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Abstract. We consider a two-dimensional model of cell-to-cell spread of HIV-1 in tissue
cultures, assuming that infection is spread directly from infected cells to healthy cells and
neglecting the effects of free virus. The intracellular incubation period is modeled by a
gamma distribution and the model is a system of two differential equations with distributed
delay, which includes the differential equations model with a discrete delay and the ordinary
differential equations model as special cases. We study the stability in all three types of mod-
els. It is shown that the ODE model is globally stable while both delay models exhibit Hopf
bifurcations by using the (average) delay as a bifurcation parameter. The results indicate
that, differing from the cell-to-free virus spread models, the cell-to-cell spread models can
produce infective oscillations in typical tissue culture parameter regimes and the latently
infected cells are instrumental in sustaining the infection. Our delayed cell-to-cell models
may be applicable to study other types of viral infections such as human T-cell leukaemia
virus type 1 (HTLV-1).

1. Introduction

In the last decade, several theories have been presented in attempt to explain the
mechanisms that lead to the depletion of CD4+ lymphocytes in an infected in-
dividual. Since majority of infection occurs in the lymphatic tissues where 98%
of CD4+ lymphocytes reside (Rosemberg and Janossy [38]), understanding the
dynamics within lymphatic tissues is vital to uncovering information regarding
cellular infection and viral production. Many mathematical models have been de-
veloped to describe the immunological response to HIV-1 infection. Most of these
models focus on cell-free viral spread in a compartment such as the bloodstream,
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see, for example, Callaway and Perelson [3]. Kirschner, Lenhart and Serbin [15],
Kirschner and Webb [16–18], McLean and Kirkwood [24], McLean and Nowak
[25], Müller et al. [27], Nowak and Bangham [31], Nowak and May [32,33], Perel-
son, Kirschner and De Boer [35], Perelson [34], Perelson and Nelson [36], Wodarz
et al. [46], etc.

There is precedent for studying in vitro cell-to-cell spread of HIV-1 (as well
as that of other viruses) since many features are easier to determine experimen-
tally in tissue cultures than in, for example, a more complex medium such as the
bloodstream. Also, HIV-1 is thought to be active in areas such as the lymph nodes
and the brain where cell-to-cell spread would be a much more important mode of
infection than cell-free viral spread. In fact, it has been reported (Dimitrov et al. [6]
and Sato et al. [40]) that cell-to-cell spread of virus is favored over infections with
cell-free virus inocula. The data of Gummuluru et al. [11] support the hypothesis
that cell-to-cell spread og HIV-1 is the predominat route of viral spread since vi-
ral replication in a system with rapid cell turnover kinetics depends on cell-to-cell
transfer of virus. See also Bailey et al. [1], Bajaria et al. [2], Chun [4], Finzi and
Siliciano [7], Haase et al. [12,13], Philips et al. [37], Schacker et al. [41], etc.

In [43], Spouge et al. have studied HIV-1 cell-to-cell infection kinetics in tis-
sue cultures in terms of mathematical models and observed that the asymptotic
behavior is similar to that of a model representing cell-free viral spread. That is,
in ordinary differential equations models, under all realistic parameter ranges, the
system tends toward an “infected equilibrium”, in which healthy cells and infected
cells co-exist.

Upon infection with HIV-1, there is a short intracellular “eclipse phase” (often
referred to as “latency” in the literature), during which the cell is infected but has not
yet begun producing virus. Spouge et al. admitted that their system “does not include
a latent period after cells have been infected, ... latency might be modeled either by
a delay or by an explicit class of latently infected cells. ... We have omitted latency
because it is fast (about a day) on the time scales of interest here (at least a week)”.
They also pointed out that there are two methods to model this eclipse phase, by a
time delay or by an explicit class of latently infected cells. Perelson et al. [35] studied
a system with an explicit class of latently infected cells. Herz et al. [14] assumed that
cells become productively infected τ time units after initial infection. They reported
that including an intracellular delay did change the estimates of the viral clearance
rate but did not change the productively infected T cell loss rate. Culshaw and Ruan
[5] showed that such an intracellular delay did not change the stability of the infect-
ed steady state for clinically reported parameter values. Tam [45] investigated the
delay effect in a model which describes the interaction between a replicating virus
and host cells. Mittler et al. [26] assumed that the intracellular delay was continuous
and varied according to a gamma distribution and observed dramatical changes in
the estimates of viral clearance. Using the method of stages, Grossman [8,9] found
that including a delay model for the death of infected cells resulted in different
conclusions about residual transmission of infection in the presence of drugs that
effectively reduce viral load. Nelson et al. [28–30] extended the development of
delay models of HIV-1 infection and treatment to more general cases of combina-
tion antiviral therapy that is less than completely efficacious. Lloyd [22] observed
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that the models neglecting the intracellular delay before virion production can lead
to severe underestimates of the reproductive number and to overly optimistic pre-
dictions of how efficacious treatment must be in order to prevent the disease.

In this paper, we consider the cell-to-cell spread of HIV-1 in tissue cultures
(in vitro) and model the intracellular eclipse phase by a gamma distribution, that is,
a distributed delay representing the lag between the time a cell becomes infected
and when it begins to infect other cells. The model is then described by a system of
differential equations with distributed delay. When the distribution takes the form
of a delta function at a positive number τ, the model becomes a system of differ-
ential equations with a discrete delay. When τ = 0, the model reduces to a system
of ordinary differential equations (ODE) considered by Spouge et al. [43].

Does the cellular eclipse phase affect the qualitative properties of the model? If
so, how? We try to answer these questions and find that in fact the cellular eclipse
phase does change the dynamics of the model: it can cause the model to lose its
stability and induce fluctuations in the cell concentrations. This result indicates
that we must exercise caution when extrapolating such a model’s qualities to the
cell-free (or the in vivo) case.

In general, the model can have at most three steady states – trivial, healthy, and
infected. A transcritical bifurcation occurs when the fraction of infected cells sur-
viving the incubation period surpasses a critical value. If this fraction is too small
the healthy steady state is stable and the infected steady state is unfeasible. When
this fraction increases and passes through a critical value, the healthy steady state
becomes unstable and the infected steady state exists (and is stable under certain
conditions). A new result we obtain for the ODE model is the global stability of the
steady state. This is established via Liapunov’s method.

For the model with a discrete delay we examine under what conditions the
infected equilibrium retains stability. By using the results in [39], we find that the
fraction of infected cells surviving the incubation period also determines regions
of absolute and conditional stability in the delay model. For a small range of its
possible values, the infected equilibrium is asymptotically stable for all delay val-
ues, but once the fraction of cells surviving the incubation period increases beyond
a new critical value, the equilibrium is only conditionally stable, in the sense that
stability depends on the size of the delay. Moreover, the larger the fraction of cells
surviving the eclipse phase, the smaller the delay may be for the equilibrium to
retain stability.

We also study the model with distributed delay. By choosing a specific distribu-
tion (the weak kernel) and using the so-called linear chain trick, we carry on linear
stability analysis of the model. It is shown that the infected steady state is asymptot-
ically stable if the average delay is small and unstable if it is large enough. As in the
discrete delay case, a Hopf bifurcation occurs as the average delay passes through
a critical value and a periodic solution bifurcates from the infected equilibrium.
This causes fluctuations in the concentrations of both cell populations. Numerical
simulations are presented in all three cases to illustrate the stability and bifurcation
results.

The central thesis of this paper is how dramatically our results differ from those
presented in [43]. Their paper analyzed an ODE model and determined that its
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features were qualitatively similar to those of an ODE model representing cell-free
viral spread. However, the delayed cell-to-cell model exhibits markedly different
behavior from its ODE representation. While the infected equilibrium is globally
asymptotically stable in the ODE model, it is only conditionally stable in the delay
models. Moreover, given realistic parameter values this equilibrium is in fact unsta-
ble and surrounded by a family of periodic orbits born via the Hopf (delay-induced)
bifurcation. This shows that the delayed models of cell-to-cell spread produce sus-
tained infective oscillations in typical tissue culture parameter regimes. It is impor-
tant to note that in similar delayed models of cell-free viral spread (see [5] and [29]),
the infected equilibrium often remains stable under realistic parameter regimes.

The paper is organized as follows: the general model is described in section 2.
The ODE model is considered in section 3. Section 4 deals with the model with a
discrete delay. The model with the distributed delay model is analyzed in section 5.
The paper ends with a discussion in section 6.

2. The general model

Let C(t) represent the concentration of healthy cells and I (t) be the concentration
of infected cells. We consider the following system modeling the interaction of the
healthy and infected cells:

dC
dt

= rCC(t)

(
1 − C(t)+ I (t)

CM

)
− kIC(t)I (t),

dI
dt

= k′
I

∫ t

−∞
C(u)I (u)F (t − u)du− µI I (t),

(2.1)

where rC is the effective reproductive rate of healthy cells (the term is the total
reproductive rate for healthy cells r minus the death rate for healthy cells µC),
CM is the effective carrying capacity of the system, kI represents the infection

of healthy cells by the infected cells in a well-mixed system,
k′I
kI

is the fraction of
cells surviving the incubation period, µI is the death rate of the infected cells. The
interpretation of the variables and parameters and the values of the parameters are
given in Table 1.

The initial values of system (2.1) are

C(s) = φ(s) ≥ 0, I (s) = ψ(s) ≥ 0, s ∈ (−∞, 0],

where φ and ψ are continuous functions on (−∞, 0].
We assume that the cells, which are productively infectious at time t, were in-

fected u time units ago, where u is distributed according to a probability distribution
F(u), called the delay kernel. Throughout this paper, we use the family of generic
delay kernels of the form

F(u) = αn+1un

n!
e−αu,
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Table 1. Variables and parameters for cell-to-cell spread

Parameters and Variables Values Ref.

Dependent Variables
C concentration of healthy cells 5 × 105/mL [43]
I concentration of infected cells 500/mL [43]
Parameters and Constants
CM effective carrying capacity of healthy cells 2 × 106/mL [19]
kI rate constant for cell-to-cell spread 2 × 10−6/mL/day [43]
r healthy cell reproductive rate 0.7/day [6]
µc death rate of healthy cells 0.02/day [35]
µI death rate of infected cells 0.3/day [21]
Derived Quantities
rC (= r − µC) effective healthy cell reproductive rate 0.68/day [43]
k′
I k′

I /kI fraction of cells surviving the incubation period varies

where α > 0 is a constant and n ≥ 0 is an integer. According to MacDonald [23],
n is called the order of the delay kernel and the average delay is defined by

τ =
∫ ∞

0
uF(u)du = n+ 1

α
.

In the literature, the kernels with n = 0 and n = 1, i.e.,

F(u) = αe−αu and F(u) = α2ue−αu,

are called the weak and strong kernels, respectively, and are frequently used in bi-
ological modeling. Such kernels were also used in mathematical models of HIV-1
infections by Mittler et al. [26].

The system (2.1) has three equilibria: the trivial equilibrium E0 = (0, 0), the
healthy equilibrium E1 = (CM, 0), and the infected equilibrium E = (C, I ),

where

C = µI

k′
I

, I = rC(k
′
ICm − µI )

k′
I (kICm + rC)

if k′
I > µI /CM.

Notice that system (2.1) has some special cases. When

F(u) = δ(u),

the delta function, we have the following ordinary differential equations (ODE):

dC
dt

= rCC(t)

(
1 − C(t)+ I (t)

CM

)
− kI I (t)C(t),

dI
dt

= k′
I I (t)C(t)− µI I (t).

(2.2)

The initial conditions are

C(0) = C0 ≥ 0, I (0) = I0 ≥ 0,

where C0 and I0 are constants.
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When the kernel takes the following form

F(u) = δ(u− τ),

where τ ≥ 0 is a constant, then system (2.1) becomes the following delay differ-
ential equations (DDE) with a discrete delay:

dC
dt

= rCC(t)

(
1 − C(t)+ I (t)

CM

)
− kI I (t)C(t),

dI
dt

= k′
I I (t − τ)C(t − τ)− µI I (t).

(2.3)

The initial conditions are

C(s) = φ(s) ≥ 0, I (s) = ψ(s) ≥ 0, s ∈ [−τ, 0],

where φ andψ are continuous functions on [−τ, 0].Note that the ODE model (2.2)
is also a special case of the DDE model (2.3) with τ = 0.

In the following sections, we will consider the ODE model (2.2), the model
(2.3) with a discrete delay, and the following distributed model with a weak kernel

dC
dt

= rCC(t)

(
1 − C(t)+ I (t)

CM

)
− kIC(t)I (t),

dI
dt

= k′
I

∫ t

−∞
αe−α(t−u)C(u)I (u)du− µI I (t),

(2.4)

for which the initial values are

C(s) = φ(s) ≥ 0, I (s) = ψ(s) ≥ 0, s ∈ [−∞, 0],

where φ and ψ are continuous functions on [−∞, 0].

3. The ODE model

In this section, we discuss the ODE model (2.2). Notice that the system has the same
three equilibria as the general system (2.1) has: the trivial equilibriumE0 = (0, 0),
the healthy equilibrium E1 = (CM, 0), and the infected equilibrium E = (C, I ).

Stability analysis of these three equilibria reveals two possible scenarios:
(i) When CM <

µI
kI

(which, under parameter ranges given, usually is not the
case), the healthy cells predominate and infected cells die exponentially. In this
case E0 is unstable, E1 is asymptotically stable, and E is unstable. We note that
the condition for E1 to be stable is that kI < 1.5 × 10−7, or that less than 7.5% of
infected cells survive the incubation period to become infectious. In this case E1
is asymptotically stable. We note, however, that in reality it is unlikely that so few
cells would survive latency, and that the following case is more likely.

(ii) When µI
k′I
< CM <

rC
CM
, healthy cells and infected cells co-exist. This

would correspond to the case where, in models representing cell-free viral spread,
we have an endemically infected steady state. This means that infection is present
but it does not grow out of bound, and levels of healthy cells do not crash to zero. In
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this case E0 remains unstable, E1 is now also unstable and E has become asymp-
totically stable. A transcritical bifurcation occurs at CM > µI/k

′
I , corresponding

to k′
I = 1.5×10−7. With parameter values given in Table 1, numerical simulations

show that the positive equilibrium E is asymptotically stable (see Figure 3.1). In
the (C, I )−plane, trajectories spiral towards the equilibrium (see Figure 3.2).

The equilibrium E is, in fact, globally stable for µI
k′I
< CM <

rC
CM
.We can see

this by applying Liapunov’s theorem. We choose the following Liapunov function:

V (C, I) = c1

(
− C log

C

C
+ C − C

)
+ c2

(
− I log

I

I
+ I − I

)
(3.1)

This function is clearly positive if we choose c1, c2 to be positive constants, and it
equals zero for E = E. We have

dV

dt
= c1

dC/dt

C
(C − C)+ c2

dI/dt

I
(I − I )

= −c1
rC

CM
(C − C)2 +

[
c2k

′
I − c1

(rC − kICM)

CM

]
(C − C)(I − I ).

Assume that CM <
rC
kI

and choose c1 = k′
I , c2 = (rC−kICM)

CM
> 0.We have

dV

dt
= −k

′
I rC

CM
(C − C)2 < 0,
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Fig. 3.1. C(t) and I (t) converge to the steady state values.
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Fig. 3.2. The infected equilibrium is asymptotically stable.

which implies that the equilibrium E is globally asymptotically stable for µI
k′I
<

CM <
rC
kI
.We thus have proved

Proposition 3.1 If
µI

k′
I

< CM <
rC

kI
, (3.2)

then the infected equilibrium E of the ODE model (2.2) is globally asymptotically
stable.

4. The discrete delay model

In this section we consider the delay differential equation model with a discrete
delay, namely, system (2.3). Notice that the model has the same equilibria given in
section 2, E0 = (0, 0), E1 = (CM, 0), and E = (C, I ).

We are interested in the stability of the infected equilibrium E. The character-
istic equation of the linearized system is given by:

�(λ) = λ2 + pλ+ r + (sλ+ q)e−λτ = 0, (4.1)

where

p = µI (k
′
ICM + rC)

k′
ICM

q = rCµI
(k′
ICM − 2µI )

k′
ICM

r = rCµ
2
I

k′
ICM

s = −µI .
Characteristic equations of this form have been extensively examined in [39]. Cer-
tain conditions on the coefficients p, q, r and s will ensure either all roots of the
characteristic equation have negative real part or at least one root has positive real
part. The results of interest to us are as follows:
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Lemma 4.1 Consider a characteristic equation of the form (4.1).

(i) If p+ s > 0 and q + r > 0, then all roots of the characteristic equation have
negative real part in the absence of delay.

(ii) If p + s > 0, q + r > 0, and either (s2 − p2 + 2r < 0 and r2 − q2 > 0) or
(s2−p2+2r)2 < 4(r2−q2), then all roots of the characteristic equation have
negative real part for all delay values, that is, the equilibrium is absolutely
stable.

(iii) If p + s > 0, q + r > 0, and either r2 − q2 < 0 or (s2 − p2 + 2r > 0 and
(s2 − p2 + 2r)2 = 4(r2 − q2)), then there is a critical value τ0 defined by:

τ0 = 1

ω+
arccos

q(ω2+ − r)− psω2+
s2ω2+ + q2

, (4.2)

where ω+ satisfies

2ω2
+ = (s2 − p2 + 2r)+

√
(s2 − p2 + 2r)2 − 4(r2 − q2), (4.3)

when τ ∈ [0, τ0), all roots of the characteristic equation have negative real
part; when τ = τ0, there is a pair of purely imaginary roots ±iω+; and when
τ > τ0, the characteristic equation has at least one root with positive real
part.

We will use the above results to analyze the stability of the infected equilibrium.
Checking the first two conditions, we note that p + s > 0 holds if

µI

(
k′
ICM + rC

k′
ICM

− 1

)
> 0

which is obviously the case, since rC is positive. The second condition, q + r > 0,
holds whenever k′

I > µI /CM , which is exactly the condition for the feasibility
of the interior equilibrium in the ODE model. This is not surprising, because the
preceding two conditions are simply conditions for stability of the system in the
absence of delay.

Consider the third condition for the characteristic equation to have only roots
with negative real part. For this to be true, we require that both of the following
conditions hold:

r2 − q2 > 0, (4.4)

s2 − p2 + 2r < 0. (4.5)

The second condition holds for all values of parameters. However, the first con-
dition is somewhat more interesting. Notice that for r2 − q2 > 0, we require the
following inequality to be satisfied:

C2
Mk

′2
I − 4µICMk

′
I + 3µ2

I < 0.

This is true when
µI

CM
< k′

I <
3µI
CM

.
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We summarize the conditions on stability as follows:

Proposition 4.2 The positive equilibriumE of system (4.1) is asymptotically stable
for all delay τ when

µI

CM
< k′

I <
3µI
CM

. (4.6)

Thus, there is a region of absolute stability for the infected equilibrium. Notice
that this region corresponds to only between 7.5% and 22.5% of infected cells sur-
viving the latent period. The obvious question to ask is, what happens when more
cells survive (which, in realistic situations, is likely)?

We note that for k′
I > 3µI/CM , r2 − q2 < 0, and delay-induced instability

may occur because the characteristic equation has a root with positive real part.
Define

A =
√
((k′

ICM)
2 − µI )((k

′
ICM)

2 − 3µI ).

We summarize the conditions for bifurcation as follows:

Proposition 4.3 Assume that

k′
I >

3µI
CM

. (4.7)

Then there is a critical value τ0 given by

τ0 = 1

ω+
arccos

1

k′
ICM

[
(k′
ICM(rC+µI )−rCµI )A−2rCµI k′

ICM(k
′
ICM−2µI )

µIA+2rC(k′
ICM−2µI )2

]
,

where

ω+ = 1

2k′
ICM

√
2rCµI (2A− rCµI ),

such that the infected equilibrium E of system (4.1) is asymptotically stable when
τ ∈ [0, τ0) and unstable when τ > τ0. A Hopf bifurcation occurs at E when
τ = τ0; that is, a family of periodic solutions bifurcates from E when τ passes
through the critical value τ0.

Notice that τ0 depends on k′
I . In the following, we will see that for larger values

of k′
I , the critical value τ0 gets smaller, whereas the periods and amplitudes of the

oscillatory solutions get larger.
Using values of k′

I corresponding to 25%, 50%, 75% of cells surviving incuba-
tion, we obtain the following results for the critical value of the delay.

Suppose that 25% of infected cells survive incubation. This corresponds to a
value of k′

I = 5 × 10−7. In this case, using the formulas given above, we obtain a
critical value of the delay to be τ0 = 6.23 days. Since the actual incubation period
is one day, we do not expect this to be of biological significance. Numerical simu-
lations show that bothC and I are stable for realistic values of all other parameters,
when k′

I = 5 × 10−7.
Now suppose that half the infected cells survive incubation. In this case, the

critical value for τ0 obtained analytically is 0.82 days, which is of biological sig-
nificance. Numerical simulations show that for k′

I = 10−6 and τ = 0.4 < τ0,
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the components C(t) and I (t) are converging to the steady state values as time
increases (see Figure 4.1). In the (C, I )−plane, trajectories spiral towards the equi-
librium (see Figure 4.2).

When the delay is increased to τ = 1 > τ0, the components C(t) and I (t)
oscillate with increasing time (see Figure 4.3). In the (C, I )−plane, trajectories are
approaching the periodic solution as the time increases (see Figure 4.4).

If 75% of the infected cells survive, numerical analysis shows that when k′
I

is smaller the oscillations are more frequent (i.e., the periods are shorter) and the
amplitudes are smaller. Thus, increasing the value of k′

I will increase the periods
and the amplitudes of the periodic solutions. There appears to be an interplay be-
tween the value of the delay and the fraction of infected cells surviving incubation.
Specifically, the more cells survive incubation, the smaller the critical value of the
delay must be to induce instability of the interior equilibrium.

5. The distributed delay model

Finally we consider the distributed delay model with a weak kernel, that is, system
(2.4). To study the stability of the infected equilibrium, let

X(t) =
∫ t

−∞
αe−α(t−u)C(u)I (u)du. (5.1)
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Fig. 4.1. C(t) and I (t) converge to the steady state values when τ < τ0, here τ = 0.4.



436 R.V. Culshaw et al.

0

200000

400000

600000

800000

1e+06

0 200000 400000 600000 800000 1e+06 1.2e+06 1.4e+06

time

C(t)

I(t)

Fig. 4.2. The infected equilibrium is asymptotically stable when τ = 0.4 < τ0.

Fig. 4.3. The oscillations of C and I vs. time, τ = 1

Then system (2.4) is equivalent to the following ODE system

dC
dt

= rCC(t)

(
1 − C(t)+ I (t)

CM

)
− kIC(t)I (t),

dI
dt

= k′
IX(t)− µI I (t),

dX
dt

= αC(t)I (t)− αX(t).

(5.2)

The positive steady state of system (5.2) is given by E = (C, I ,X), where X =
µI
k′I
I . Linearizing the system at the steady state E, we obtain the characteristic

equation
λ3 + a1(α)λ

2 + a2(α)λ+ a3(α) = 0, (5.3)
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Fig. 4.4. There is an orbitally asymptotically stable periodic solution when τ = 1 > τ0.

where

a1(α) = rC

CM
C + µI + α,

a2(α) = α(
rC

CM
C)+ µI rC

CM
C,

a3(α) = α(k′
I + rC

CM
)µI I .

By Routh-Hurwitz criteria, the positive steady state E is asymptotically stable if
and only if

a1(α) > 0, a3(α) > 0 and a1(α)a2(α)− a3(α) > 0 (5.4)

for all values of α. If there is an α0 > 0 such that

a1(α0)a2(α0) = a3(α0), (5.5)

then the characteristic equation (5.3) becomes

[λ+ a1(α0)][λ
2 + a2(α0)] = 0,

which has roots

λ1 = −a1(α0) < 0, λ2,3 = ±i
√
a2(α0).

If the transversality condition

dReλ2,3

dα

∣∣∣∣
α=α0

�= 0 (5.6)

holds, then a Hopf bifurcation occurs atE when α passes through the critical value
α0.After some calculations, we have

dReλ2,3

dα

∣∣∣∣
α=α0

= − 1

4[a2
1(α)+ a2(α)]

d

dα
[a1(α)a2(α)− a3(α)]|α=α0 .

Summarizing the above analysis, we have the following results.
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Proposition 5.1 If conditions in (5.4) are satisfied, then the positive steady state
E of system (2.4) is asymptotically stable. If there is a critical value α0 > 0 such
that conditions (5.5) and

d

dα
[a1(α)a2(α)− a3(α)]|α=α0 �= 0

are satisfied, then a Hopf bifurcation occurs at E; that is, a family of periodic
solutions bifurcates from E when α passes through the critical value α0.

Notice that for the weak kernel αe−αu, the average delay is defined as τ = 1
α

.
The above analysis demonstrates that when τ is small (i.e. when α is large), the
steady state is stable. When τ is sufficiently large (i.e. as α becomes smaller), the
steady state becomes unstable and a Hopf bifurcation occurs. That is, a periodic
solution bifurcates from the steady state when α passes a critical value α0.

With parameter values given in Table 1 and a value of k′
I = 1.5 × 10−6,

α0 ≈ 1.95. Numerical simulations show that the steady stateE = (C, I ) is asymp-
totically stable when α > α0 (i.e., τ̄ < τ̄0)(see Figure 5.1). In the (C, I )−plane,
trajectories spiral towards the equilibrium (see Figure 5.2).

When α = α0 (i.e., τ̄ = τ̄0), the steady state Ē loses its stability and Hopf bi-
furcation occurs. When α < α0 (i.e., τ̄ > τ̄0), the steady state Ē becomes unstable
and there is a periodic solution surrounding Ē (see Figures 5.3 and 5.4).

Similarly, we can analyze system (2.1) with a strong kernel F(u) = α2ue−αu
and obtain similar results on stability and bifurcation of the model.
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Fig. 5.1. C(t) and I (t) converge to the steady state values when α > α0, here α = 5.
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Fig. 5.2. The infected equilibrium is asymptotically stable when α = 5 > α0.
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Fig. 5.3. C(t) and I (t) oscillate about the steady state values when α < α0, here α = 1.5.

6. Discussion

It is known that cell-to-cell spread may be more effective than cell-to-free virus
spread in transmitting HIV-1 ([6,11,37,40]). An infectious HIV-1 virion typical-
ly has about one attachment opportunity during a 1-hour incubation in 5 × 105

cells/mL ([42]). For a viral strain taking on the order of 10 hours for spontaneous
inactivation, an infectious virion in suspension attaches to a cell before inactivating
as long as the cell concentration remains above 5 × 104 cells/mL ([20]). Thus, an
increase in cell concentration will increase the frequency of cell-to-cell contacts
and the infection rate. Since in lymph nodes the cell concentration is about 108

cells/mL, the cell-to-cell spread may be efficient in lymph nodes and such culture
models may be helpful in testing antiviral efficacy ([28]).
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Fig. 5.4. There is a periodic solution when α = 1.5 < α0.

We have modified the ODE model for cell-to-cell infection of HIV-1 in tissue
cultures proposed by Spouge et al. [43] by incorporating a distributed time delay
to model the cellular incubation period (the amount of time between when a cell
is infected and when it actually begins to infect other cells). When the mean delay
τ = 0, we have the original ODE model whose interior (infected) equilibrium is
globally asymptotically stable provided k′

I > µI /CM ; that is, so long as at least
7.5% of newly infected cells survive the incubation period.

We then considered the delayed system with both discrete and distributed de-
lays. In the case when the delay kernel is the delta function centered at τ , we have a
DDE system with a discrete delay. By using stability analysis, we first determined
that the infected equilibrium would only be feasible if, under parameter ranges
given, more than 7.5% of newly infected cells survive the eclipse phase. In other
words, if fewer cells survive, the only two equilibria would be trivial (no cells at
all), or healthy (no infection, healthy cells at their carrying capacity). In this case,
the trivial equilibrium is unstable and the healthy equilibrium is asymptotically
stable.

However, if more than 7.5% of newly infected cells survive, the dynamics be-
come much more interesting. We discovered that there is a small range for the
number of infected cells surviving the eclipse phase within which the infected
equilibrium (which now exists) is stable regardless of the value of the delay. Spe-
cifically, if between 7.5% and 22.5% of newly infected cells do go on to become
infectious, the system tends to the infected steady state no matter the value of the
delay. However, we notice that absolute stability ceases to hold for a critical value
of k′

I . This value, with parameter ranges given, corresponds to 22.5% of cells sur-
viving the eclipse phase. If a larger proportion survive, the equilibrium becomes
conditionally stable and the delay is now a bifurcation parameter. Moreover, we
notice that the more cells survive, the smaller the delay is allowed to be for stability
to be retained. Once half or more of these cells survive and become infectious,
this critical value for τ0 becomes one day or smaller, which is significant biolog-
ically since the intracellular “latent period” in vitro has been estimated at about
one day [43]. Numerical solutions confirm that, for various proportions of cells
becoming infectious, when the delay passes through its critical values, bifurcations
occur whereby the equilibrium loses stability and sustained oscillations occur in
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both components. We also noted that the more infected cells survive, the larger the
periods and amplitudes of the oscillations.

These results hold also for the case where the delay is distributed. That is, if the
average delay passes through its critical value, a family of periodic solutions arises
via a Hopf bifurcation. So we conclude that, depending on the amount of infected
cells surviving the cellular eclipse phase, the infected equilibrium is only stable if
the average delay is quite small.

Numerical simulations confirmed that in realistic parameter regimes if a typical
tissue culture infection starts with a small fraction on cells infected, then the cell-to-
cell transmission (instantaneous (Fig. 3.1) or slightly delayed (Figs. 4.1 and 5.1))
gives an initial phase of exponential viral growth, followed by transient damped
oscillations, and eventually steady states. If the cellular eclipse phase is sufficiently
long (i.e. the average delay is large), then the cell-to-cell model exhibits oscillatory
modes; i.e. it produces infective oscillations. These results are significant in terms
of how much they differ from the results in the original paper by Spouge et al.
If cell-to-cell spread in tissue cultures is being used to, in some sense, “approx-
imate” the effects of cell-free viral spread, we must be sure that the qualities of
the models are similar in both cases. The existence of bifurcation and instability in
this delay model where none exists in the non-delay model indicates that we must
carefully examine both models so as to determine the most realistic mathematical
representation of HIV-1 spread.

HIV-1 may sustain itself in the body at different stages either by continuously
replicating in the CD4+ T cell population or by periodically maintaining the ca-
pacity of tissues to activate and infect CD4+ T cells. Our results on the delayed
models indicate that latently infected cells may be instrumental in sustaining the
infection, as reported by Grossman et al. [10], in the form of infective oscillations
(Spouge et al. [43]).

Our cell-to-cell models may be applicable to study the within-host dynamics
of other types of viral infections such as human T-cell leukaemia virus type 1
(HTLV-1), hepatitis B, hepatitis C, etc. For example, human T-cell leukaemia virus
type 1 (HTLV-1) infection is linked to the development of adult T-cell leukaemia
and HTLV-1 associated myelopathy/tropical spastic paraparesis. Previous work in
modeling dynamics of immune responses to persistent viruses has been presented
by Nowak and Bangham [31]. Tam [45] incorporated a discrete delay into one of
Nowak and Bangham’s models. Stilianakis and Seydel [44] took a more specific
approach to model the HTLV-1 infection with the infection process taking place
through cell-to-cell contact between actively infected cells and uninfected cells.
Wodarz, Nowak and Bangham [47] proposed a mathematical model for the in vivo
dynamics of HTLV-1 infection and showed that a high rate of viral replication is
consistent with the relative sequence invariance of HTLV-1 and might be neces-
sary to maintain a persistent infection. We leave the modeling and study of the
cell-to-cell HTLV-1 infection for future consideration.

We should note that, although these results are interesting, this model is still a
very simple one. Some realistic modifications can be made. For example, we have
assumed that the system is well-mixed, which may not be the case in tissue cultures.
One modification might be to replace the loss/gain term IC by another function,
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such as a Michaelis-Menten response function, to more accurately reflect the fact
that tissue cultures are not well-mixed. Another possible modification would be to
incorporate diffusion effects into the delayed model.
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