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Abstract Since there exist extrinsic and intrinsic incubation periods of pathogens in
the feedback interactions between the vectors and hosts, it is necessary to consider
the incubation delays in vector–host disease transmission dynamics. In this paper, we
propose vector–host disease models with two time delays, one describing the incu-
bation period in the vector population and another representing the incubation period
in the host population. Both distributed and discrete delays are used. By constructing
suitable Liapunov functions, we obtain sufficient conditions for the global stability
of the endemic equilibria of these models. The analytic results reveal that the global
dynamics of such vector–host disease models with time delays are completely deter-
mined by the basic reproduction number. Some specific cases with discrete delay are
studied and the corresponding results are improved.
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1 Introduction

The transmission of vector-borne diseases depends upon the attributes and require-
ments of at least three different living organisms: the pathologic agent (a virus,
protozoa, bacteria, or helminth), the vector (mosquitoes, sandflies, or ticks), and the
human host. For example, dengue, malaria, Raft Valley fever, West Nile virus, and
Yellow fever are transmitted through mosquitoes; sandflies are the vector for Leish-
maniasis; and Lyme disease is a tick-borne disease (Graz 1999). Due to their high
morbidity and mortality, vector-borne diseases continue to pose a significant burden
worldwide (Gubler 1998). In recent years, a number of factors such as global warm-
ing and environment change have contributed to the emergence and resurgence of
vector-borne diseases (Harrus and Baneth 2005; Sutherst 2004).

Mathematical modeling of vector-borne diseases started with the pioneer work
of Ross (1911) who constructed a system of two ordinary differential equations to
describe changes in densities of susceptible and infected vectors (mosquitoes) and
hosts (humans) and provided a quantitative understanding of the transmission dynam-
ics of malaria. Macdonald (1957) extended Ross’ basic model and introduced the
concept of basic reproduction number, which is defined as the average number of
secondary cases produced by an index case during its infectiousness period. The Ross–
Macdonaldmodel has been extended bymany researchers to includemore features, see
Aron andMay (1982), Anderson andMay (1991), Chitnis et al. (2006), Gao and Ruan
(2012), Koella (1991), Lou and Zhao (2010), Smith and McKenzie (2004), and the
references cited therein. The modeling scheme has also been modified to describe the
transmission dynamics of some other vector-borne diseases, such as Chagas disease
(Velasco-Hernández 1994), dengue (Esteva and Vargas 1998), Leishmaniasis (Dye
1996), West Nile virus (Bowman et al. 2005), etc.

Time delays occur naturally in vector-borne diseases due to processes in the devel-
opment of pathogens in the vector population that take a significant amount of time,
particularly compared to the lifespan of the vector population. This incubation period
is called the extrinsic incubation period. Besides the incubation period in the vector
population, vector-borne pathogens also have an incubation period within the host
population, which is called the intrinsic incubation period. In Ruan et al. (2008), gen-
eralized the Ross–Macdonald type model by incorporating two discrete time delays
to represent the extrinsic incubation period in the vector population and the intrinsic
incubation period in the host population, respectively. They investigated the dynamics
of the generalized Ross–Macdonald model with two delays by evaluating the basic
reproduction number and showed that prolonging the incubation periods in either host
(human) or vector (mosquito) population could reduce the prevalence of infection.
Recently, vector–host disease models with time delays have been extensively stud-
ied by some researchers, see Atkinson et al. (2007), Fan et al. (2010), Lou and Zhao
(2010), Martcheva and Prosper (2013), and Vargas-De-León (2012). Since the incu-
bation latencies in both the vector and host populations may differ from individual
to individual, it has been suggested that distributed delays may be more suitable to
describe such latent periods (Takeuchi et al. 2000; Wei et al. 2008; Xiao and Zou
2013). In this paper, we extend the Ross–Macdonald type vector–host disease model
with two discrete delays in Ruan et al. (2008) by using distributed delays to describe
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the extrinsic and intrinsic incubation periods and by including both the susceptible
and infective vectors and hosts. By constructing suitable Liapunov functionals we
investigate the global dynamics of the model and its variants.

This paper is organized as follows. In Sect. 2 we introduce the vector-borne disease
modelswith distributed delays.We discuss the equilibria and their stability in Sect. 2.1,
show the persistence of the disease in Sect. 2.2, and establish the global stability of
the disease-free and the endemic equilibria, respectively, in Sect. 2.3. In Sect. 3, we
consider an extended model with direct transmission and establish the global stability
of the endemic equilibrium. In Sect. 4, we discuss the special case when the distributed
delays reduce to discrete delays and present some results on the global stability in the
Ross–Macdonald vector–host model with discrete delays, which are related to the
models considered in Ruan et al. (2008) and Wei et al. (2008). Our results show that
the global stability of the positive equilibria in these models is completely determined
by the basic reproduction number.

2 The vector–host model with distributed delay

Divide the host population into three compartmental classes: the number of suscep-
tible individuals Sh(t), the number of infective individuals Ih(t), and the number of
recovered or immune individuals Rh(t). The vector population is divided into two
groups: susceptible vectors Sv(t), and infective vectors Iv(t). Since we focus on the
effect of incubation periods on the global dynamics, without loss of generality we
assume that the total populations of hosts Nh and vectors Nv are constants. Similar
assumption has been made in Ross (1911), Macdonald (1957), Anderson and May
(1991), Ruan et al. (2008), Wei et al. (2008), Xiao and Zou (2013), etc. Let�h and�v

denote the birth rate of the hosts and vectors, respectively, and μh , μv are the nature
death rate of the hosts and vectors, respectively. In addition, let αh be the recovery
rate of the host population. b is the average rate of biting on hosts by a single vector
(number of bites per unit time), and the hosts are always sufficient in abundance, so
that it is reasonable to assume that the biting rate b is constant. Thus, the number of
bites on hosts per unit time per host is b

Nh
. A susceptible vector becomes infected

upon biting an infected host Ih with a biting rate b and the probability of transmission
of the disease is given by ˜βv . Furthermore, it is assumed that infected vectors bite at
the same rate as susceptible vectors, namely b. We denote by ˜βh the probability of
transmission of the pathogen from infected vector to susceptible host.

Since there exist extrinsic and intrinsic incubation periods for the interactions
between vectors and hosts (Ruan et al. 2008), it is reasonable to consider the incu-
bation delays in both vectors and hosts. In reality, however, the incubation period is
not a number but an interval during which the maturation of the parasite occurs in
different hosts and vectors. Hence, we assume that the incubation period is a distrib-
uted parameter (see Cushing 1977; McDonald 1978). Since it is possible that some
hosts recovered from parasitemia during this incubation period (Smith and McKenzie
2004), of those individuals recovered from infected τ unit times ago, only a propor-
tion b

Nh
˜βh

∫ τh
0 g̃h(τ )Sh(t − τ)Iv(t − τ)e−(αh+μh)τdτ is infectious at the present time

t . Here the kernel function g̃h(τ ) represents the probability distribution of the infec-
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tivity of the parasites in host population where the time taken to become infectious
is τ , which is a random variable. Similarly, based on the facts that the average total
rate of contacts between hosts and vectors must be conserved (Ross 1911, P667), we
can show that b

Nh
˜βv

∫ τv

0 g̃v(τ )Sv(t − τ)Ih(t − τ)e−μvτdτ gives the incidence of new
cases of infection for the vectors at the present time t . The kernel function g̃v(τ )

represents the infectivity on susceptible vectors during the intrinsic incubation period.
Here, τh and τv are, respectively, the upper limits of the parasite’s incubation periods in
hosts and vectors. The terms e−μvτ and e(−μh+αh)τ account for the individual survival
probability in vectors and hosts, respectively.

For simplicity, we introduce the following notation:

βh = b

Nh

˜βh, βv = b

Nh

˜βv, gv(τ ) = e−μvτ g̃v(τ ), gh(τ ) = g̃h(τ )e−(μh+αh)τ .

Moreover, we impose the following assumptions.

(i) gv(τ ) ≥ 0 and gh(τ ) ≥ 0 for 0 ≤ τ ≤ h and are continuous on [0, h];
(ii) gv(τ ) and gh(τ ) satisfy

∫ τv

0
gv(τ )dτ = av,

∫ τh

0
gh(τ )dτ = ah .

Let C denote the Banach space C([−h, 0],R) of continuous functions mapping
the interval [−h, 0] into R equipped with the sup-norm ||ψ || = sup−h≤θ≤0 |ψ(θ)|.
The nonnegative cone of C is defined as C+ = C([−h, 0],R+). Under the above
assumptions, our model under consideration with distributed incubation delays can be
formulated as follows:

dSh(t)

dt
= �h − βh Sh(t)Iv(t) − μh Sh(t),

d Ih(t)

dt
= βh

∫ τh

0
gh(τ )Sh(t − τ)Iv(t − τ)dτ − (μh + αh)Ih(t),

dRh(t)

dt
= αh Ih(t) − μh Rh(t),

dSv(t)

dt
= �v − βvSv(t)Ih(t) − μvSv(t),

d Iv(t)

dt
= βv

∫ τv

0
gv(τ )Sv(t − τ)Ih(t − τ)dτ − μv Iv(t).

Since the variable Rh(t) does not appear in the other equations, it is sufficient to
analyze the behavior of the model without the equation of Rh(t). Thus, we investigate
the following system:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

dSh(t)
dt = �h − βh Sh(t)Iv(t) − μh Sh(t),

d Ih(t)
dt = βh

∫ τh
0 gh(τ )Sh(t − τ)Iv(t − τ)dτ − (μh + αh)Ih(t),

dSv(t)
dt = �v − βvSv(t)Ih(t) − μvSv(t),

d Iv(t)
dt = βv

∫ τv

0 gv(τ )Sv(t − τ)Ih(t − τ)dτ − μv Iv(t).

(2.1)
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Associated with system (2.1), we also consider the following initial conditions

{

Sh(θ) = φ1(θ), Ih(θ) = φ2(θ), Sv(θ) = φ3(θ), Iv(θ) = φ4(θ), for θ ∈ [−h, 0],
φ1(0)>0, φ3(0)>0, φi (θ)≥0, θ ∈ [−h, 0], h = max{τv, τh}, φi ∈ C+; i = 1, · · · , 4.

(2.2)

By the fundamental theory of functional differential equations, we can show that
system (2.1)with initial conditions (2.2) has a unique solution (Sh(t), Ih(t), Sv(t), Iv(t))
which is nonnegative for all t ≥ 0. Moreover, the first equation of (2.1) implies that
lim supt→∞ Sh(t) ≤ �h

μh
. From the first two equations of (2.1), we get

∫ τh

0
gh(τ )S′

h(t − τ)dτ + I ′
h(t) = �h

∫ τh

0
gh(τ )dτ

−μh

∫ τh

0
gh(τ )Sh(t − τ)dτ − (μh + αh)Ih(t)

≤ �hah − (μh + αh)Ih(t).

Let xh(t) = ∫ τh
0 gh(τ )S(t − τ)dτ . Then, we have xh(t) ≤ ah�h

μh
for t ≥ 0. Choose

sufficiently small μ̃h such that μ̃h < μh . Obviously, we have μ̃h ≤ μh + αh . Thus,
we have

(xh(t) + Ih(t))
′ ≤ �hah − (μh + αh)Ih(t) ≤ 2�hah − μ̃h(xh(t) + Ih(t)),

and thus lim supt→∞(xh(t)+ Ih(t)) ≤ 2�hah
μ̃h

. Since xh(t) ≥ 0, it is easy to obtain that

lim supt→∞ Ih(t) ≤ 2�hah
μ̃h

.Similarly, it is easy to obtain that lim supt→∞ Sv(t) ≤ �v

μv
.

Choose a sufficiently small positive number μ̃v such that μ̃v < μv. Thus, we have
lim supt→∞ Iv(t) ≤ 2�vav

μ̃v
.

Let

	 = {(Sh, Ih, Sv, Iv) ∈ C+ × C+ × C+ × C+ : ||Sh ||
≤ �h

μh
, ||Ih || ≤ 2�hah

μ̃h
, ||Sv|| ≤ �v

μv

, ||Iv|| ≤ 2�vav

μ̃v

}.

It can be verified that the region 	 is positively invariant with respect to system
(2.1) with (2.2). Therefore, for system (2.1), we have the following proposition.

Proposition 2.1 There exists a unique solution (Sv(t), Iv(t), Sh(t), Ih(t)) of system
(2.1) with initial conditions (2.2). Moreover, all the solutions of system (2.1) are
nonnegative for all t ≥ 0 and ultimately uniformly bounded in 	.

2.1 Equilibria and their stabilities

Let Ẽ = (S̃h, Ĩh, S̃v, Ĩv) be an equilibrium. It must satisfy the following equations

�h − βh S̃h Ĩv − μh S̃h = 0,
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βh

∫ τh

0
gh(τ )S̃h Ĩvdτ − (μh + αh) Ĩh = 0,

�v − βv S̃v Ĩh − μv S̃v = 0,

βv

∫ τv

0
gv(τ )S̃v Ĩhdτ − μv Ĩv = 0. (2.3)

Using
∫ τv

0 gv(τ )dτ = av ,
∫ τh
0 gh(τ )dτ = ah, and letting

R0 = βhβvahav�h�v

(μh + αh)μhμ2
v

,

it is easy to see that if R0 < 1, system (2.1) has a disease-free equilibrium E0 =
(S0v , 0, S0h , 0), where S

0
v = �v

μv
, S0h = �h

μh
. Apart from E0, ifR0 > 1, system (2.1) has

a unique endemic equilibrium E∗ = (S∗
h , I

∗
h , S∗

v , I ∗
v ), where

S∗
h = �hμv(βv I ∗

h + μv)

I ∗
h (βhβvav�v + βvμhμv) + μhμ2

v

, S∗
v = �v

βv I ∗
h + μv

,

I ∗
v = βvav�v I ∗

h

μv(βv I ∗
h + μv)

, I ∗
h = μhμ

2
v(R0 − 1)

βhβvav�v + βvμhμv

.

Following Driessche andWatmough (2002),R0 can be defined the basic reproduc-
tion number of model (2.1).

Now we consider the linearized system of (2.1) at an equilibrium Ẽ =
(S̃h, Ĩh, S̃v, Ĩv). Let

xh(t) = Sh(t) − S̃h, xv(t) = Sv(t) − S̃v, yh(t) = Ih(t) − Ĩh, yv(t) = Iv(t) − Ĩv.

We obtain the following linearized system

⎧

⎪

⎪

⎨

⎪

⎪

⎩

x ′
h(t) = −βh Ĩvxh(t) − βh S̃h yv(t) − μhxh(t),
y′
h(t) = βh Ĩv

∫ τh
0 gh(τ )xh(t−τ)dτ +βh S̃h

∫ τh
0 gh(τ )yv(t−τ)dτ −(μh+αh)yh(t),

x ′
v(t) = −βv Ĩh xv(t) − βv S̃v yh(t) − μvxv(t),
y′
v(t) = βv Ĩh

∫ τv

0 gv(τ )xv(t − τ)dτ + βv S̃v

∫ τv

0 gv(τ )yh(t − τ)dτ − μv yv(t).

(2.4)

From (2.4), we obtain the following characteristic equation at the disease-free equi-
librium E0

(λ + μh)(λ + μv)

[

(λ + μv)(λ + μh + αh)

−βhβv�v�h

μhμv

∫ τh

0
gh(τ )e−λτdτ

∫ τv

0
gv(τ )e−λτdτ

]

= 0. (2.5)
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It is clear that both λ = −μh and λ = −μv are roots (2.5). All other roots of (2.5)
are determined by the following equation:

H(λ) := (λ + μv)(λ + μh + αh) − Qλ = 0, (2.6)

where, for simplicity, we use the notation

Qλ = βhβv�v�h

μhμv

∫ τh

0
gh(τ )e−λτdτ

∫ τv

0
gv(τ )e−λτdτ.

For the case R0 < 1, we suppose on the contrary that E0 is not locally asymp-
totically stable. Suppose that λ is a root of H(λ) with Reλ ≥ 0, which implies that
|e−λτ | ≤ 1 for any τ ≥ 0. However, from (2.6) it is easy to obtain the following
inequalities

|Qλ| ≤ βhβv�v�hahav

μhμv

, μv ≤ |λ + μv|, μh + αh ≤ |λ + μh + αh |. (2.7)

From (2.6) and (2.7), we obtain that

μv(μh + αh) ≤ |λ + μv||λ + μh + αh | = |Qλ| ≤ βhβv�v�hahav

μhμv

, (2.8)

which is a contraction. Hence, if R0 < 1, then the disease-free equilibrium E0 of
system (2.1) is locally asymptotically stable.

For the caseR0 > 1, it is directly seen that

H(0) = μv(μh + αh) − βhβv�v�hahav

μhμv

= μv(μh + αh)(1 − R0) < 0

and

lim
λ→+∞ H(λ) = +∞

holds for λ ∈ R. Therefore, system (2.1) has at least one positive real root. Hence, if
R0 > 1, the disease-free equilibrium E0 is unstable.

Summarizing the above discussion, we obtain the following results.

Proposition 2.2 IfR0 < 1, the disease-free equilibrium E0 of system (2.1) is locally
asymptotically stable; If R0 > 1, the disease-free equilibrium E0 is unstable.

Now we explore the stability of the endemic equilibrium E∗. By system (2.4) and
direct calculations, the characteristic equation at E∗ has one negative root −μv and
the other roots can be determined by the following equation

(λ + μh + αh)(λ + μv + βv I
∗
h )(λ + μh + βh I

∗
v )
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= (λ + μh)βh S
∗
h

∫ τh

0
e−λτ gh(τ )dτβvS

∗
v

∫ τv

0
e−λτ gv(τ )dτ. (2.9)

We claim that Eq. (2.9) has no roots with positive real part. In fact, dividing both
sides by λ + μh , we have

LHS
def= (λ + μh + αh)(λ + μv + βv I ∗

h )(λ + μh + βh I ∗
v )

λ + μh

RHS
def= βhβvS

∗
h S

∗
v

∫ τh

0
e−λτ gh(τ )dτ

∫ τv

0
e−λτ gv(τ )dτ. (2.10)

If λ is a root with Reλ ≥ 0, it follows from (2.10) that

|LHS| > |(λ + αh + μh)||(λ + μv)| ≥ (αh + μh)μv,

|RHS| ≤ βhβvS
∗
h S

∗
vahav. (2.11)

Using the relation (2.3) of the endemic equilibrium, we obtain

|LHS| > |(αh + μh)μv = βh S∗
h I

∗
v ah

I ∗
h

βvS∗
v I

∗
h av

I ∗
v

= ahavβhβvS
∗
h S

∗
v ≥ |RHS|.

It is a contradiction. Thus, Eq. (2.9) cannot have any roots with positive real part.
In conclusion, we summarize the above result in the following lemma.

Proposition 2.3 If R0 > 1, then the endemic equilibrium E∗ = (S∗
h , I

∗
h , S∗

v , I ∗
v ) of

system (2.1) is locally asymptotically stable.

2.2 Uniform persistence

Now we present some conditions to ensure the uniform persistence of system (2.1).
The persistence theory for infinite-dimensional systems was first developed by Hale
andWaltman (1989). In recent years, the methods and techniques have been employed
by other authors to study delay models (see, Freedman and Ruan 1995; Kuang 1993;
Ma et al. 2004; Zhao 2003; Smith and Zhao 2001).

To obtain the persistence result in system (2.1), we first introduce the following
notation and terminology.Let X = C+×C+×C+×C+, and (X, d)be a completemetric
space with metric d, and X0 be an open subset of X . Set ∂X0 := X/ X0 the boundary
of X . Clearly, ∂X0 is a closed subset of X, X = X0

⋃

∂X0, and X0
⋂

∂X0 = ∅.

Definition 2.4 A lower semicontinuous function p : X → R+ is called a gen-
eralized distance function for the semiflow �(t) : X → X if for every x ∈
(X0

⋂

p−1(0))
⋃

p−1(0,∞), we have p(�(t)x) > 0,∀t > 0.

Now, we use the following persistence theorem from Theorem 3 in Smith and Zhao
(2001).

Lemma 2.5 Let p be a generalized distance function for the semiflow �(t) : X → X
with �(t)X0 ⊂ X0 for all t ≥ 0. Assume that
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(P1) �(t) : X → X has a global attractor A;
(P2) There exists a finite sequence M = {M1, · · · , Mk} of disjoint, compact, and

isolated invariant sets in ∂X0 with the following properties:
(i) ∪x∈M∂

ω(x) ⊂ ∪k
i=1Mi;

(ii) No subset of M forms a cycle in ∂X0;
(iii) Each Mi is isolated in X;
(iv) Ws(Mi )

⋃

p−1(0,∞) = ∅, 1 ≤ i ≤ k.

there exists δ > 0 such that lim inf t→+∞ p(�(t)x) ≥ δ for all x ∈ X0.

We now state and prove the following result on uniform persistence of system (2.1).

Theorem 2.6 Let R0 > 1. Then system (2.1) is uniformly persistent in Int	.

Proof Set

X = {(φ1(θ), φ2(θ), φ3(θ), φ4(θ)) : φ1(θ)

≥ 0, φ2(θ) ≥ 0, φ3(θ) ≥ 0, φ4(θ) ≥ 0,−h ≤ θ ≤ 0 },
X0 = {(φ1(θ), φ2(θ), φ3(θ), φ4(θ)) : φ1(θ) > 0, φ2(θ) > 0, φ3(θ) > 0,

φ4(θ) > 0,−h ≤ θ < 0},
∂X0 = X/ X0.

Obviously, X0 is an open set relative to X . Let x(t, φ) be the unique solution of system
(2.1) with x0(φ) = φ. Let � : X → X be the Poincaré map associated with system
(2.1); i.e., �(t) = xt (φ) for all φ ∈ X . It is easy to see that �(t)(X0) ⊂ X0 for all
t ≥ 0 . Note that Proposition 2.1 implies that � : X → X is point dissipative and �n0

is compact whenever n0T > τ . Thus, it follows from Magal and Zhao (2005) that
�(t) admits a global attractor A in X . Now it suffices to show that �(t) is uniformly
persistent with respect to (X0, ∂X0).

To attain this end,we have to verity that the condition (P2) of Lemma2.5 is satisfied.
First, it follows from Proposition 2.1 that both X and X0 are positively invari-

ant. ∂X0 should be relatively closed in X . In fact, let U be a bounded set of X ,
and k1, k2 be such that for any (φ1, φ2, φ3, φ4) ∈ U , φ1 < k1, φ3 < k2, and
||φ2|| < k1, ||φ4|| < k2. Consider the solution (S̄v(t), Īv(t), S̄h(t), Īh(t)) with
initial conditions (S̄v(0) = k1, Īv0 = φ2(θ), S̄h(0) = k2, Īh0 = φ4(θ)). By a com-
pletely similar argument as the one used in Fan et al. (2010), we can show that
for any solution (Sv(t), Iv(t), Sh(t), Ih(t)) with initial conditions from U , we have
Sv(t) < S̄v(t), Iv(t) < Īv(t), Sh(t) < S̄h(t), Ih(t)) < Īh(t) for all t ∈ [0, t0].

Set

M∂ = {φ ∈ ∂X0 : �(t)φ satisfies system (2.1) and �(t)φ ∈ ∂X0,∀t ≥ 0}.

We now claim that M∂ = {(�v

μv
, 0, �h

μh
, 0)}. Assuming φ ∈ M∂ , it suffices to show

that Iv(t) = Ih(t) = 0,∀t ≥ 0. Assume on the contrary that there exists t0 > 0 such
that either (a) Iv(t0) > 0, Ih(t0) = 0; or (b) Iv(t0) = 0, Ih(t0) > 0.
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In case (a), from the second equation of (2.1), we have

İh(t)|t=t0 = βh

∫ τh

0
gh(τ )Sh(t0 − τ)Iv(t0 − τ)dτ > 0.

Hence, there is a sufficiently small constant ε0 such that Ih(t) > 0,∀t ∈ (t0, t0+ε0).
On the other hand, from Iv(t0) > 0, we obtain a positive ε1 (0 < ε1 < ε0) such that
Iv(t) > 0,∀t ∈ (t0, t0 + ε1). Thus, we obtain Iv(t) > 0, Ih(t) > 0,∀ ∈ (t0, t0 + ε).
This is in contradiction with the assumption that �(t)φ ∈ M∂ . Similarly we can show
that the case (b) does not hold.

Let 	2 = ⋃

x∈A ω(x), where A is the global attractor of P restricted to ∂X0. We
now show that 	2 = {E0}. In fact, it follows from 	2 ⊆ M∂ and the first and third
equations of (2.1). We have limt→+∞ Sh(t) = �h

μh
, limt→+∞ Sv(t) = �v

μv
. Thus, {E0}

is the isolated compact invariant set for �(t) in M∂ .
Finally we need to show that Ws(E0)

⋂

X0 = ∅, where Ws(E0) is a sta-
ble set of E0 for �(t). Assume on the contrary, there exists a positive orbit
(Sv(t), Iv(t), Sh(t)), Ih(t)) ∈ X0 of (2.1) such that

lim
t→+∞ Sv(t) = �v

μv

, lim
t→+∞ Iv(t) = 0, lim

t→+∞ Sh(t) = �h

μh
, lim

t→+∞ Ih(t) = 0.

(2.12)

Then, from (2.12) for any sufficiently small enough constant ε2 > 0, there exists a
positive constant T0 = T0(ε2) such that

Sv(t) >
�v

μv

− ε2 > 0, Sh(t) >
�h

μh
− ε2, ∀t ≥ T0. (2.13)

Since R0 = βhβvahav�h�v

(μh+μv)μhμ
2
v

> 1, for the above given ε2, we have

ahavβhβv

(μh + αh)μv

(

�h

μh
− ε2

) (

�v

μv

− ε2

)

> 1. (2.14)

From the second and fourth equations of system (2.1) and using (2.13), we obtain
for any t > T0 that

I ′
h(t) ≥ βh

(

�h

μh
− ε2

)∫ τh

0
gh(τ )Iv(t − τ)dτ − (μh + αh)Ih(t),

I ′
v(t) ≥ βv

(

�v

μv

− ε2

) ∫ τv

0
gv(τ )Ih(t − τ)dτ − μv Iv(t).

Using the mean value theorem for integrals, we know that for any time t , there is a
tξ such that

∫ τv

0
gv(τ )Ih(t − τ)dτ = av Ih(tξ ) for t − h ≤ tξ ≤ t. (2.15)
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Thus, there exist T0 such that t > T0 + τ ,

I ′
h(t) ≥ βh

(

�h

μh
− ε2

)∫ τh

0
gh(τ )Iv(t − τ)dτ − (μh + αh)Ih(t),

I ′
v(t) ≥ avβv

(

�v

μv

− ε2

)

Ih(tξ ) − μv Iv(t). (2.16)

If (Iv(t), Ih(t)) → (0, 0) as t → ∞, then by a standard comparison argument
(see Smith 1995, Theorem 5.1.1, Page 78), the solution (xv(t), yh(t)) of the following
equations

x ′
v(t) = avβv

(

�v

μv

− ε2

)

yh(ξt ) − μvxv(t),

y′
h(t) = βh

(

�h

μh
− ε2

)∫ τh

0
gh(τ )xv(t − τ)dτ − (μh + αh)yh(t) for t > T0 + τ

(2.17)

with initial conditions xv(θ) = ψ2(θ), yh(θ) = ψ4(θ) for θ ∈ [−h, 0] and ∀t ∈
[T0, T0 + τ ] converges to (0, 0) as well.

Set

W (t) = ahβh

μv

(

�h

μh
−ε2

) ∫ τh

0
gh(τ )xv(t−τ)dτ +yh(t)+(μh+αh)

∫ t

tξ
yh(s)ds.

(2.18)

By calculating the derivative of W (t), we obtain that

dW (t)

dt

∣

∣

∣

(2.17)
=

[

ahavβhβv

μv

(

�h

μh
− ε2

)(

�v

μv

− ε2

)

− (μh + αh)

]

y(tξ ) > 0.

It follows from (2.14) that W (t) goes to infinity or approaches a positive limit
as t → ∞ for R0 > 1. On the other hand, by our assumption, we have shown that
limt→∞ xv(t) = 0, limt→∞ yh(t) = 0. Thus, from (2.18), we have W (t) → 0 as
t → ∞. This is a contradiction. Therefore, we have Ws(E0)

⋂

X0 = ∅. By the
acyclicity theorem on uniform persistence for maps, it follows from Theorem 3.1.1
in Zhao (2003) that the semiflow �(t) : X → X is also uniformly persistent with
respect to X0. Therefore, from Theorem 4.5 in Magal and Zhao (2005), we obtain that
system (2.1) admits a positive solution �(t)φ with φ ∈ X0.

Let ρ(x) = d(x, ∂X0). It follows that �(t) : X0 → X0 has a compact global
attractor A0. Since A0 = �(T )A0, we see that φi (0) > 0 for all i = 1, . . . , 4. Let
M0 = ⋃

t∈[0,T ] φ(t)A0. Thus, we can obtain ϕi (0) > 0 for all ϕi ∈ M0, i = 1, . . . , 4.
Moreover, M0 ⊂ X0 and limt→∞ d(�(t)φ, M0) = 0. Now we define a continuous
function by

p(φ) = min
1≤i≤4

{φi (0)}, ∀φ ∈ X.
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Obviously, p : X → R+. Since M0 is a compact subset of X0, it follows that
infφ∈M0 p(φ) = minφ∈M0 p(φ). Therefore, there exists a positive constant δ > 0
such that

lim inf
t→+∞ (Sh(t, φ1), Ih(t, φ2), Sv(t, φ3), Iv(t, φ4)) = lim inf

t→+∞ p(�(t)x) ≥ δ.

This completes the proof of Theorem 2.6. ��

2.3 Global stability

In the previous section, we have established the local stability of the equilibria and
have shown that the incubation period delays have no effect on the local stability of
the equilibria for system (2.1). In this section, our objective is to derive global stability
results. Inspired by recent works of Huang and Takeuchi (2011), McCluskey (2010),
Shuai and van den Driessche (2013), Vargas-De-León (2012), and Yang et al. (2015),
we construct a suitable Liapunov functional to establish the global stability of the
endemic equilibrium E∗. We have the following theorem.

Theorem 2.7 IfR0 > 1, then the endemic equilibrium E∗ of system (2.1) is globally
asymptotically stable.

Proof By Proposition 2.3, it suffices to show the global attractiveness of E∗. Let
f (x) = x − 1 − ln x for x > 0. Because of the complexity of the expressions,
we define the Liapunov functional in components and take the derivative of each
component separately. Set

USv (t) = f

(

Sv(t)

S∗
v

)

, UIv (t) = f

(

Iv(t)

I ∗
v

)

,

U+Iv (t) =
∫ τv

0
gv(τ )

∫ t

t−τ

f

(

Sv(σ )Ih(σ )

S∗
v I

∗
h

)

dσdτ. (2.19)

First, we calculate the time derivatives of Usv (t) and UIv (t) along system (2.1)
obtain that

dUSv (t)

dt
= 1

S∗
v

(

Sv(t) − S∗
v

Sv(t)

)

dSv(t)

dt

= 1

S∗
v

(

Sv(t) − S∗
v

Sv(t)

)

(�v − βvSv(t)Ih(t) − μvSv(t))

= 1

S∗
v

(

Sv(t) − S∗
v

Sv(t)

)

[

βvS
∗
v I

∗
h − βvSv(t)Ih(t)) + μv(S

∗
v − Sv(t))

]

= −μv(Sv(t) − S∗
v )2

S∗
v Sv(t)

+ βv I
∗
h

(

1 − S∗
v

Sv(t)
− Sv(t)Ih(t)

S∗
v I

∗
h

+ Ih(t)

I ∗
h

)

. (2.20)

dUIv (t)

dt
= 1

I ∗
v

(

Iv(t) − I ∗
v

Iv(t)

)

d Iv(t)

dt
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= 1

I ∗
v

(

Iv(t) − I ∗
v

Iv(t)

)(

βv

∫ τv

0
gv(τ )Sv(t − τ)Ih(t − τ)dτ − μv Iv(t)

)

= 1

I ∗
v

(

Iv− I ∗
v

Iv(t)

)[

βvS
∗
v I

∗
h

∫ τv

0
gv(τ )

(

Sv(t−τ)Ih(t−τ)

S∗
v I

∗
h

− μv Iv(t)

βvavS∗
v I

∗
h

)]

dτ

= βvS∗
v I

∗
h

I ∗
v

∫ τv

0
gv(τ )

[

1 + Sv(t − τ)Ih(t − τ)

S∗
v I

∗
h

− Iv
I ∗
v

− Sv(t − τ)Ih(t − τ)I ∗
v

S∗
v I

∗
h Iv(t)

]

dτ. (2.21)

Taking the time derivative of U+Iv (t) with respect to t , we obtain

dU+Iv (t)

dt
= d

dt

∫ τv

0
gv(τ )

∫ t

t−τ

f

(

Sv(σ )Ih(σ )

S∗
v I

∗
h

)

dσdτ

=
∫ τv

0
gv(τ )

[

f

(

Sv(t)Ih(t)

S∗
v I

∗
h

)

− f

(

Sv(t − τ)Ih(t − τ)

S∗
v I

∗
h

)]

dτ

=
∫ τv

0
gv(τ )

(

Sv(t)Ih(t)

S∗
v I

∗
h

− ln
Sv(t)Ih(t)

S∗
v I

∗
h

− Sv(t − τ)Ih(t − τ)

S∗
v I

∗
h

+ ln
Sv(t − τ)Ih(t − τ)

S∗
v I

∗
h

)

dτ. (2.22)

Set

Uv(t) = av

βv I ∗
h
USv (t) + I ∗

v

βvS∗
v I

∗
h
UIv (t) +U+Iv (t).

By using (2.20)–(2.22) and calculating the time derivative of Uv(t) with respect to
t , we obtain

dUv(t)

dt
= −μvav(Sv(t) − S∗

v )2

βv I ∗
h S

∗
v Sv(t)

+ av

(

1 − S∗
v

Sv(t)
− Sv(t)Ih(t)

S∗
v I

∗
h

+ Ih(t)

I ∗
h

)

+
∫ τv

0
gv(τ )

[

1 + Sv(t − τ)Ih(t − τ)

S∗
v I

∗
h

− Iv
I ∗
v

− Sv(t − τ)Ih(t − τ)I ∗
v

S∗
v I

∗
h Iv(t)

]

dτ

+
∫ τv

0
gv(τ )

(

Sv(t)Ih(t)

S∗
v I

∗
h

− ln
Sv(t)Ih(t)

S∗
v I

∗
h

− Sv(t − τ)Ih(t − τ)

S∗
v I

∗
h

+ ln
Sv(t − τ)Ih(t − τ)

S∗
v I

∗
h

)

dτ

= −μvav(Sv(t) − S∗
v )2

βv I ∗
h S

∗
v Sv(t)

+
∫ τv

0
gv(τ )

[

2 − S∗
v

Sv(t)
− Iv(t)

I ∗
v

− Sv(t − τ)Ih(t − τ)I ∗
v

S∗
v I

∗
h Iv(t)

+ Ih(t)

I ∗
h
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− ln
Sv(t)Ih(t)

S∗
v I

∗
h

+ ln
Sv(t − τ)Ih(t − τ)

S∗
v I

∗
h

]

dτ. (2.23)

Similarly, set

USh (t) = f

(

Sh(t)

S∗
h

)

, UIh (t) = f

(

Ih(t)

I ∗
h

)

,

U+Ih (t) =
∫ τh

0
gh(τ )

∫ t

t−τ

f

(

Sh(σ )Iv(σ )

S∗
h I

∗
v

)

dσdτ,

Uh(t) = ah
βh I ∗

v

USh (t) + I ∗
h

βh S∗
h I

∗
v

UIh (t) +U+Ih (t). (2.24)

Calculating the time derivative of the functions in (2.24) with respect to t along
system (2.1), we obtain

dUSh (t)

dt
= 1

S∗
h

(

Sh(t) − S∗
h

Sh(t)

)

dSh(t)

dt

= −μh(Sh(t) − S∗
h )

2

S∗
h Sh(t)

+ βh I
∗
v

(

1 − S∗
h

Sh(t)
− Sh(t)Iv(t)

S∗
h I

∗
v

+ Iv(t)

I ∗
v

)

dτ,

dUIh (t)

dt
= 1

I ∗
h

(

Ih(t) − I ∗
h

Ih(t)

)

d Ih(t)

dt

= βh S∗
h I

∗
v

I ∗
h

∫ τh

0
gh(τ )

[

1 + Sh(t − τ)Iv(t − τ)

S∗
h I

∗
v

− Ih(t)

I ∗
h

− Sh(t − τ)Iv(t − τ)I ∗
h

S∗
h I

∗
v Ih(t)

]

dτ,

dU+Ih (t)

dt
=

∫ τh

0
gh(τ )

(

Sh(t)Iv(t)

S∗
h I

∗
v

− ln
Sh(t)Iv(t)

S∗
h I

∗
v

− Sh(t − τ)Iv(t − τ)

S∗
h I

∗
v

+ ln
Sh(t − τ)Iv(t − τ)

S∗
h I

∗
v

)

dτ. (2.25)

Thus, from (2.24)–(2.25), we have

dUh(t)

dt
= −μhah(Sh(t) − S∗

h )
2

βh I ∗
v S

∗
h Sh(t)

+
∫ τh

0
gh(τ )

[

2 − S∗
h

Sh(t)

− Ih(t)

I ∗
h

− Sh(t − τ)Iv(t − τ)I ∗
h

S∗
h I

∗
v Ih(t)

+ Iv(t)

I ∗
v

− ln
Sh(t)Iv(t)

S∗
h I

∗
v

+ ln
Sh(t − τ)Iv(t − τ)

S∗
h I

∗
v

]

dτ. (2.26)
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Set U1(t) = Uv(t)
av

+ Uh(t)
ah

. Using
∫ τh
0 gh(τ )dτ = ah,

∫ τv

0 gv(τ ) dτ = av , and (2.23)
and (2.26), we obtain

dU1(t)

dt
= dUh(t)

ahdt
+ dUv(t)

avdt

= − (Sv(t) − S∗
v )2

βv I ∗
h S

∗
v Sv(t)

+ 2 − S∗
v

Sv(t)
− Iv(t)

I ∗
v

+ Ih(t)

I ∗
h

− ln
Sv(t)Ih(t)

S∗
v I

∗
h

− 1

av

∫ τv

0
gv(τ )

[

Sv(t − τ)Ih(t − τ)I ∗
v

S∗
v I

∗
h Iv(t)

− ln
Sv(t − τ)Ih(t − τ)

S∗
v I

∗
h

]

dτ

−μh(Sh(t) − S∗
h )

2

βh I ∗
v S

∗
h Sh(t)

+ 2 − S∗
h

Sh(t)
− Ih(t)

I ∗
h

+ Iv(t)

I ∗
v

− ln
Sh(t)Iv(t)

S∗
h I

∗
v

− 1

ah

∫ τh

0
gh(τ )

[

Sh(t − τ)Iv(t − τ)I ∗
h

S∗
h I

∗
v Ih(t)

− ln
Sh(t − τ)Iv(t − τ)

S∗
h I

∗
v

]

dτ.

(2.27)

Equation (2.27) can be reduced to the following

dU1(t)

dt
= −μv(Sv(t) − S∗

v )2

βv I ∗
h S

∗
v Sv(t)

− μh(Sh(t) − S∗
h )

2

βh I ∗
v S

∗
h Sh(t)

+ 1 − S∗
v

Sv(t)
+ ln

S∗
v

Sv(t)

+ 1

av

∫ τv

0
gv(τ )

(

1 − Sv(t − τ)Ih(t − τ)I ∗
v

S∗
v I

∗
h Iv(t)

+ ln
Sv(t − τ)Ih(t − τ)I ∗

v

S∗
v I

∗
h Iv(t)

]

dτ + 1 − S∗
h

Sh(t)

+ ln
S∗
h

Sh(t)
+ 1

ah

∫ τh

0
gh(τ )

(

1 − Sh(t − τ)Iv(t − τ)I ∗
h

S∗
h I

∗
v Ih(t)

+ ln
Sh(t − τ)Iv(t − τ)I ∗

h

S∗
h I

∗
v Ih(t)

)

dτ

= −μv(Sv(t) − S∗
v )2

βv I ∗
h S

∗
v Sv(t)

− f

(

S∗
v

Sv(t)

)

− 1

av

∫ τv

0
gv(τ ) f

(

Sv(t − τ)Ih(t − τ)I ∗
v

S∗
v I

∗
h Iv(t)

)

dτ

−μh(Sh(t) − S∗
h )

2

βh I ∗
v S

∗
h Sh(t)

− f

(

S∗
h

Sh(t)

)

− 1

ah

∫ τh

0
gh(τ ) f

(

Sh(t − τ)Iv(t − τ)I ∗
h

S∗
h I

∗
v Ih(t)

)

dτ. (2.28)

For Eq. (2.28), using f (x) = x − 1 − ln x > 0, x ≥ 0, we obtain that dU1(t)
dt ≤ 0

for Sv, Iv, Sh, Ih > 0, and dU1(t)
dt = 0 if and only if Sv(t − τ) = S∗

v , Iv(t − τ) =
I ∗
v , Sh(t − τ) = S∗

h , Ih(t − τ) = I ∗
h for all τ ∈ [0, h]. The largest compact invariant

set in
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	1 = {(Sv(t), Iv(t), Sh(t), Ih(t))|U̇1(t) = 0}

is {E∗}. By Proposition 2.3 and LaSalle’s invariance principle (see Kuang 1993), we
can conclude that the endemic equilibrium E∗ of system (2.1) is globally asymptoti-
cally stable. ��

Next we discuss the global stability of the disease-free equilibrium.

Theorem 2.8 If R0 ≤ 1, then the disease-free equilibrium E0 of system (2.1) is
globally asymptotically stable.

Proof Consider the following Liapunov function:

U2(t) = avβh S0v
μv

f

(

Sv(t)

S0v

)

+ f

(

Sh(t)

S0h

)

+ βh

μv

Iv(t)

+ 1

ah S0h
Ih(t) + βhβv

μv

∫ τv

0
gv(τ )

∫ t

t−τ

Sv(σ )Ih(σ )dσdτ

+ βh

ah S0h

∫ τh

0
gh(τ )

∫ t

t−τ

Sh(σ )Iv(σ )dσdτ. (2.29)

Along the solutions of (2.1), by directly calculating the derivative of U2(t), we
obtain that

dU2(t)

dt
= −avβh(Sv(t) − S0v )2

Sv(t)
− μh(Sh(t) − S0h)

2

S0h Sh(t)

+avβhβvS0v
μv

(

1 − 1

R0

)

Ih(t) ≤ 0 for R0 ≤ 1.

From the above discussion and Proposition 2.2, we can conclude that the disease-
free equilibrium E0 is globally asymptotically stable.

3 The extended model with direct transmission

There are evidences showing that in urban centers vector-borne diseases (such as
Chagas’ disease) are not only transmitted by the vectors but also by contaminated blood
of infected hosts through blood transfusions (see Kitchen and Chiodini 2006; Rassi
et al. 2010). It has been pointed out that some vector-borne diseases are characterized
by the existence of a chronic stage that can last from 10 to 20 years. The existence of
the long chronic stage enhances the likelihood of transmission by blood transfusions
especially through the asymptomatic patients. The lack of adequate screening of blood
samples has increased the chances of vector-borne diseases transmission by blood
transfusion. Similar to model (2.1), here we still denote by Sv(t) and Sh(t) the number
of susceptible vector and host populations at times t , respectively. Let Iv(t) and Ih(t)
be the number of infective vector and infective host populations, respectively. Rh is

123



Global properties of vector–host disease models with time delays

the number of recovered host individuals. βh2

∫ τh
0 gh2(τ )Sh(t − τ)Ih(t − τ)dτ is the

incidence of new cases of infection in the direct transmission at the present time t .
Dropping the equation for Rh(t), we obtain the following distributed delay model
with direct transmission:

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

dSh(t)
dt = �h − βh1 Sh(t)Iv(t) − βh2 Sh(t)Ih(t) − μh Sh(t),

d Ih(t)
dt = βh1

∫ τh
0 gh1(τ )Sh(t − τ)Iv(t − τ)dτ

+βh2

∫ τh
0 gh2(τ )Sh(t − τ)Ih(t − τ)dτ − (μh + αh)Ih(t),

dSv(t)
dt = �v − βvSv(t)Ih(t) − μvSv(t),

d Iv(t)
dt = βv

∫ τv

0 gv(τ )Sv(t − τ)Ih(t − τ)dτ − μv Iv(t).

(3.1)

The initial conditions and parameters in (3.1) are same as those in (2.1). All parameters
are positive constants.

Similar to Sect. 2.1, we can show that there exists a positively invariant compact set
	0 for model (3.1). The basic reproduction number of system (3.1) can be evaluated
as follows:

R̂0 = �h

μh

(

ah1avβh1

μh + αh

βv

μv

�v

μv

+ βh2ah2
μh + αh

)

,

where,

ah1 =
∫ τh

0
gh1(τ )dτ, ah2 =

∫ τh

0
gh2(τ )dτ, av =

∫ τv

0
gv(τ )dτ.

Direct calculation shows that system (3.1) always has an infection-free equilibrium
M0 = (

�h
μh

, 0, �v

μv
, 0). If R̂0 > 1, system (3.1) has a unique positive equilibrium

M∗ = (S∗
h , I

∗
h , S∗

v , I ∗
v ), where

S∗
h = �hμv(βv I ∗

h + μv)

μv(βh2 I
∗
h + μh)(βv I ∗

h + μv) + �vavβh1βv I ∗
h

, I ∗
v = �vavβv I ∗

h

μv(βv I ∗
h + μv)

,

S∗
v = �v

βv I ∗
h + μv

, (3.2)

and I ∗
h is the unique positive root of the following equation

c0 I
2
h + c1 Ih + c2 = 0,

where,

c0 = (μh + αh)μvavβh2βv > 0,

c1 = (μh + αh)(βh2μ
2
v + μhμvβv + av�vβh1βv) − �vμvβh2βv,

c2 = (μh + αh)μhμ
2
v(1 − R0) < 0.
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Similar to the proof of Theorem 2.6, it is easy to show that if R̂0 > 1, then system
(3.1) is uniformly persistent in int	0 (the interior of 	0).

In the following, by constructing suitable Liapunov functions, we show the global
stability of equilibria in system (3.1) for the same infectivity indexes ah1 = ah2. Thus,
let ah1 = ah2 = ãh , we have following results

Theorem 3.1 If R̂0 > 1, then the endemic equilibrium M∗ of system (3.1) is globally
stable.

Proof Let f (x) = x − 1 − ln x, x > 0. By constructing the following Liapunov
functional

V1(t) = ãh S
∗
h f

(

Sh(t)

S∗
h

)

+ I ∗
h f

(

Ih(t)

I ∗
h

)

+βh1 S
∗
h I

∗
v

∫ τh

0
gh(τ )

∫ t

t−τ

f

(

Sh(σ )Iv(σ )

S∗
h I

∗
v

)

dσdτ

+βh2 S
∗
h I

∗
h

∫ τh

0
gh(τ )

∫ t

t−τ

f

(

Sh(σ )Ih(σ )

S∗
h I

∗
h

)

dσdτ

+ ãhβh1S
∗
h I

∗
v

βv I ∗
h

f

(

Sv(t)

S∗
v

)

+ βh1 S
∗
h (I

∗
v )2

βvS∗
v I

∗
h

f

(

Iv(t)

I ∗
v

)

+βh1 S
∗
h I

∗
v

∫ τh

0
gv(τ )

∫ t

t−τ

f

(

Sv(σ )Ih(σ )

S∗
v I

∗
h

)

dσdτ, (3.3)

along solutions of system (3.1), we have

dV1(t)

dt
≤ −ãhβh1 S

∗
h I

∗
v

(

f

(

Sh(t)

S∗
h

)

+ f

(

Sv(t)

S∗
v

))

− βh1 S
∗
h I

∗
v

∫ τv

0
gv(τ ) f

(

Sh(t − τ)Iv(t − τ)I ∗
h

S∗
h I

∗
v Ih(t)

)

dτ

− βh1 S
∗
h I

∗
v

∫ τv

0
gv(τ ) f

(

Sv(t − τ)Ih(t − τ)I ∗
v

S∗
v I

∗
h Iv(t)

)

dτ

− ãhβh2 S
∗
h I

∗
h f

(

Sh(t)

S∗
h

)

− βh2S
∗
h I

∗
h

∫ τh

0
gh(τ ) f

(

Sh(t − τ)Ih(t − τ)I ∗
h

S∗
h I

∗
h Ih(t)

)

dτ ≤ 0.

Similar to the proof in Theorem 2.7, we can complete the proof of Theorem 3.1.
Here, we omit the details proof. ��

Similar to Theorem 2.8, using the following Liapunov functional

V2(t) = avβh1 S
0
v

μv

f

(

Sv(t)

S0v

)

+ f

(

Sh(t)

S0h

)

+ βh1

μv

Iv(t) + 1

ãh S0h
Ih(t)
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+βh1

μv

∫ τv

0

∫ t

t−τ

gv(τ )Sv(σ )Ih(σ )dσdτ

+ βh1

ãh S0h

∫ τh

0

∫ t

t−τ

gh(τ )Sh(σ )Iv(σ )dσdτ

+ βh2

ãh S0h

∫ τh

0
gh(τ )

∫ t

t−τ

Sh(σ )Ih(σ )dσdτ,

along solutions of system (3.1), we have

dV2(t)

dt
= −avβh(Sv(t) − S0v )2

Sv(t)
− μh(Sh(t) − S0h)

2

S0h Sh(t)

+avβh1βvS0v
μv

(

1 − 1

R̂0

)

Ih(t) ≤ 0 for R̂0 ≤ 1.

Thus, we can establish the following global stability of the disease-free equilibrium
M0 for system (3.1).

Theorem 3.2 If R̂0 ≤ 1, then the disease-free equilibrium M0 of system (3.1) is
globally stable.

4 Vector–host disease models with discrete delays

In this section, we first consider vector–host model (2.1) with discrete delays. Let the
kernels

gh(ξ1) = e−(μh+αh)ξ1δ(ξ1 − τ1), gv(ξ2) = e−μvξ2δ(ξ2 − τ2),

where δ(·) is the Dirac delta function. From model (2.1) we obtain the following
model, which is a generalization of the delayed Ross–Macdonald model for malaria
transmission considered in Ruan et al. (2008):

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

dSh(t)
dt = �h − βh Sh(t)Iv(t) − μh Sh(t),

d Ih(t)
dt = βh Sh(t − τ1)Iv(t − τ1)e−(μh+αh)τ1 − (μh + αh)Ih(t),

dSv(t)
dt = �v − βvSv(t)Ih(t) − μvSv(t),

d Iv(t)
dt = βvSv(t − τ2)Ih(t − τ2)e−μvτ2 − μv Iv(t)

(4.1)

with the initial conditions

Sh(θ) = ϕ1(θ), Ih(θ) = ϕ2(θ), Sv(θ) = ϕ3(θ),

Iv(θ) = ϕ4(θ), θ ∈ [−τ, 0], τ = max{τ1, τ2},
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where ϕi (θ) ∈ C([−τ, 0],R+).All parameters are positive constant. The basic repro-
duction number of (4.1) is given by

R̄0 = βhβv�h�ve−(μh+αh)τ1e−μvτ2

(μh + αh)μhμ2
v

.

System (4.1) always has a trivial equilibrium Ē0 = (
�h
μh

, 0, �v

μv
, 0) and a positive

equilibrium Ē∗ = (S̄∗
h , Ī

∗
h , S̄∗

v , Ī ∗
v ) if R̄0 > 1. Following the techniques in Ruan et al.

(2008), one can establish the global asymptotic stability of the trivial equilibrium Ē0
for R̄0 < 1 and obtain sufficient conditions for the local asymptotic stability of the
positive equilibrium Ē∗ by analyzing the associated characteristic equations. Here we
study the global stability of the positive equilibrium of system (4.1).

Similar to Theorem 2.8 in Sect. 2, we consider the following Liapunov function

W̄ (t) = 1

βh Ī ∗
v

f

(

Sh(t)

S̄∗
h

)

+ Ī ∗
h

βhe−(μh+αh)τ1 S̄∗
h Ī

∗
v

f

(

Ih(t)

Ī ∗
h

)

+
∫ t

t−τ1

f

(

Sh(σ )Iv(σ )

S̄∗
h Ī

∗
v

)

dσ + 1

βv Ī ∗
h

f

(

Sv(t)

S̄∗
v

)

+ Ī ∗
v

βve−μvτ2 S̄∗
v Ī

∗
h

f

(

Iv(t)

Ī ∗
v

)

+
∫ t

t−τ2

f

(

Sv(σ )Ih(σ )

S̄∗
v Ī

∗
h

)

dσ. (4.2)

Along solutions of system (4.1), we have

dW̄ (t)

dt
= −μh(Sh(t) − S̄∗

h )
2

βh Sh(t)S̄∗
h Ī

∗
v

− μv(Sv(t) − S̄∗
v )2

βvSv(t)S̄∗
v Ī

∗
h

− f

(

S̄∗
h

Sh(t)

)

− f

(

Sh(t − τ1)Iv(t − τ1) Ī ∗
h

S̄∗
h Ī

∗
v Ih(t)

)

− f

(

S̄∗
v

Sv(t)

)

− f

(

Sv(t − τ2)Ih(t − τ2) Ī ∗
v

S̄∗
v Ī

∗
h Iv(t)

)

. (4.3)

Using f (x) = x − 1 − ln x ≥ 0 for x > 0, R̄0 > 1, we have dW̄ (t)
dt ≤ 0. Let

	̄ = {(Sv, Iv, Sh, Ih) ∈ X |dW̄ (t)

dt
= 0}.

I We can verify that dW̄ (t)
dt = 0 if and only if Sh(t) = S̄∗

h , Ih(t) = Ī ∗
h , Sv(t) =

S̄∗
v , Iv(t) = Ī ∗

v , Hence, the largest invariant set in 	̄ is the singleton {Ē∗}. By
LaSalle’s invariance principle, we obtain the following result.

Theorem 4.1 If R̄0 > 1, then the positive equilibrium Ē∗ of system (4.1) is globally
asymptotically stable.
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Corresponding to system (3.1), nowwe consider the following discrete delaymodel
with direct transmission

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

dSh(t)
dt = �h − βh1 Sh(t)Iv(t) − βh2 Sh(t)Ih(t) − μh Sh(t),

d Ih(t)
dt = βh1Sh(t − τ1)Iv(t − τ1)e−(μh+αh)τ1

+βh2 Sh(t − τ1)Ih(t − τ1)e−(μh+αh)τ1 − (μh + αh)Ih(t),
dSv(t)
dt = �v − βvSv(t)Ih(t) − μvSv(t),

d Iv(t)
dt = βvSv(t − τ2)Ih(t − τ2)e−μvτ2 − μv Iv(t).

(4.4)

The initial conditions of (4.4) are similar to those in (4.1).All parameters are positive
constants. By directly computing, the basic reproduction number of system (4.4) is
given by

ˆ̄R0 = βh1βv�h�ve−(μh+αh)τ1e−μvτ2

μhμ2
v(μh + αh)

+ βh2�he−(μh+αh)τ1

μh(μh + αh)
.

There exist two possible equilibria (i.e., the trivial equilibrium E0 and the positive
equilibrium E∗ if R̂0 > 1). InWei et al. (2008),Wei et al. investigated the dynamics of
system (4.4) with τ1 = 0. However, complete global dynamics of (4.4) have not been
studied. By similar analysis in Theorems 3.1–3.2 in Sect. 3, we have the following
result.

Theorem 4.2 If ˆ̄R0 < 1, then the trivial equilibrium E0 of system (4.4) is globally

asymptotically stable; If ˆ̄R0 > 1, then the positive equilibrium E∗ of system (4.4) is
globally asymptotically stable.

5 Numerical simulations

In this section, we present some numerical simulations to show the impact of the
time delays on stability of the endemic equilibrium in system (2.1). We choose some
parameter values from Chitnis et al. (2006), Ruan et al. (2008), Smith and McKenzie
(2004) (see Table 1). The units of all parameters are day−1 except for τh, τv which are
in days. The gamma distribution Cushing (1977)

gn,bi (τ ) = nnτ (n−1)

(n − 1)!bni
e−nτ/bi , i = 1, 2, (5.1)

is used,where bi > 0 is themean value and n ≥ 1 is an integer-valued shape parameter.
First, let gh(τ ) = gn1,b1(τ ), gv(τ ) = gn2,b2(τ ), �h = 0.001, βh = 0.001, μh =

0.00004, μv = 0.0333, αh = 0.002,�v = 6, βv = 0.025, b1 = 20, b2 = 14, n1 =
2, n2 = 3. The infection-free equilibrium of model (2.1) is stable for R0 = 0.4947
with τh = 12, τv = 8 (see Fig. 1a). The endemic equilibrium of model (2.1) is stable
when R0 = 2.8519 with τh = 12, τv = 8 (see Fig. 1b) and when R0 = 2.8519 with
τh = 22, τv = 12, βh = 0.006, βv = 0.025 (see Fig. 1c). These verify the conclusions
in Theorems 2.7–2.8.

123



L.-M. Cai et al.

Table 1 Model parameters and their interpretations

Description Parameter Range References

Human birth rate �h 0.0027–0.01 Chitnis et al. (2006), Ruan
et al. (2008) , Smith and
McKenzie (2004)

Natural death rate of humans μh 1 × 10−6–2 × 10−4 Chitnis et al. (2006), Ruan
et al. (2008), Smith and
McKenzie (2004)

Rate of humans recovery αh 0.010–0.05 Chitnis et al. (2006), Ruan
et al. (2008), Smith and
McKenzie (2004)

Mosquito birth rate �v 3–8 Chitnis et al. (2006), Ruan
et al. (2008), Smith and
McKenzie (2004)

Natural death rate of
mosquitoes

μv 0.050–0.1 Chitnis et al. (2006), Ruan
et al. (2008), Smith and
McKenzie (2004)

Parasite transmission
probability

From mosquito to human βh 0.0010–0.8 Chitnis et al. (2006), Ruan
et al. (2008), Smith and
McKenzie (2004)

Parasite transmission
probability

From human to mosquito βv 0.0072–0.64 Chitnis et al. (2006), Ruan
et al. (2008), Smith and
McKenzie (2004)

Incubation periodic for P.
vivax in humans

τ1 5 − 24 Chitnis et al. (2006), Ruan
et al. (2008), Smith and
McKenzie (2004)

Incubation periodic in
mosquitoes

τ2 5–18 Chitnis et al. (2006), Ruan
et al. (2008), Smith and
McKenzie (2004)

From Fig. 1, it can been seen that the endemic equilibrium of system (2.1) depends
on the delays and the equilibrium level of infective individuals of system (2.1)
decreases with the increase of the delays τh and τv . But there is no change in the
stability of the endemic equilibrium. It remains stable irrespective of the delay para-
meters.

Next we show that system (3.1) keeps similar dynamics with two different infec-
tivity indexes gh1(τ ), gh2(τ ), see Fig. 2. That is, the densities in components of
system (3.1) go toward their corresponding endemic equilibrium values M∗ when
the basic reproduction number R̂0 > 1. Here, we let gh1(τ ) = gn1,b1(τ ), gh2(τ ) =
gñ1,˜b1(τ ), gv(τ ) = gn2,b2(τ ) in Eq. (5.1). The parameter values used in these simula-
tions are same as in Fig. 1 except for ñ1 = 1, 4,˜b1 = 10, 16.

Finally, in Fig. 3 we show that the endemic equilibrium of system (4.4) is stable
and it is varying as the incubation delay τ1 and τ2 vary, respectively. Here βh1 =
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Fig. 1 a The infection-free equilibrium of model (2.1) is asymptotically stable for R0 = 0.4947 with
τh = 12, τv = 8. The endemic equilibrium of model (2.1) is asymptotically stable for b R0 = 2.8519 with
τh = 12, τv = 8 and c forR0 = 2.8519 with τh = 22, τv = 12 in the right figure

0.006, βh2 = 0.0001. All the parameter values used in these simulations are given
in Table 1. The numerical simulations show that the endemic equilibrium values are
more sensitive to the incubation period τ2 in vector population than in the incubation
period τ1 in the host population.

6 Discussion

It has been observed that the discrete time delays may cause oscillations, bifurcations,
and chaotic behaviour in vector–host epidemic models Martcheva and Prosper (2013).
In this paper, we have investigated the effect the distributed delays on the vector–host
disease dynamics.
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Fig. 2 The endemic equilibrium of model (3.1) is asymptotically stable for a R̂0 = 3.6668 with τh =
10, τv = 8, n1 = 2, b1 = 20, ñ1 = 1,˜b1 = 10, and b R̂0 = 3.6668 with τh = 12, τv = 10,n1 = 2, b1 =
10, ñ1 = 4,˜b1 = 16
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Fig. 3 The endemic equilibrium of infected host of system (4.4) is asymptotically stable for ˆ̄R0 > 1.
a τ2 = 8 and increasing the incubation period in the hosts τ1 will decrease the numbers of the infective
host populations, and b τ1 = 8 and the endemic equilibrium value of the infective vectors decreases and
eventually approaches to zero as the incubation periods in the vectors τ2 increases

Firstly, two distributed time delays, representing the intrinsic and extrinsic incu-
bation periods of parasites within the hosts and vectors, respectively, have been
incorporated in the vector–host disease models. By applying the persistence theory
recently developed by Magal and Zhao (2005) for infinite-dimensional systems, we
have shown that the model is uniformly persistent. By constructing suitable Liapunov
functionals, we have studied the global stability of equilibria in systems (2.1) and
(3.1), respectively. Our results show that the global stability of the equilibria in the
distributed delay models is completely determined by the basic reproductive number
R0; i.e., if R0 < 1, the disease-free equilibrium is globally asymptotically stable; if
R0 > 1, a unique endemic equilibrium exists and is globally asymptotically stable.
As a result, no non-constant periodic solutions can exist for all positive values of para-
meters. These results suggest that introducing the intrinsic and extrinsic incubation
periods of parasites within the hosts and vectors does not change the stability (note
that the basic reproductive ratio is delay dependent in this case).
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Our methods and results also apply to Ross–MacDonald type vector–host disease
models with discrete delays. For a simplified two-component (infective vectors and
hosts) Ross–MacDonald malaria model with two discrete delays, Ruan et al. (2008,
Theorem2.3) showed that under someconditions, the positive equilibrium Ē∗ is locally
asymptotically stable for R̄0 > 1. For a four-component (susceptible vectors andhosts,
and infective vectors and hosts) vector–host disease models with two discrete delays,
in Theorem 4.1 we have showed that Ē∗ is not only locally asymptotically stable
but also global asymptotically stable for R̄0 > 1. Thus, we not only generalize the
model and results in Ruan et al. (2008) but also confirm the numerical simulation
conjecture in Ruan et al. (2008, Theorem 2.3) that the positive equilibrium Ē∗ of the
delay Ross–Macdonald is asymptotically stable for all delays values as long as the
basic reproduction number is greater than one. In Theorem 4.2 we have also showed
that the positive equilibrium E∗ of (4.4) is indeed globally asymptotically stable for
ˆ̄R0 > 1. Thus, Hopf bifurcation does not occur in our models when the delays vary
and there are no bifurcating periodic solutions due to the increase of the delay values.
Hence, we have improved the stability results in Wei et al. (2008).

Our obtained results show that vector–host disease models with incubation delays
have some interesting features. First, the disease can persist in a population when
the number of vectors is greater than a given threshold. Secondly, the prevalence
of infection in vectors and hosts depends directly on the basic reproduction number
and the relationship is nonlinear. Thirdly, the model has a stable positive equilibrium
when the basic reproduction number is greater than one. This means that temporary
intervention can lead to a temporary reduction of prevalence, when the intervention
is relaxed prevalence again increases to the original values (Koella 1991; Smith and
McKenzie 2004). Our analytic results have also showed that incubation periods can
play significant role in affecting the disease transmission. That is, prolong (viamedical
drug or control measures) either of the incubation periods could reduce the numbers
of the infected host and vector populations and thus control the disease. Of course,
as Ruan et al. (2008) pointed out, the longer incubation period may let the exposed
hosts and vectors to spread the parasites to different locations. Therefore, it is more
reasonable to consider the combined effect of varying incubation periods and spatial
structure in order to model vector–host interactions and understand the spatial spread
of vector-borne diseases. For example, introduce incubation periods into the multi-
patch vector–host disease models (Cosner et al. 2009; Gao et al. 2014). We leave these
for future consideration.
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