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1. INTRODUCTION

The effect of nutrient recycling on ecosystem stability has been previ-
Ž � �.ously studied for closed systems see Nisbet and Gurney 15 and usually

nutrient recycling is regarded as an instantaneous term, thus neglecting
the time required to regenerate nutrient from dead biomass by bacterial
decomposition. However, a delay in nutrient recycling is always present in

Ža natural system and it increases when temperature decreases see Whit-
� �.taker 25 . In order to simulate the growth of planktonic communities of

� �unicellular algea in the lakes, Beretta et al. 1 constructed a chemostat-type
model in which the plankton feeds on a limiting nutrient supplied at a
constant rate. They assumed that the limiting nutrient is partially recycled
after the death of the organisms and used a distributed delay to model
nutrient recycling. It has been observed that plankton models with delayed

Žnutrient recycling exhibit very interesting and rich dynamics see Beretta
� � � � � � � �and Takeuchi 2 , He and Ruan 10 , He, Ruan, and Xia 11 , Ruan 21, 22 ,

.etc. .
In the lakes�oceans, plankton population movements are subject to

Žmany factors, such as currents and turbulent lateral diffusion cf. Levin
� � � � � � � �.and Segel 12 , Mimura 14 , Okubo 16 , Freedman and Ruan 4 . Ruan

� �22 proposed a diffusive plankton-nutrient interaction model with delayed
nutrient recycling and delayed growth response and studied Turing insta-
bility and the existence of travelling wave solutions. However, the delay

� �kernels used in 22 are spatial homogeneous.
In more realistic ecological models, the delays should be spatial inhomo-

geneous; that is, there are not only delays in the time variable but also
delays in the space variable since the species were not necessarily at the
same point in space at previous times. Such delays are called nonlocal.
Recently, a great attention has been paid to the research on ecological

� � � �models with nonlocal delays; see Gopalsamy 5 , Gourley 6 , Gourley and
� � � � � � �Bartuccelli 7 , Gourley and Britton 8, 9 , Levin and Segel 13 , Pozio 19,

� � �20 , Yamada 27 , etc. If delays appear in the time variable only, they are
Ž .called local or time delays. Reaction�diffusion models with local time

� �delays have been studied by many researchers; we refer to Feng and Lu 3 ,
� � � � � �Pao 17, 18 , Ruan and Wu 23 and a monograph by Wu 26 .

� �In this paper, following the spirit of 22 , we consider a reaction�diffu-
sion plankton model with nonlocal delayed growth response and nonlocal
delayed nutrient recycling. We are concerned with the effects of the
nonlocal delays as well as the diffusions on the dynamics of the system.

The paper is organized as follows. Section 2 is devoted to the presenta-
tion of the model. In Section 3, we will study local stability of positive
steady state of the model with delayed nutrient recycling. In Section 4 we
discuss diffusion-driven instability of the model with both delayed nutrient
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recycling and delayed growth response. In Section 5, we are concerned
about the stability and bifurcation of the model with delayed growth
response only and find that the delay in the growth response term induces
oscillations via Hopf bifurcations. A brief discussion is given in Section 6.

2. THE MODEL

Let � be an open bounded set in R3 with boundary � �. ��� n
represents the outward normal derivative on � �, � is the Laplace opera-

Ž . Ž . Ž .tor, and d � 0 i � 1, 2 are diffusion coefficients. Let N t, x and P t, xi
denote the biomass of nutrient and plankton, respectively, per unit of
volume evaluated at the point x at time t. Consider the following reac-
tion�diffusion plankton model with delayed nutrient recycling and delayed
growth response

� N
0� d � N � D N � N � aP t , x f N t , xŽ . Ž . Ž .Ž .1� t

t
� � F x , y , t � s P s, y dy dsŽ . Ž .H H1

�� �
1Ž .

� P t
� d � P � P � � � D � a G x , y , t � s f N t , xŽ . Ž . Ž .Ž .H H2 1� t �� �

under the initial value conditions

N � , x � � � , x , P � , x � 	 � , x , � � ��, 0 , x � � ,Ž . Ž . Ž . Ž . Ž

where � and 	 are positive continuous functions, and the boundary value
conditions

� N � P
� � 0 on � � .

� n � n

We suppose that all parameters are positive. They are interpreted as
follows:

a, maximal nutrient uptake rate for plankton
N 0, input concentration of nutrient
D, washout rate of nutrient
� , plankton mortality rate
� , nutrient recycle rate after the death of plankton, � 	 �1 1

a , maximal conversion rate of the nutrient into planktonic biomass.1
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Ž .The function f N describes the nutrient uptake rate of plankton. We
Ž .assume the following general hypotheses on f N :

Ž . Ž .1 f N is nonnegative, increasing and vanishing where there is no
nutrient;

Ž .2 There is a saturation effect when the nutrient is very abundant.

Ž . � .That is, f N is a continuously differentiable function defined on 0, �
and

df
f 0 � 0, � 0, lim f N � 1.Ž . Ž .

dN N��

These hypotheses are satisfied by the Michaelis�Menten function

N
f N � ,Ž .

K � N

where K � 0 is the half-saturation constant or Michaelis�Menten con-
stant.

The delay kernels F and G are nonnegative bounded functions defined
� .on � � 0, � . F describes the contribution of the average of the plankton

population dead in the past in the domain � to the nutrient recycled at
time t, and G describes the delayed growth response of the plankton. The
double convolution kernels in both the time and space arise because of the

Ž .fact that the species are moving by diffusion , and therefore are not at the
same point in space at previous times. Thus, the predation does not
depend simply on population density at one point in space and time, but
also on weighed average involving values at all previous times and all

Ž � �points in space. Typical kernels include see Gourley 6 , Gourley and
� � .Britton 9 , etc.

i F x , y , t � 
 x � y �e�� t � � 0 ,Ž . Ž . Ž . Ž .
�

�� � x�y � �� tii F x , y , t � e �e � � 0, � � 0 ,Ž . Ž . Ž .
2

� � 21 x � y
iii F x , y , t � exp �Ž . Ž . ž /' 4Dt4 Dt

� �e�� t D � 0, � � 0 ,Ž .
iv F x , y , t � 
 x � y 
 t � � � � 0 .Ž . Ž . Ž . Ž . Ž .

Ž .In kernel i the delta function suppresses the space integral

t
F x , y , t � s u y , s dy dsŽ . Ž .H H

�� �
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and gives a term which is time delayed but local in space. When 1�� is
Ž . Ž .small, kernels i � iii are weak delay kernels in the sense that, although all

values of u in the past are taken into account, only recent values have a
strong effect on the system. As 1�� increases, values of u further into the

Ž .past become more important. Kernel iv gives a system of equations with a
Ž Ž ..fixed discrete time delay � the double integral becomes u x, t � � .

Ž .Remark 2.1. We should mention that if the kernel iii is used, then the
quantity D must be chosen to be d so that it matches the diffusivity of2

Ž .the relevant species, which is the plankton P in Eq. 1 . Also, if the kernel
� �depends on x � y , then the domain must be large enough compared to

Ž Ž .the spatial extent of the kernel in the case of kernel ii , it is of order
. Ž .1�� . In this paper, kernel ii will be used and the domain � is finite,

therefore, � must be sufficiently large. This fact will be used repeatedly in
studying the linearized systems.

When both N and P are space-independent and the two kernels are
Ž .local, we have a special case of 1 which is the following delay system:

dN t0� D N � N � aP t , x f N t � � F t � s P s ds,Ž . Ž . Ž . Ž . Ž .Ž . H1dt ��
2Ž .

dP t
� P � � � D � a G t � s f N s ds .Ž . Ž . Ž .Ž .H1dt ��

Ž . � � � �System 2 was studied in He, Ruan, and Xia 11 and Ruan 22 . Note that
Ž .a positive equilibrium of the delay system 2 is a spatial homogeneous
Ž .steady state of the reaction�diffusion system 1 . Thus, if

� � D
�1 0� � D � a and f � N , 3Ž .1 ž /a1

Ž . Ž .then system 1 has a uniform steady state E* � N*, P* with

� � D D N 0 � N*Ž .�1N* � f , P* � . 4Ž .ž /a af N* � �Ž .1 1

3. LOCAL STABILITY

Ž .In this section, we consider a special case of 1 with

�
�� � x�y � �� tF x , y , t � e �e , G x , y , t � 
 x � y 
 t ;Ž . Ž . Ž . Ž .

2
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that is, we consider the system

� N
0� d � N � D N � N � aP t , x f N t , xŽ . Ž . Ž .Ž .1� t

e�� � x�y ��e�� Ž t�s.P s, yŽ .t
� � dyds , 5Ž .H H1 �� � x�z �H e dz�� � �

� P
� d � P � P � � � D � a f N t , x .Ž . Ž .Ž .2 1� t

Ž . Ž .Notice that the steady state E* � N*, P* given by 4 is also a steady
Ž .state of system 5 . We shall use the linear-chain trick to study the stability

Ž .of E* � N*, P* . Define

t �� Ž t�s.R t , x � �e P s, x ds.Ž . Ž .H
��

Ž .Then system 5 is equivalent to the following system

� N
0� d � N � D N � N � aP t , x f N t , xŽ . Ž . Ž .Ž .1� t

� �exp �� x � y R t , yŽ .Ž .
� � dy ,H1 � �H exp �� x � z dzŽ .� � 6Ž .

� P
� d � P � P � � � D � a f N t , x ,Ž . Ž .Ž .2 1� t

� R
� � P t , x � R t , x .Ž . Ž .

� t
Ž . Ž .The positive equilibrium of system 6 is E* � N*, P*, R* with P* � R*;

Ž .N* and P* are given by 4 . Let

u � N � N*, u � P � P*, u � R � R*.1 2 3

Ž .The linearized system of 6 takes the form

� u1 � d �u � D � aP*f � N* u � af � N* uŽ . Ž .1 1 1 2� t
� �exp �� x � y u t , yŽ .Ž . 3� � dy ,H1 � �H exp �� x � z dzŽ .� � 7Ž .

� u2 � d �u � a P*f � N* u ,Ž .2 2 1 1� t

� u3 � � u � � u .2 3� t
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Let

u �1 1
� t� cos k x cos k x cos k x e ,Ž . Ž . Ž .u � 1 1 2 2 3 32 2� 0 � 0u �3 3

Ž .where k i � 1, 2, 3 is the wavenumber in the x direction and � is thei i
frequency. Suppose the domain has the form

� � 0, l � 0, l � 0, l .Ž . Ž . Ž .1 2 3

By Remark 2.1, � must be sufficiently large since � is finite. This ensures
Ž .T Ž .that the above vector u , u , u is a solution of the linearized system 7 .1 2 3

The boundary conditions on � � imply that

n  n  n 1 2 3
k � , k � , k � ,1 2 3l l l1 2 3

Ž .where n i � 1, 2, 3 is the half-wavelength in the x direction. Denotei i

k 2 � k 2 � k 2 � k 2
1 2 3

and

� �1 exp �� x � y � yŽ .Ž .

 � dy � x dx 8Ž . Ž .H H2 � �H exp �� x � z dzH � x dx Ž .Ž . � � ��

with

� x � cos k x cos k x cos k x .Ž . Ž . Ž . Ž .1 1 2 2 3 3

Then we have the characteristic equation

�3 � b �2 � b � � b � 0,1 2 3

where

b � � � d � d k 2 � D � aP*f � N* ,Ž . Ž .1 1 2

2 4b � � d � d k � D � aP*f � N* � d d kŽ . Ž .2 1 2 1 2

� d k 2 D � aP*f � N* � aa P*f � N* f N* ,Ž . Ž . Ž .Ž .2 1

4b � �d d k � �a P*f � N* af N* � � 
Ž . Ž .3 1 2 1 1

2� �d k D � ap*f � N* .Ž .2
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By the Routh�Hurwitz criterion, the necessary and sufficient conditions
Ž .for the characteristic roots � i � 1, 2, 3, 4 to have negative real part arei

i b � 0, ii b � 0, iii b b � b � 0.Ž . Ž . Ž .1 3 1 2 3

Ž . Ž . Ž .Obviously, i is satisfied. By 3 we have af N* � � � 0 and from1
Ž . � � Ž .expression 8 we have 
 	 1 ; thus ii holds. Since

�d d k 4 � �aa P*f � N* f N*Ž . Ž .1 2 1

2� �d k D � ap*f � N* � positive termsŽ .2

� �d d k 4 � �aa P*f � N* f N*Ž . Ž .1 2 1

2� �d k D � ap*f � N* � � �a P*f � N*Ž . Ž .2 1 1


 �d d k 4 � �aa P*f � N* f N*Ž . Ž .1 2 1

2� �d k D � ap*f � N* � 
� �a P*f � N* ,Ž . Ž .2 1 1

Ž .it follows that iii is also satisfied. Hence, we have the following result
about the linear stability of the uniform steady state.

Ž .THEOREM 3.1. If the inequalities in 3 hold, then the positi�e state E* of
Ž .system 5 exists and is locally stable.

Ž .Remark 3.2. The above result indicates that for system 5 with delayed
nutrient recycling only, there is no spatial, temporal, or spatial-temporal
structure and the effect of diffusion is to make the species distribution
uniform over the region � as t � ��.

4. DIFFUSION-DRIVEN INSTABILITY

Ž .We consider the delay model 1 . Suppose

�1 �� � x�y � �� t1 1F x , y , t � e � e � � 0, � � 0 ,Ž . Ž .1 1 12
�2 �� � x�y � �� t2 2G x , y , t � e � e � � 0, � � 0 .Ž . Ž .2 2 22
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We have the following delay system

� N
0� d � N � D N � N � aP t , x f N t , xŽ . Ž . Ž .Ž .1� t

e�� 1 � x�y �� e�� 1Ž t�s.P s, yŽ .t 1� � dyds ,H H1 �� � x�z �1H e dz�� � �

� P
� d � P � P � � � DŽ .2� t

9Ž .

�� � x�y � �� Ž t�s.2 2e � e f N s, yŽ .Ž .t 2�a dyds .H H1 �� � x�z �2H e dz�� � �

Define

t �� Ž t�s.1R t , x � � e P s, x ds,Ž . Ž .H 1
��

t �� Ž t�s.2Q t , x � � e f N s, y ds.Ž . Ž .Ž .H 2
��

Ž .Then system 9 is equivalent to the following system

� N
0� d � N � D N � N � aP t , x f N t , xŽ . Ž . Ž .Ž .1� t

� �exp �� x � y R t , yŽ .Ž .1� � dy ,H1 � �H exp �� x � y dyŽ .� � 1

� �� P exp �� x � y Q t , yŽ .Ž .2� d � P � P � � � D � a dy ,Ž . H2 1 � �� t H exp �� x � z dzŽ .� � 2

10Ž .

� R
� � P t , x � R t , x ,Ž . Ž .1� t

� Q
� � f N t , x � Q t , x .Ž . Ž .Ž .2� t

Ž . Ž .The positive equilibrium of system 10 is E* � N*, P*, R*, Q* with
Ž . Ž .R* � P*, Q* � f N* ; N* and P* are given by 4 . Let

u � N � N*, u � P � P*, u � R � R*, u � Q � Q*.1 2 3 4



BOUSHABA AND RUAN278

Ž .The linearized system of 10 at E* has the form

� u1 � d �u � D � aP*f � N* u � af N* uŽ . Ž .1 1 1 2� t

� �exp �� x � y u t , yŽ .Ž .1 3� � dy ,H1 � �H exp �� x � z dzŽ .� � 1

� �� u exp �� x � y u t , yŽ .Ž .2 1 4� d �u � a P* dy ,H2 2 1 � �� t H exp �� x � z dzŽ .� � 1

11Ž .

� u3 � � u � � u ,1 2 1 3� t

� u4 � � f N* u � � u .Ž .2 1 2 4� t

Thus, we have the characteristic equation

� 4 � b k 2 � 3 � b k 2 � 2 � b k 2 � � b k 2 � 0,Ž . Ž . Ž . Ž .2 3 4

where

b k 2 � d � d k 2 � � � � � D � aP*f � N* ,Ž . Ž . Ž .1 1 2 1 2

2 4 2b k � d d k � � � � d � d � d D � aP*f � N* kŽ . Ž . Ž . Ž .Ž .2 1 2 1 2 1 2 2

� � � � � � � D � aP*f � N* ,Ž . Ž .Ž .1 2 1 2

b k 2 � d d � � � k 4Ž . Ž .3 1 2 1 2

2� � � d � d � d � � � D � aP*f � N* kŽ . Ž . Ž .Ž .1 2 1 2 2 1 2

� � � D � aP*f � N* � a� � � D P*f � N* ,Ž . Ž . Ž .Ž .1 2 2

b k 2 � � � d d k 4 � � � d D � aP*f � N* k 2Ž . Ž .Ž .4 1 2 1 2 1 2 2

� � � a 
 P*f � N* af N* � � 
 ,Ž . Ž .1 2 1 2 1 1

where

� �1 exp �� x � y � yŽ .Ž .1

 � dy � x dx ,Ž .H H1 2 � �H exp �� x � z dzH � x dxŽ . Ž .� � � 1�

� �1 exp �� x � y � yŽ .Ž .2

 � dy � x dxŽ .H H2 2 � �H exp �� x � z dzH � x dxŽ . Ž .� � � 2�
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with

� x � cos k x cos k x cos k x .Ž . Ž . Ž . Ž .1 1 2 2 3 3

� � � �Notice that 
 	 1 and 
 	 1 . By the Routh�Hurwitz criterion, diffu-1 2
sion-driven instability or Turing instability occurs only if one of the
following conditions is violated:

Ž . Ž 2 .i b k � 0,1

Ž . Ž 2 .ii b k � 0,4

Ž . Ž 2 . Ž 2 . Ž 2 .iii b k b k � b k � 0,1 2 3

Ž . Ž 2 .� Ž 2 . Ž 2 . Ž 2 . Ž 2 .� Ž 2 .iv b k b k b k � b k b k � b k � 0.1 2 3 1 4 3

Ž . Ž . Ž .Clearly, i and ii cannot be violated. iii also cannot be violated if
Ž . Ž . Ž . Ž .b 0 b 0 � b 0 � 0. To check iv , denote1 2 3

2 2 2 2 2 2 2U k � b k b k b k � b k b k � b k ,Ž . Ž . Ž . Ž . Ž . Ž . Ž .1 2 3 1 4 3

which is a fifth-order polynomial in k 2 and can be written as

5 4 3 22 2 2 2 2 2U k � h k � h k � h k � h k � h k � h ,Ž . Ž . Ž . Ž . Ž . Ž .1 2 3 4 5 6

Ž Ž . Ž . Ž .where A � D � aP*f � N * , B � a� � 
 � D P*f � N * , C �2 1 1
Ž .� Ž . �.� � a 
 P*f � N* af N* � � 
 , and1 2 1 2 1 1

h � � � � d � d d d3 ,Ž . Ž .1 1 2 1 2 1 2

2 2 23 2h � � � � d d � � � � d � d dŽ . Ž . Ž .2 1 2 1 2 1 2 1 2 2

� A � � � d � d d3 � A � � � d � d d d 2Ž . Ž . Ž . Ž .1 2 1 2 2 1 2 1 2 1 2

23 4� A � � � d d � � � � d ,Ž . Ž .1 2 1 2 1 2 2

h � A2 � � � d3 � A2 � � � d d 2Ž . Ž .3 1 2 2 1 2 1 2

3 2 2� � � � d � d d � A � � � d dŽ . Ž . Ž .1 2 1 2 2 1 2 1 2

� � � � � � d � d d 2Ž . Ž .1 2 1 2 1 2 2

3 2 2� � � � � � d � d � A � � � d � d dŽ . Ž . Ž . Ž .1 2 1 2 1 2 1 2 1 2 2

� A2 � � � d � d d 2 � B d � d d dŽ . Ž . Ž .1 2 1 2 2 1 2 1 2

2 22 3� 2 A � � � d � d d � A � � � dŽ . Ž . Ž .1 2 1 2 2 1 2 2

� � � � � � d � d d d ,Ž . Ž .1 2 1 2 1 2 1 2
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h � A2 � � � d 2 � A3 � � � d 2 � A3 d � d d3Ž . Ž . Ž .4 1 2 2 1 2 2 1 2 2

2 22 2� � � � � � d � A � � � dŽ . Ž .1 2 1 2 2 1 2 2

2 2 3� � � � � � d � d � A � � � d � d dŽ . Ž . Ž . Ž .1 2 1 2 1 2 1 2 1 2 2

2� C � � � d � d � ABd d � dŽ . Ž . Ž .1 2 1 2 2 1 2

2 22� 3 A� � � � � d � d � 2 A � � � d � dŽ . Ž . Ž . Ž .1 2 1 2 1 2 1 2 1 2

2 2� ABd d � � � � � � d � d � C d � dŽ . Ž . Ž .1 2 1 2 1 2 1 2 1 2

� A� � � � � d 2 � A� � d d ,Ž .1 2 1 2 2 1 2 1 2

h � 3 A2� � � � � d � d � A3 � � � d � A2BdŽ . Ž . Ž .5 1 2 1 2 1 2 1 2 2 2

2 3� 2 A� � � � � d � d � A � � � dŽ . Ž . Ž .1 2 1 2 1 2 1 2 2

2� C � � � d � d � 2 AB � � � d � dŽ . Ž . Ž . Ž .1 2 1 2 1 2 1 2

� B� � d � d � 2 A � � � d � d � AB � � � dŽ . Ž . Ž . Ž .1 2 1 2 1 2 1 2 1 2 2

� 2C � � � d � d � 2 A2� � � � � ,Ž . Ž . Ž .1 2 1 2 1 2 1 2

22 3h � A B � � � � AB � � � � A � � � � �Ž . Ž . Ž .6 1 2 1 2 1 2 1 2

22 2 2� A � � � � � � A� � � � � � B� � � � �Ž . Ž . Ž .1 2 1 2 1 2 1 2 1 2 1 2

22 2� A C � B � C � � � � 2 AC � � � � AB� � .Ž . Ž .1 2 1 2 1 2

Ž 2 . 2We have that h � 0, so U k � � as k � �. Looking for extrema of1
Ž 2 .U k , we need to find the roots of the equation

dU 4 3 22 2 2 2� 5h k � 4h k � 3h k � 2h k � h � 0,Ž . Ž . Ž . Ž .1 2 3 4 52dk

which can be written as

4 3 22 2 2 2k � p k � q k � r k � s � 0, 12Ž . Ž . Ž . Ž . Ž .
where

4h 3h 2h h2 3 4 5
p � , q � , r � , s � .

5h 5h 5h 5h1 1 1 1

Ž 2 . Ž .Choose x, y and add xk � y to both sides of Eq. 12 , such that

2p2 22 2 2k � k � � � xk � y ,Ž . Ž . Ž .
2
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where � is a real root of the cubic equation

8� 3 � 4q� 2 � 2 pr � 4 s � � p2s � 4qs � r 2 � 0.Ž .

Ž .Thus, Eq. 12 is equivalent to a system of two quadratic equations:

p22 2k � � x k � � � y � 0,Ž . Ž .ž /2
p22 2k � � x k � � � y � 0,Ž . Ž .ž /2

from which we can find the possible local extrema:

21 p 1 p
2k � � � x � � x � 4 � � y ,Ž .(1, 2 ž / ž /2 2 2 2

21 p 1 p
2k � � � x � � x � 4 � � y .Ž .(3, 4 ž / ž /2 2 2 2

Ž 2 .In order to determine the concavity of U k , we calculate the second
derivative

d 2U 3 22 2 2� 20h k � 12h k � 6h k � 2h .Ž . Ž . Ž .1 2 3 42 2d kŽ .

2 Ž 2 .Denote the local minimum by k one of k , i � 1, 2, 3, 4 . Formin i
diffusion-driven instability, we require that

k 2 � 0min

and

U k 2 � 0.Ž .min

Ž . ŽNotice that U 0 � 0, which is the stability condition of E* see Ruan
� �.22 . We can state the following result.

Ž . Ž .THEOREM 4.1. Turing instability occurs in system 1 if U 0 � 0 and
2 Ž 2 .there exists k � 0 such that U k � 0.min min

Ž .Remark 4.2. Theorem 4.1 shows that for the system 1 with both
delayed nutrient recycling and delayed growth response, the diffusion
could drive the homogeneous steady state into instability; thus certain
Turing-type spatial patterns exist.
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5. DELAY-INDUCED OSCILLATIONS

In this section, we determine the effect of the delay on the dynamics of
Ž .the system; in particular we check if the delay in system 1 will induce
Žoscillations in the N and P components. It is known that see Beretta et

� � � �.al. 1 and Ruan 21 the delay in the nutrient recycling term does not
have a destabilizing effect. Thus, for the sake of convenience in discussion,
we assume that the delay kernel in the nutrient recycling term in system
Ž .1 is a delta function and the delay kernel in the second equation is an
exponential function:

�
�� � x�y � �� tF x , y , t � 
 x � y 
 t , G x , y , t � e �e ;Ž . Ž . Ž . Ž .

2

that is, we consider the system

� N
0� d � N � D N � N � aP t , x f N t , x � � P t , x ,Ž . Ž . Ž . Ž .Ž .1 1� t

� P
� d � P2� t

�� � x�y � �� Ž t�s.e �e f N s, yŽ .Ž .t
� P � � � D � a dyds .Ž . H H1 �� � x�z �H e dz�� � �

13Ž .

Define

t �� Ž t�s.Q t , x � �e f N s, y ds.Ž . Ž .Ž .H
��

Ž .Then system 13 is equivalent to the following system

� N
0� d � N � D N � N � aP t , x f N t , x � � P t , x ,Ž . Ž . Ž . Ž . Ž .Ž .1 1� t

� �� P exp �� x � y Q t , yŽ .Ž .
� d � P � P � � � D � a dy ,Ž . H2 1 � �� t H exp �� x � z dzŽ .� �

14Ž .

� Q
� � f N t , x � Q t , x .Ž . Ž .Ž .

� t

Ž . Ž .The positive equilibrium of system 14 is E* � N*, P*, Q* , where N*
Ž .and P* are the same as in section 2 and Q* � F N* . The characteristic

Ž .equation of the linearized system 14 at E* is given by

�3 � c � �2 � c � � � c � � 0, 15Ž . Ž . Ž . Ž .1 2 3
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where

c � � � � d � d k 2 � D � aP*f � N* ,Ž . Ž . Ž .1 1 2

2c � � � d � d k � D � aP*f � N*Ž . Ž . Ž .2 1 2

� k 4d d � k 2d D � aP*f � N* ,Ž .Ž .1 2 2

4 2c � � � k d d � k d D � aP*f � N*Ž . Ž .Ž .3 1 2 2

� � f � N* a P*
 af N* � � .Ž . Ž .1 2 1

By the Routh�Hurwitz criterion, the equilibrium E* is locally stable if and
only if

c � � 0,Ž .1

c � � 0,Ž .3

c � c � � c � � 0.Ž . Ž . Ž .1 2 3

Clearly, the first two are always satisfied. Thus, the equilibrium E* is
locally stable if the third inequality holds. If for some value of � , say � ,0
we have

c � c � � c � ,Ž . Ž . Ž .1 0 2 0 3 0

Ž .then the characteristic Eq. 15 becomes

� � c � �2 � c � � 0,Ž . Ž .Ž . Ž .1 0 2 0

Ž .which has a negative real root � � �c � and a pair of purely imagi-1 1 0
nary roots

� � �i c � .' Ž .2, 3 2 0

Ž .By continuity, for � � � � � , � � � , where � � 0 is sufficiently small,0 0
the eigenvalues are of the form

� � �c � ; � � � � � i� � .Ž . Ž . Ž .1 1 2, 3

To determine if the Hopf bifurcation occurs when � � � , we need to0
verify the transversality condition. Substituting � into the characteristic2

Ž .Eq. 15 , calculating the derivative with respect to � , and separating the
real and imaginary parts, we obtain

d� � d� �Ž . Ž .
A � � B � � C � � 0,Ž . Ž . Ž .

d� d�

d� � d� �Ž . Ž .
B � � A � � D � � 0,Ž . Ž . Ž .

d� d�
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where

A � � 3 �2 � � � 2 � � 2c � � � � c � ,Ž . Ž . Ž . Ž . Ž . Ž .Ž . 1 2

B � � 6� � � � � 2c � � � ,Ž . Ž . Ž . Ž . Ž .1

C � � c� � �2 � � � 2 � � c2 � � � � c� � ,Ž . Ž . Ž . Ž . Ž . Ž . Ž .Ž .1 2 3

D � � 2c� � � � � � � c� � � � .Ž . Ž . Ž . Ž . Ž . Ž .1 2

d�Solving for and setting � � � , we have0d�

d
c � c � � c �Ž . Ž . Ž .1 2 3d� �Ž . d�

� � � 02d� 4 c � � c �Ž . Ž .��� 1 20 ��� 0

if

d
c � c � � c � � 0. 16Ž . Ž . Ž . Ž .���1 2 3 0d�

The transversality condition thus implies that a Hopf bifurcation occurs as
� passes through the critical value � . We have the following result.0

Ž . Ž .THEOREM 5.1. The positi�e equilibrium E* � N*, P* of system 13 is
asymptotically stable if

c � c � � c � � 0.Ž . Ž . Ž .1 2 3

If there exists a � � 0 such that0

c � c � � c �Ž . Ž . Ž .1 0 2 0 3 0

Ž . Ž .and condition 16 holds, then there is a Hopf bifurcation at E* � N*, P*
as � passes through � .0

Remark 5.2. First, we would like to mention that the above bifurcation
analysis is carried out for a fixed value of the wavenumber k. The above

Ž .theorem indicates that the positive steady state of system 13 with delayed
growth response is stable when the delay is less than a critical value and
becomes unstable when it passes through the critical value. The oscilla-
tions of the components induced by a Hopf bifurcation demonstrate that
the system exhibits certain temporal or spatial-temporal structures. On a
finite domain, the oscillatory solutions are standing waves.

� Ž � . Ž � .Remark 5.3. There might be another � � 0 such that c � c � �0 1 0 2 0
� d

�Ž . Ž . �c � and � � � 0. In this case, there are two Hopf bifurcations.���3 0 d� 0
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6. DISCUSSION

In this paper, we have considered a reaction�diffusion plankton model
with nonlocal delayed growth response and nonlocal delayed nutrient

Ž .recycling. The first inequality in 3 indicates that a , the maximum specific1
growth rate of plankton must be greater than � � D, the total loss of

Ž .plankton and the second inequality in 3 means that there must be
Ž .enough nutrient input concentration. Notice that the inequalities in 3 are

required throughout the paper to guarantee the existence of the positive
uniform steady state and when the nonlocal delayed growth response is
absent, they are exactly the local stability condition.

We first considered the model with nonlocal delayed nutrient recycling
but without delay in the growth response and obtained local stability
conditions. Our analysis once again shows that the delay in the nutrient
recycling process does not have a destabilizing effect on the system
Ž � � � �.Beretta et al. 1 and Ruan 21 . Then we studied the general model with
both nonlocal delayed nutrient recycling and nonlocal delayed growth
response. We found that the system becomes unstable if the diffusion
coefficients satisfy certain conditions; that is, Turing instability occurs. We

� �thus generalized some of the results in Ruan 22 to the model with
nonlocal delay. Finally, we analyzed the model with only nonlocal delayed
growth response. It has shown that the delay does cause instability and
thus oscillations in the components via a Hopf bifurcation.
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