting the final equilibrium,
a difference that seemed to be inherent in the two different
cases. Although the disease remained endemic in the deterministic
model, we conjectured that it might not in a model with a small
population size in which demographic stochasticity was included.
While the persistence or loss of the disease depended heavily
on the total size of the population and the exact circumstances
regarding the outbreak (e.g., proportion of R-alleles at the time), it
was possible to compare simulations of varying degrees of selfing
when all other circumstances were held the same. It seemed
likely that the disease would have a greater chance of being lost
from the population in the selfing case. We tested this using the
individual-based analog of the model, which incorporated both
discrete individuals and demographic stochasticity, which are both
needed to simulate possible extinctions of components of the
model, including disease (see on-line Appendix for a description
of the individual-based model).

First, simulations were performed to determine if differences
in breeding affected the outbreak of the disease, assuming
disease propagules were always available, using the values in
Table 1. Twelve simulations each were performed for selfing and
outcrossing populations, in which disease was introduced (a single
diseased individual) every few time steps. The result was that a
major disease outbreak occurred, on average, when the number of
rr-individuals reached 815.75 (sd 200.29) in the case of selfing and
858.42 (sd 131.09) in the case of outcrossing. These did not differ
significantly, and both satisfied the deterministic R0 criterion,
Xrr > (b + α)/β , though stochasticity delayed the occurrence
of significant outbreaks beyond the deterministic value of (b +

α)/β = 750.
Simulations were next run using the individual-based model to

determine whether the degree of selfing affected the possibility of
elimination of the disease. After confirming that the individual-
based model could roughly duplicate the mean values of the de-
terministic equations for the values in Table 1, the population
parameters were changed somewhat from those of Table 1 to in-
crease the effects of demographic stochasticity (Table 2). For these
parameters, in the absence of disease, the population, dominated
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Table 3
Number of time steps that the disease persists in the population after time step 600 in the individual-based version of the model

α = 0.25, β = 0.006 α = 0.25, β = 0.009 α = 0.25, β = 0.012
Outcrossing 128.94 (50.14)* 105.10 (34.91) 99.40 (35.05)
Selfing 120.03 (47.67)* 83.31 (31.78) 76.93 (26.27)

α = 0.35, β = 0.006 α = 0.35, β = 0.009 α = 0.35, β = 0.012
Outcrossing 98.89 (40.18) 77.27 (27.01) 71.61 (22.21)
Selfing 85.17 (34.36) 63.71 (22.89) 53.29 (17.00)

α = 0.45, β = 0.006 α = 0.45, β = 0.009 α = 0.45, β = 0.012
Outcrossing 73.05 (26.49)* 59.51 (17.43) 57.45 (17.55)
Selfing 67.66 (24.18)* 51.47 (14.58) 44.94 (13.26)

In all cases the disease persisted longer in the outcrossing case. Standard deviations are shown in parentheses. All differences were significant at level p < 0.01 except two
cases marked with asterisks.

by susceptibles, could reach approximately 700 individuals. Sim-
ulations were run for both the selfing and outcrossing cases. We
allowed the population to undergo dynamics in the absence of
disease until only about 12 resistant (RR or Rr) individuals, and
thus over 680 rr-individuals, remained before disease was intro-
duced (although the R0 criterion predicts that fewer than 80 rr-
individuals are sufficient for disease outbreak to be possible in the
case of the parameter values of Table 2).

All simulations that compared the two reproductive extremes
showed that disease disappeared from the population earlier in
the selfing case. A typical comparison of a pair of simulations is
shown in Fig. 2a, b. In these figures we plot XRR, XRr , Xrr , and Yrr ,
as these were easy to simulate directly in an individual-based
model. In the outcrossing case (Fig. 2a), the disease disappeared
at about 175 time units following disease outbreak, while in the
selfing case (Fig. 2b), the disease disappeared at about 80 timeunits
after the outbreak. The smaller population sizes in the individual-
based model shortened the time scale relative to the deterministic
case (Fig. 1a, b), but aside from the stochasticity and extinction
of disease, these results resemble those of the deterministic case.
To determine if the difference observed between selfing and
outcrossing was a general one, and specifically to examine the
effects of key parameters on disease dynamics, comparisons were
made between outcrossing and selfing breeding strategies for nine
combinations of three different values of α and three different
values of β , with 100 simulations in each case (Table 3). In all
nine cases the disease died out in the selfing population before it
died out in the outcrossing population, and these differences were
highly significant in almost all cases.

In order to test for any influence of whether the tradeoff for
disease resistance wasmanifested in a higher mortality rate rather
than lower fecundity, the above set of simulations were rerunwith
the parameter values aRR = aRr = arr = 0.8 and bRR = bRr = 0.34
and brr = 0.30. All differences between selfing and outcrossing
were qualitatively the same and the quantitative results for the
‘mortality tradeoff’ were similar to those for which the tradeoff
involved fecundity.

We also examined the effects of another assumption on model
parameters. Following Bergelson et al. (1996), Burdon and Thrall
(2003), and Tian et al. (2003), we had initially assumed a cost
of disease resistance in terms of lower birth rates (aRR =

aRr = 0.7, versus arr = 0.8) for disease resistant individuals.
However, a tradeoff of this size has been questioned by others
(e.g. Brown (2003)). Some authors have not found costs (Bronson
and Ellingboe, 1986; Vera Cruz et al., 2000), and Bergelson and
Purrington (1996) found a cost of only about 5% compared with
the cost of about 12% (0.7 vs. 0.8 that we assumed for reproductive
rates in our model). It can be shown in our model that if the cost
of disease resistance is not high, that is (arr − aRR)/aRR � 1, then
disease is not likely to be maintained under stochastic conditions,
because the size of Y ∗

rr at equilibrium point is proportional to the
difference;

Y ∗

rr =
(arr − aRR)(b + α)b

(aRR(b + α) − arr,disb)β
. (6)

Fig. 2. Typical simulations of the stochastic individual-based analog of Eqs. (5a)–
(5g) for the case of (a) complete outcrossing (F = 0), and (b) complete selfing
(F = 1). The pathogen becomes extinct near time 275 in (a) and near 180 in (b).
Parameter values are given in Table 2. Explanation is in the text.

(see online Appendix). This equation shows that in the determin-
istic equation the pathogen can be maintained in steady state
even for very small advantages in reproductive rates of the non-
resistant, arr , over the resistant, aRR and aRr , individuals. In the
stochastic model, with a maximum population size of only about
700, a decrease in cost of resistance (i.e., a change from aRR = aRr =

0.70 to 0.77) made it impossible to maintain the disease for more
than several time steps in our simulations, because Y ∗

rr decreased
in proportion to very low levels and the pathogen ceased to spread.
This confirms theoretical results that low costs for resistance may
not be sufficient to maintain polymorphism in plant–parasite co-
evolutionary interactions (Damgaard, 1999; Thrall and Burdon,
2003; Tellier and Brown, 2007).

Another aspect of disease dynamics is whether the mating
system has any effect on the possibility of extinction of the
population due to disease. To explore this, we eliminated
reproduction of the infected individuals (i.e., we set arr,dis = 0).
We did this because, when infecteds were able to reproduce with



Author's personal copy

196 D.L. DeAngelis et al. / Theoretical Population Biology 74 (2008) 191–198

Table 4
Fraction of times, out of 100 simulations, that the population goes to extinction within 250 steps after the outbreak of disease in the individual-based version of the model

α = 0.25, β = 0.006 α = 0.25, β = 0.009 α = 0.25, β = 0.012
Outcrossing 58% 64% 65%
Selfing 1% 2% 4%

α = 0.35, β = 0.006 α = 0.35, β = 0.009 α = 0.35, β = 0.012
Outcrossing 28% 48% 43%
Selfing 0% 2% 0%

α = 0.45, β = 0.006 α = 0.45, β = 0.009 α = 0.45, β = 0.012
Outcrossing 12% 34% 34%
Selfing 0% 2% 0%

In all cases the population persisted longer in the selfing case.

the sameprobability as non-infected rr-homozygotes, extinction of
thepopulationdidnot occur in simulations of populations this size;
but when diseased individuals could not reproduce, extinction
could easily occur. The simulations were run long enough without
the pathogen present to the point where the total number of
R-alleles in the populationwas reduced to about 50 (atwhich point
the number of susceptible individuals, Xrr , reached close to 700).
At that point in time, ten infected individuals from outside were
assumed to be present for a few time steps and during that time to
randomly infect members of the population.

Comparisons were made between outcrossing and selfing
populations for all nine combinations of three different values of
α and three different values of β , with 100 simulations in each
case (Table 4). For both breeding types, after the introduction of
the disease the number of infecteds grew rapidly and dominated
the population. As the results in Table 4 show, selfing populations
tended to be much more successful than outcrossing populations
in escaping population extinction for all values of α and β . An
example of a particular simulation of each breeding extreme is
shown to demonstrate typical behaviors (Fig. 3a, b). In the case
of complete selfing (F = 1) the population size declined to a
low of 38 and then started to recover, eventually approaching
the new equilibrium point of over 500 resistant individuals. The
susceptible r-allele was lost through disease from the population
in this simulation. The disease also extinguished itself from the
population. For the complete outcrossing example (F = 0), not
only did the r-allele go to extinction, but the R-allele did as well,
and thus the whole population.

5. Discussion

The deterministic model shows that the effect of complete
selfing on the spread of the R-allele, compared with complete
outcrossing, is noticeable, although it is not huge. There are two
main features of how the R-alleles change through time that differ
between the extreme cases, F = 0 and F = 1. In the complete
selfing case, after the introduction of disease causes a crash of
the Xrr population, the number of diseased individuals stays at
a high value for a somewhat longer period of time. The size of
the susceptible population, Xrr , stays relatively constant at a low
level over the entire period, as it is subjected to strong top-down
effects from the disease. The second main feature is that, as the
populations start to approach their new steady state equilibrium
values asymptotically, in the complete selfing case, in approaching
its new equilibrium value, Yrr , undershoots this equilibrium value,
at least slightly, coming closer to the axis than does Yrr in the
outcrossing case.

Eqs. (5a)–(5g) help us to understand the differences between
the complete selfing and complete outcrossing cases (and cases
in between). We can use those equations in a very rough way to
interpret the disease and genetic trajectories, which we can view
as divided into five phases (Fig. 1):
Phase 1. Following the outbreak of the disease in a population in
which there is only a small proportion of the R-allele, the disease

Fig. 3. Typical simulations of the stochastic individual-based analog of Eqs. (5a)–
(5g) for the case of (a) complete outcrossing (F = 0), and (b) complete selfing
(F = 1). Parameter values are given in Table 2. Note that in the case of selfing
the population is able to recover, but it consists only of RR-homozygotes. In the
outcrossing case, the population goes to extinction.

spreads very rapidly through the population on a time scale much
faster than genetic response. The rate of increase of infecteds,
Yrr , is approximately (βX rr − b − α), where Xrr is the size of
the susceptible component of the population at the start of the
outbreak. The term βX rr is very large relative to the others.
Phase 2. After a large fraction of the susceptibles has become
infected, the population of susceptibles is nearly exhausted and
the infected population declines at a rate b + α, until Yrr settles
to a plateau where further decline is very slow for a certain time
interval.
Phase 3. Over that interval, the ‘plateau’ period, the number of
R-alleles in the population, while growing exponentially according
to Eq. (5a), is still small, so that XRR and XRr , while competing
with Xrr and Yrr for resources, are not large enough to have an
impact on the Xrr and Yrr populations, which are in equilibrium
with each other. The duration of this quasi-equilibrium plateau
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of Yrr depends on the fraction of R-alleles in the population
when this quasi-equilibrium is reached, and is longer the smaller
that fraction is. The duration is also longer for pure selfing than
for outcrossing (confirming our anticipation of that result under
Question 1). We can see how this happens by noting in Eq. (5c)
that the rate of input of new individuals of Xrr differs between
the pure selfing and outbreeding cases. For pure selfing (F = 1),
the input rate is gamX r , while for random mating (F = 0) it is
gamXr

(
gamXr

gamXr+gamXR

)
, and thus smaller to a degree that depends

on the size of gamXR. Therefore, as the resistant individuals, XRR
and XRr , increase, Yrr starts to decline from its quasi-equilibrium
sooner in the outcrossing case. This results from the fact that
in the outcrossing case the input to Xrr declines due to two
factors, competition from XRR and XRr , which have lower mortality
rates, and because of a faster loss of r-homozygotes from mating.
In a selfing population, only the competition factor is at work.
Outcrossing leads to faster depletion of Xrr and faster production of
XRr ’s, which are disease resistant. Thus the source of susceptibles is
diminished at a faster ratewith outcrossing, and the plateau period
of Yrr is shorter.
Phase 4. During this phase, the R-allele (AlleleR) starts to become
a substantial fraction of the population. In its early growth, it is
governed largely by Eq. (5a) alone, which means that its growth
rate is approximately aRR/(1+ρN∗)−b, whereN∗ is approximately
Xrr +Yrr .When AlleleR approaches its inflection point, Yrr decreases
rapidly, as it and Xrr (which is held at a relatively steady level
by top-down control by the disease) are out-competed by XRR
(and XRr , if outcrossing occurs). In the selfing case (F = 1) Yrr
declines more sharply than when F = 0, and undershoots its new
equilibrium level. The reason seems to be that in the selfing case
the interaction between the disease and the susceptibles, Xrr , is
somewhat like a Lotka–Volterra predator–prey relationship, and
produces dynamics similar to a rapidly damped oscillation, causing
Xrr to decline to values below those reached in the outcrossing
(F = 0) case. This undershoot by Yrr increases the probability of
extinction of the disease from the population when demographic
stochasticity is added. In the outcrossing case, the mating between
rr-homozygotes and Rr-heterozygotes tends to moderate that
Lotka-Volterra predator–prey effect.
Phase 5. In this phase, both AlleleR and Yrr are approaching their
new equilibrium values (i.e., where resistance alleles dominate in
the population, and endemic disease persists at a low level).

The individual-based (stochastic) model demonstrated that
there is a substantial effect of selfing on the persistence of the
disease in the population. Selfing, relative to outcrossing, tends
to decrease disease persistence time, due to a higher influx of
new susceptibles because of Rr–Rr and Rr–rr matings in the latter
case. The IBM also shows an effect of the type of breeding on the
possible extinction of the population, but not in theway thatmight
have been anticipated (see Question 3). When disease drastically
reduces the population of susceptibles, the only remaining
individuals are RR-homozygotes in the selfing case, whereas in
the outbreeding case they are mostly Rr-heterozygotes. In the
selfing case, these homozygotes, although low in numbers, have a
high probability of reproducing newhomozygotes. However, in the
outcrossing case, even though the same total number of R-alleles
exist at the time of outbreak of the disease, enough of the offspring
are rr-homozygotes that the resistant population could not build
up. In those cases population extinction occurs. Hence the selfing
population is generally more successful at avoiding extinction.
The stochastic models also predict the occasional extinction of
one of the alleles. Severe oscillations in host-parasite models can
lead to possible extinction of genetic variants (Seger, 1988); our
model does not undergo cycles, but can produce undershoots in
population levels.

The results shown here for both the deterministic and
stochastic models depend on the parameter values used in the
models. We restricted our study to the case aRR = aRr < arr ,
which is a reasonable assumption, and allowed us to focus on
the dynamics of the interaction, as the equilibrium values are the
same for selfing and outcrossing. Also, our examination of a range
of key parameters, α and β , indicated that significant qualitative
differences between selfing and outcrossing occurred over all of
these parameter ranges. However, our results also confirmed that
if costs of disease resistance are low, the polymorphism studied
here might not be maintained in small populations.
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