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Abstract. This paper deals with traveling wave solutions for time periodic
reaction-diffusion systems. The existence of traveling wave solutions is es-

tablished by combining the fixed point theorem with super- and sub-solutions,

which reduces the existence of traveling wave solutions to the existence of super-
and sub-solutions. The asymptotic behavior is determined by the stability of

periodic solutions of the corresponding initial value problems. To illustrate

the abstract results, we investigate a time periodic Lotka-Volterra system with
two species by presenting the existence and nonexistence of traveling wave so-

lutions, which connect the trivial steady state to the unique positive periodic

solution of the corresponding kinetic system.

1. Introduction. Traveling wave solutions of reaction-diffusion systems have been
widely studied since 1937 [16, 22]. For autonomous reaction-diffusion systems, a
typical example is

∂w(x, t)

∂t
= D

∂2w(x, t)

∂x2
+ h(w), x ∈ R, t > 0, (1)

where w = (w1, w2, · · · , wn) ∈ Rn, D = diag{d1, d2, · · · , dn} is a matrix with
positive constants d1, d2, · · · , dn, h = (h1, h2, · · · , hn) : Rn → Rn is a given function.
Here, a traveling wave solution of (1) is a special entire solution (defined for all
t ∈ R) taking the form

w(x, t) = ρ(ξ), ξ = x+ ct,

in which c ∈ R is the parameter of wave speed and ρ formulates the wave profile.
Clearly, letting w(x, t) = ρ(ξ), we obtain the following ODE system

Dρ′′(ξ)− cρ′(ξ) + h(ρ(ξ)) = 0, ξ ∈ R,
so the existence of traveling wave solutions can be studied by the theory of phase
analysis, see Volpert et al. [42], Ye et al. [47, Chapter 1]. Besides phase analy-
sis, there are also some other methods that can be used to study the existence of
traveling wave solutions of (1), we refer to Ducrot et al. [9], Fife [14], Gilding and
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Kersner [17], Smoller [39], Volpert et al. [42], Wu [45] for many important results
on this topic.

When the reaction-diffusion systems are not autonomous, one important case is
the following time periodic system

∂u(x, t)

∂t
= D

∂2u(x, t)

∂x2
+ h(t, u), x ∈ R, t > 0, (2)

where u = (u1, u2, · · · , un) ∈ Rn, h = (h1, h2, · · · , hn) : R × Rn → Rn is a given
function and is T -periodic in t. For the nonautonomous periodic system (2), a
time periodic traveling wave solution (for simplicity, a traveling wave solution) is a
special entire solution taking the following form

u(x, t) = ψ(z, t), ψ(z, t) = ψ(z, t+ T ), z = x+ ct,

in which c also denotes the wave speed while ψ = (ψ1, ψ2, · · · , ψn) : R × R → Rn
formulates the wave profile. Thus, the corresponding wave form system is

∂ψ(z, t)

∂t
= D

∂2ψ(z, t)

∂z2
− c∂ψ(z, t)

∂z
+ h(t, ψ), z ∈ R, t ∈ R. (3)

Clearly, (3) is also a partial differential system. Comparing the nonautonomous
cases with the autonomous ones, there are some significant differences. For example,
(3) cannot be investigated by phase analysis of ODE systems.

Of course, there are many results concerning the existence of solutions of (3)
as well as some other properties (e.g., uniqueness and stability). Alikakos et al.
[1], Bates and Chen [5], Shen [36] and Xin [46] established the existence and global
stability of periodic traveling waves with bistable nonlinearities. Fang and Zhao [12]
proved the existence of bistable traveling wave solutions of monotone semiflows. Guo
and Hamel [18] obtained the minimal wave speed of a lattice differential system with
periodic parameters. Liang et al. [24] established propagation theory of monotone
periodic evolution systems with the abstract conclusions in [25]. Nadin [31] and
Nolen et al. [32] investigated the traveling wave solutions of a reaction-diffusion
equation with time and space periodic parameters. Using monotone iterations,
Zhao and Ruan [51, 52] investigated the traveling wave solutions of reaction-diffusion
systems with time periodic parameters. Bao et al. [3] studied a nonlocal dispersal
model, Bao and Wang [4] obtained the existence and stability of bistable traveling
wave solutions of a Lotka-Volterra system. Wang et al. [44] considered the traveling
wave solutions of a periodic and diffusive SIR epidemic model. The traveling wave
solutions of almost periodic models were studied by Shen [34, 35].

Besides the traveling wave solutions, there are also some other results concerning
the propagation theory of time periodic systems. In Liang et al. [24], the authors
discussed the asymptotic speed of spread. Shen [37], Huang and Shen [21] considered
the spreading speed in time almost periodic and space periodic KPP models. Nolen
et al. [32] studied the asymptotic spreading as well as the traveling wave solutions in
periodic cases. Moreover, some important propagation results on general reaction-
diffusion systems were established, of which the results remain true for periodic
systems. For example, Berestycki et al. [6, 7] investigated the asymptotic spreading
of reaction-diffusion equations in heterogeneous excitable media. Sheng and Cao
[38] obtained the entire solutions for periodic equations.

It should be noted that in most of the above results, the comparison principle
appealing to cooperative systems plays a very important role. Moreover, due to
the mutual property, traveling wave solutions are monotone such that their limit
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behavior is easy to confirm. It is well known that if the system is not cooperative,
then the limit behavior of the solutions may be very complicated even if it is an
ODE system. One typical example is the predator-prey system. On the traveling
wave solutions, Berestycki et al. [8], Fang and Zhao [11], Faria and Trofimchuk [13]
confirmed the existence of nonmonotone traveling wave solutions in scalar equations
with nonlocality or time delay. When autonomous Lotka-Volterra competitive sys-
tems (see Tang and Fife [40]) are concerned, Lin and Ruan [26] proved the existence
of nonmonotone traveling wave solutions connecting (0, 0) with the positive steady
state under proper conditions.

The purpose of this paper is to investigate the traveling wave solutions of time
periodic reaction-diffusion systems with more general monotone conditions, e.g.,
Lotka-Volterra competitive systems with two species. We first investigate the ex-
istence of traveling wave solutions. Motivated by [23, 44], we obtain the existence
of traveling wave solutions by the fixed point theorem if the system satisfies proper
monotone conditions. To confirm the asymptotic behavior of traveling wave solu-
tions, we apply the stability results of periodic solutions of the corresponding initial
value problems that usually can be investigated by the corresponding kinetic sys-
tems. Note that the stability of periodic solutions has been widely studied, then
at least for some classical systems including cooperative systems and competitive
systems, the verification of limit behavior for traveling wave solutions becomes an
easy job.

In particular, for some autonomous nonmonotone systems (e.g., delayed equa-
tions [29], integral equations [10], abstract recursions [48]), there are also some
methods which can be used to determine the limit behavior of nontrivial traveling
wave solutions, e.g., perturbation method [20], contracting rectangles [26]. However,
because the limit behavior of nonautonomous systems may depend on time (is not
a constant), it is difficult to construct proper auxiliary functions similar to these
results. Fortunately, our methods and ideas could apply to many nonmonotone
systems although our proof seems to be very simple.

The rest of this paper is organized as follows. In Section 2, we investigate the
existence of traveling wave solutions of some monotone systems by the fixed point
theorem. The asymptotic behavior of traveling wave solutions is studied in Sec-
tion 3. Finally, we consider a time periodic Lotka-Volterra competitive system by
presenting the existence and nonexistence of traveling wave solutions.

2. Existence of nonconstant wave solutions. We use the standard partial or-
dering in Rn. That is, if u = (u1, u2, · · · , un), v = (v1, v2, · · · , vn) ∈ Rn, then u ≥ v
iff ui ≥ vi, i = 1, 2, · · · , n; u > v iff u ≥ v but ui > vi for some i ∈ {1, 2, · · · , n};
u� v iff ui > vi, i = 1, 2, · · · , n. Moreover, | · | is the supremum norm in Rn.

In this section, we shall investigate the existence of traveling wave solutions,
which is motivated by Wang et al. [44]. It should be noted that a periodic SIR
epidemic model with diffusion and standard incidence was considered in [44], and
the existence of traveling wave solutions was established by combining the fixed
point theorem with super- and sub-solutions. To focus on our main idea, we first
consider the following competitive system{

ut(x, t) = d1uxx(x, t) + f(t, u(x, t), v(x, t)), x ∈ R, t > 0,

vt(x, t) = d2vxx(x, t) + g(t, u(x, t), v(x, t)), x ∈ R, t > 0
(4)

under the following conditions
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(A1) d1 > 0, d2 > 0;
(A2) f, g are T -periodic functions in t with some T > 0, that is,

f(t+ T, ·, ·) = f(t, ·, ·), g(t+ T, ·, ·) = g(t, ·, ·), t ∈ R;

(A3) there are constants M1 > 0,M2 > 0 such that

f(t, 0, 0) = 0, f(t,M1, 0) < 0, g(t, 0, 0) = 0, g(t, 0,M2) < 0, t ∈ [0, T ];

(A4) f(t, u, v) is nonincreasing in v while g(t, u, v) is nonincreasing in u, where
u ∈ [0,M1], v ∈ [0,M2];

(A5) for some α ∈ (0, 1), f(t, ·, ·) and g(t, ·, ·) are Cα in t, f(·, u, v) and g(·, u, v)
are Lipschitz continuous in u ∈ [0,M1], v ∈ [0,M2].

Let

u(x, t) = U(z, t), v(x, t) = V (z, t), z = x+ ct

be a traveling wave solution of (4). Then the corresponding wave system is{
Ut(z, t) = d1Uzz(z, t)− cUz(z, t) + f(t, U, V ), z ∈ R, t ∈ R,
Vt(z, t) = d2Vzz(z, t)− cVz(z, t) + g(t, U, V ), z ∈ R, t ∈ R,

(5)

and (U, V ) satisfies the following periodic conditions

U(z, t) = U(z, t+ T ), V (z, t) = V (z, t+ T ), z ∈ R, t ∈ R. (6)

Let X, Y be

X = {u : R→ R is bounded and uniformly continuous},
Y = {v : R× [0, T ]→ R is bounded and uniformly continuous},

which are Banach spaces equipped with the standard super norms | · |X , | · |Y , so for
X2, Y 2. Let µ be a positive constant. Define

Bµ
(
R× [0, T ],R2

)
:=

{
u = (u1, u2) :

ui ∈ Y, supt∈[0,T ],x∈R[e−µ|x||ui(x, t)|] <∞,
ui(x, 0) = ui(x, T ), x ∈ R, i = 1, 2

}
equipped with the norm

|u|µ := max

{
sup

t∈[0,T ],x∈R
[e−µ|x||u1(x, t)|], sup

t∈[0,T ],x∈R
[e−µ|x||u2(x, t)|]

}
,

which is a Banach space. Furthermore, it has the following nice property.

Proposition 1. Assume that D ⊂ Y 2. For any given bounded interval I, if D
restricted on I × [0, T ] is precompact in the sense of the supremum norm, then D
is precompact in the sense of | · |µ.

Let K > 0 be a constant such that

f(t, u, v) +Ku

is monotone increasing in u ∈ [0,M1] for any t ∈ [0, T ] and v ∈ [0,M2], and

g(t, u, v) +Kv

is monotone increasing in v ∈ [0,M2] for any t ∈ [0, T ] and u ∈ [0,M1]. Define

(Ti(t)w) (x) = e−Kt
1√

4πdit

∫
R
e
− (x−ct−y)2

4dit w(y)dy, i = 1, 2 (7)
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for t > 0, x ∈ R, w ∈ X. Then Ti : X → X, i = 1, 2, are analytic semigroups
generated by

Aiu = diuzz − cuz −Ku, i = 1, 2,

respectively. In particular, we have

lim
t→∞

sup
x∈R
| (Ti(t)w) (x)| = 0, i = 1, 2

for any given w ∈ X. For details, see the Appendix.
By the smooth condition (A5), periodic condition (A2) and the theory of analytic

semigroups (see the Appendix), the existence of (5)-(6) can be obtained by the
existence of mild solutions of the following integral system{

U(z, t) = (T1(t)U(·, 0)) (z) +
∫ t
0
T1(t− s)F (U, V, ·, s)ds(z),

V (z, t) = (T2(t)V (·, 0)) (z) +
∫ t
0
T2(t− s)G(U, V, ·, s)ds(z)

(8)

with (6) for z ∈ R, t ∈ [0, T ], where

F (U, V, z, t) = KU(z, t) + f(t, U(z, t), V (z, t)),

G(U, V, z, t) = KV (z, t) + g(t, U(z, t), V (z, t)).

For the purpose, we shall use the fixed point theorem and try to define a nonlinear
operator on a proper convex set. According to the monotone condition (A4), we
now give the following definition of super- and sub-solutions.

Definition 2.1. Assume that (U(z, t), V (z, t)) and (U(z, t), V (z, t)) are continuous
functions for z ∈ R, t ∈ [0, T ∗] with some T ∗ > 0. Then they are a pair of super-
and sub-solutions of (8) if

(1) (0, 0) ≤ (U(z, 0), V (z, 0)) ≤ (U(z, 0), V (z, 0)) ≤ (M1,M2) for z ∈ R;
(2) (0, 0) ≤ (U(z, t), V (z, t)), (U(z, t), V (z, t)) ≤ (M1,M2) for z ∈ R, t ∈ [0, T ∗];
(3) they satisfy

U(z, t) ≥
(
T1(t− r)U(·, r)

)
(z) +

∫ t
r
T1(t− s)F (U, V , ·, s)ds(z),

V (z, t) ≥ (T2(t− r)V (·, r)) (z) +
∫ t
r
T2(t− s)G(U, V , ·, s)ds(z),

U(z, t) ≤ (T1(t− r)U(·, r)) (z) +
∫ t
r
T1(t− s)F (U, V , ·, s)ds(z),

V (z, t) ≤ (T2(t− r)V (·, r)) (z) +
∫ t
r
T2(t− s)G(U, V , ·, s)ds(z)

(9)

for all 0 ≤ r < t ≤ T ∗, z ∈ R.

By the monotone condition, we have the following conclusion.

Proposition 2. Assume that (U(z, t), V (z, t)) and (U(z, t), V (z, t)) are a pair of
super- and sub-solutions of (8). Then

(0, 0) ≤ (U(z, t), V (z, t)) ≤ (U(z, t), V (z, t)) ≤ (M1,M2), z ∈ R, t ∈ [0, T ∗].

Theorem 2.2. Assume that (A1)-(A5) hold. If

(U(z, t), V (z, t)), (U(z, t), V (z, t))

are a pair of super- and sub-solutions of (8) for z ∈ R, t ∈ [0, 2T ] such that{
(U(z, 0), V (z, 0)) = (U(z, T ), V (z, T )) = (U(z, 2T ), V (z, 2T )),

(U(z, 0), V (z, 0)) = (U(z, T ), V (z, T )) = (U(z, 2T ), V (z, 2T ))
(10)

for z ∈ R, then (5) has a positive solution (U(z, t), V (z, t)) satisfying (6) and

(U(z, t), V (z, t)) ≤ (U(z, t), V (z, t)) ≤ (U(z, t), V (z, t)), z ∈ R, t ∈ [0, T ].
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Proof. Define

D1 =
{

(U, V ) ∈ Bµ : (U, V ) ≤ (U, V ) ≤ (U, V )
}

and

D2 =
{

(φ, ψ) ∈ X2 : (U(z, 0), V (z, 0)) ≤ (φ, ψ) ≤ (U(z, 0), V (z, 0))
}
.

ThenD1 andD2 are nonempty and convex by (10). Moreover, they are bounded and
closed in the sense of the corresponding norms. Firstly, for any given (U1, V1) ∈ D1,
we consider the following integral system{

U2(z, t) = (T1(t)U2(·, 0)) (z) +
∫ t
0
T1(t− s)F (U1, V1, ·, s)ds(z),

V2(z, t) = (T2(t)V2(·, 0)) (z) +
∫ t
0
T2(t− s)G(U1, V1, ·, s)ds(z).

(11)

Our question is the existence and uniqueness of (U2(z, t), V2(z, t)) ∈ D1. By the
smooth condition (see the Appendix, Theorem A) as well as the comparison princi-
ple, for any given (U2(z, 0), V2(z, 0)) ∈ D2, there exists (U2(z, t), V2(z, t)) satisfying

(U(z, t), V (z, t)) ≤ (U2(z, t), V2(z, t)) ≤ (U(z, t), V (z, t)).

Furthermore, let (U3(z, 0), V3(z, 0)), (U4(z, 0), V4(z, 0)) ∈ D2, and{
Ui(z, t) = (T1(t)Ui(·, 0)) (z) +

∫ t
0
T1(t− s)F (U1, V1, ·, s)ds(z),

Vi(z, t) = (T2(t)Vi(·, 0)) (z) +
∫ t
0
T2(t− s)G(U1, V1, ·, s)ds(z)

for i = 3, 4. Then

|U3(z, T )− U4(z, T )| ≤ e−KT |U3(·, 0)− U4(·, 0)|X ,
|V3(z, T )− V4(z, T )| ≤ e−KT |V3(·, 0)− V4(·, 0)|X ,

which further imply the existence and uniqueness of (U2(z, t), V2(z, t)) ∈ D1 with

(U2(z, 0), V2(z, 0)) = (U2(z, T ), V2(z, T )), z ∈ R (12)

by contracting mapping principle on D2.
Due to the above discussion, for each (U1, V1) ∈ D1, (11) defines a unique

(U2, V2) ∈ D1 satisfying (12). Denote it by F : D1 → D1. Thus, we only need
to prove the existence of a fixed point of F in D1.

Clearly, F : D1 → D1 is continuous in the sense of Bµ. Moreover, for each fixed
(U1, V1) ∈ D1, although the smoothness of (U2(z, t), V2(z, t)), z ∈ R, t ∈ [0, T ] can
not be well formulated, the regularity for z ∈ R, t ∈ [T, 2T ] will be improved by the
periodicity. Letting

(U1(z, t), V1(z, t)) = (U1(z, t+ T ), V1(z, t+ T )), z ∈ R, t ∈ [0, T ],

then

(U2(z, t), V2(z, t)) = (U2(z, t+ T ), V2(z, t+ T )), z ∈ R, t ∈ [0, T ].

Moreover, they are uniformly bounded in C2α,α (see the Appendix). Therefore,
by Ascoli-Arzela lemma, for any bounded interval I ⊂ R, {(U2(z, t), V2(z, t)), z ∈
I, t ∈ [0, T ]} is precompact in the sense of supremum norm, and so F : D1 → D1 is
compact in the sense of Bµ by Proposition 1. The existence of a fixed point follows
by Schauder’s fixed point theorem. The proof is complete.

However, it is difficult to verify (9) due to the nonlocality. Fortunately, the
process can be finished by some differential inequalities. We now introduce the
following definition of the differential systems (see [15, 30, 33, 40, 47]).
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Definition 2.3. Assume that

U(z, t) = min{U1(z, t), · · · , U l(z, t)}, V (z, t) = min{V 1(z, t), · · · , V l(z, t)}
and

U(z, t) = max{U1(z, t), · · · , U l(z, t)}, V (z, t) = max{V 1(z, t), · · · , V l(z, t)}
for some integer l, z ∈ R, t ∈ [0, T ∗] with T ∗ > 0, are continuous functions. Then
they are a pair of super- and sub-solutions of (5) if

(1) (0, 0) ≤ (U(z, 0), V (z, 0)) ≤ (U(z, 0), V (z, 0)) ≤ (M1,M2), and

(0, 0) ≤ (U(z, t), V (z, t)), (U(z, t), V (z, t)) ≤ (M1,M2), z ∈ R, t ∈ [0, T ∗];

(2) for any given (z0, t0) ∈ R × (0, T ∗), if U(z0, t0) = U j(z0, t0) for some j ∈
{1, · · · , l}, then there exists a neighborhood B(z0, t0) ∈ R× (0, T ∗) such that

U j,t(z, t) ≤ d1U j,zz(z, t)− cU j,z(z, t) + f(t, U j , V )

when (z, t) ∈ B(z0, t0);
(3) for any given (z0, t0) ∈ R × (0, T ∗), if V (z0, t0) = V j(z0, t0) for some j ∈
{1, · · · , l}, then there exists a neighborhood B(z0, t0) ∈ R× (0, T ∗) such that

V j,t(z, t) ≤ d2V j,zz(z, t)− cV j,z(z, t) + g(t, U, V j)

when (z, t) ∈ B(z0, t0);
(4) for any given (z0, t0) ∈ R × (0, T ∗), if U(z0, t0) = U j(z0, t0) for some j ∈
{1, · · · , l}, then there exists some neighborhood B(z0, t0) ∈ R × (0, T ∗) such
that

U j,t(z, t) ≥ d1U j,zz(z, t)− cU j,z(z, t) + f(t, U j , V )

when (z, t) ∈ B(z0, t0);
(5) for any given (z0, t0) ∈ R × (0, T ∗), if V (z0, t0) = V j(z0, t0) for some j ∈
{1, · · · , l}, then there exists some neighborhood B(z0, t0) ∈ R × (0, T ∗) such
that

V j,t(z, t) ≥ d2V j,zz(z, t)− cV j,z(z, t) + g(t, U, V j)

when (z, t) ∈ B(z0, t0).

In light of the positivity of (T1, T2), we have the following conclusion.

Theorem 2.4. Theorem 2.2 remains true if we replace the super- and sub-solutions
in Definition 2.1 by those in Definition 2.3.

3. Asymptotic behavior of nontrivial wave solutions. In this section, we
study the asymptotic behavior of nontrivial solutions of (3). Firstly, we consider
the corresponding reaction system as follows

du(t)

dt
= h(t, u), t > 0, (13)

where h is same as that in (2) and h(t, ·) is Cα in t for some α ∈ (0, 1), h(·, u) is
Lipschitz continuous in u. In particular, we assume that

u∗(t) = (u∗1(t), u∗2(t), · · · , u∗n(t)) (14)

is a T -periodic solution of (13).
Further consider the initial value problem{

∂u(x,t)
∂t = D ∂2u(x,t)

∂x2 + h(t, u), x ∈ R, t > 0,

u(x, 0) = u0(x), x ∈ R,
(15)
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where the initial value u0 = (u1,0, u2,0, · · · , un,0) : R → Rn is bounded and uni-
formly continuous. Moreover, we assume that there exist A,B ∈ Rn such that (15)
has a unique global solution

A ≤ u(x, t) ≤ B, x ∈ R, t > 0

if

A ≤ u0(x) ≤ B, x ∈ R.
For this system, there are many important results about the long time behavior, see
some results in [14, 39, 47, 49, 53]. In particular, the stability of u∗(t) in (15) can
be obtained by that in (13) under proper conditions, at least for some monotone
systems including different Lotka-Volterra type systems, see Teng and Chen [41] for
some results.

Our main results are presented as follows.

Theorem 3.1. Assume that there exist a, b ∈ Rn with

a = (a1, a2, · · · , an), b = (b1, b2, · · · , bn)

and

A ≤ a ≤ b ≤ B.
Let ψ = (ψ1, ψ2, · · · , ψn) be a solution of (3) with

ai < inf
t∈[0,T ]

lim inf
z→∞

ψi(z, t) ≤ sup
t∈[0,T ]

lim sup
z→∞

ψi(z, t) < bi, i = 1, 2, · · · , n. (16)

If u∗(t) satisfies

lim
t→∞

sup
x∈R
|u(x, t)− u∗(t)| = 0

when

a ≤ u0(x) ≤ b, x ∈ R,
then

lim
z→∞

ψ(z, t) = u∗(t),

in which the convergence is uniform in t ∈ R(t ∈ [0, T ]).

Before proving our conclusion, we give the following result.

Lemma 3.2. Assume that u∗(t) satisfies

lim
t→∞

sup
x∈R
|w(x, t)− u∗(t)| = 0,

where w(x, t) is the solution of{
∂w(x,t)
∂t = D ∂2w(x,t)

∂x2 + h(t, w), x ∈ R, t > 0,

w(x, 0) = w(x), x ∈ R

with uniformly continuous w(x) = (w1(x), w2(x), · · · , wn(x)) and

a ≤ w(x) ≤ b, x ∈ R.

Then for any ε > 0, there exist T1 > 0 and N = N(T1, ε) > 0 such that

|u(x, t)− u∗(t)| < ε, x ≥ 0, t ∈ [T1, T1 + 2T ]

provided that

a ≤ u0(x) ≤ b, x > −N, and A ≤ u0(x) ≤ B, x ∈ R. (17)
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Proof. By the property of w(x, t), there exists T1 > 0 such that

sup
x∈R
|w(x, t)− u∗(t)| < ε

2
, t ≥ T1.

Consider (15) for t ∈ [0, T1 + 2T ], then the result is true once there exists N > 0
such that

sup
x≥0,t∈[T1,T1+2T ]

|u(x, t)− w(x, t)| < ε

2
(18)

with u0(x) satisfying (17). In fact, let us consider ϕ = u − w := (ϕ1, ϕ2, · · · , ϕn),
then {

∂ϕ(x,t)
∂t = D∆ϕ(x, t) +H(x, t), x ∈ R, t > 0,

ϕ(x, 0) = ϕ(x) = u0(x)− w(x), x ∈ R,
(19)

where H(x, t) = h(t, u)− h(t, w) := (h̃1(x, t), · · · , h̃n(x, t)) and

ϕ(x, 0) = 0, x ≥ −N,

in which N will be clarified later. By the Lipschitz continuity of h, there exists a
constant L > 0 such that

−L(|ϕ1|+ |ϕ2|+ · · ·+ |ϕn|) ≤ h̃i(x, t) ≤ L(|ϕ1|+ |ϕ2|+ · · ·+ |ϕn|)

for all i = 1, 2, · · · , n, t > 0, x ∈ R. In what follows, we denote

H(ϕ) = L(|ϕ1|+ |ϕ2|+ · · ·+ |ϕn|).

According to the selection of A,B, we see that ϕ(x, t) is bounded and well defined
for all t > 0, x ∈ R. To estimate the property of ϕ(x, t), we shall construct a pair of
generalized upper and lower solutions for (19). In particular, ϕ := (ϕ1, ϕ2, · · · , ϕn)
and ϕ := (ϕ

1
, ϕ

2
, · · · , ϕ

n
) are called a pair of generalized upper and lower solutions

of (19) if {
∂ϕi(x,t)

∂t ≥ di ∂
2ϕi(x,t)
∂x2 + h̃i(x, t), x ∈ R, t > 0,

ϕi(x, 0) ≥ ϕi(x), x ∈ R
(20)

and {
∂ϕ

i
(x,t)

∂t ≤ di
∂2ϕ

i
(x,t)

∂x2 + h̃i(x, t), x ∈ R, t > 0,

ϕ
i
(x, 0) ≤ ϕi(x), x ∈ R

(21)

for all i ∈ {1, 2, · · · , n}.
By (19), we have

−H(ϕ) ≤ h̃i(x, t) ≤ H(ϕ)

for all i = 1, 2, · · · , n, t > 0, x ∈ R. Then the comparison principle (or the positivity
of semigroup generated by ∆ operator) implies{

∂ϕi(x,t)
∂t = di∆ϕi(x, t) +H(ϕ), x ∈ R, t > 0,

ϕi(x, 0) =
∑n
i=1 |ui,0(x)− wi(x)|, x ∈ R,

(22)

and {
∂ϕ

i
(x,t)

∂t = di∆ϕi(x, t)−H(ϕ), x ∈ R, t > 0,

ϕ
i
(x, 0) = −

∑n
i=1 |ui,0(x)− wi(x)|, x ∈ R,

(23)

formulate a pair of generalized upper and lower solutions of (19). Furthermore, we
have

ϕi(x, t) = −ϕ
i
(x, t) ≥ 0, i = 1, 2, · · · , n, t > 0, x ∈ R,
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and
ϕi(x, t) ≥ ϕi(x, t) ≥ −ϕi(x, t) ≥ 0, i = 1, 2, · · · , n, t > 0, x ∈ R.

Now, we shall further estimate ϕi(x, t), i = 1, 2, · · · , n, t > 0, x ∈ R. Let c′ > 0
and λ > 0 be positive constants such that

c′λ− diλ2 ≥ Ln for all i ∈ {1, 2, · · · , n}.
Further define continuous functions

φi(x, t) : = min
{
KeLnt,Keλ(−x−N+c′t)

}
, i ∈ {1, 2, · · · , n},

φ
i
(x, t) : = max

{
−KeLnt,−Keλ(−x−N+c′t)

}
, i ∈ {1, 2, · · · , n}

for t ≥ 0, x ∈ R, where K > 0 (that is independent of N) such that
n∑
i=1

|ui,0(x)− wi(x)| ≤ min
{
K,Keλ(−x−N)

}
, x ∈ R.

By direct calculations, if they are differentiable, we see that

∂φi(x, t)

∂t
≥ di

∂2φi(x, t)

∂x2
+ Ln|φi(x, t)| ≥ di

∂2φi(x, t)

∂x2
+H(ρ),

and
∂φ

i
(x, t)

∂t
≤ di

∂2φ
i
(x, t)

∂x2
− Ln|φ

i
(x, t)| ≤ di

∂2φ
i
(x, t)

∂x2
−H(ρ)

for i = 1, 2, · · · , n and any continuous vector function ρ satisfying

(φ
1
(x, t), · · · , φ

n
(x, t)) ≤ ρ(x, t) ≤ (φ1(x, t), · · · , φn(x, t)), t > 0, x ∈ R.

Then we obtain a generalized upper and lower solutions of (22) and (23). According
to the classical theory of reaction-diffusion systems (see [47]), ϕ(x, t) satisfies

φ
i
(x, t) ≤ ϕ

i
(x, t) ≤ ϕi(x, t) ≤ ϕi(x, t) ≤ φi(x, t), t > 0, x ∈ R.

Let N > 0 such that

Keλ(−N+c′(T1+2T )) <
ε

2
,

then (18) holds. The proof is complete.

Remark 1. The result fails if T → ∞ but N is finite. One typical example is
the propagation theory of bistable reaction-diffusion equations with negative sign
of wave speed [2].

We now give the proof of Theorem 3.1.

Proof. From the definition,

u(x, t) = ψ(x+ ct, t), x ∈ R, t > 0

is the solution of the following initial value problem{
∂u(x,t)
∂t = D ∂2u(x,t)

∂x2 + h(t, u), x ∈ R, t > 0,

u(x, 0) = ψ(x, 0), x ∈ R.
(24)

According to (16), there exists a positive constant Z > 0 such that

ai ≤ ψi(x, 0) ≤ bi, x > Z, i = 1, 2, · · · , n.
By Lemma 3.2, for any ε > 0, there exist Z1 > Z and T1 > 0 such that

|u(x, t)− u∗(t)| < ε, x > Z1, t ∈ [T1, T1 + T ].
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Again by the invariant form of traveling wave solutions, we have

|ψ(z, t)− u∗(t)| < ε, z > Z1 + |c|(T1 + T ), t ∈ [0, T ].

The proof is complete.

4. Applications to time periodic Lotka-Volterra competitive models. In
this section, we shall investigate the existence and nonexistence of traveling wave
solutions of the following competitive system{

∂u(x,t)
∂t = d1uxx(x, t) + u(x, t) [r1(t)− a1(t)u(x, t)− b1(t)v(x, t)] ,

∂v(x,t)
∂t = d2vxx(x, t) + v(x, t) [r2(t)− a2(t)u(x, t)− b2(t)v(x, t)] ,

(25)

where x ∈ R, t > 0. The parameters satisfy the following assumptions:

(C1) For i = 1, 2 and some θ ∈ (0, 1), ri(t), ai(t), bi(t) ∈ C
θ
2 (R,R) are T -periodic

functions in t ∈ R with some T > 0;
(C2) d1 > 0, d2 > 0;
(C3) a1(t) > 0, b2(t) > 0, t ∈ [0, T ];
(C4) b1(t) ≥ 0, a2(t) ≥ 0, t ∈ [0, T ];

The corresponding kinetic system{
du(t)
dt = u(t) [r1(t)− a1(t)u(t)− b1(t)v(t)] ,

dv(t)
dt = v(t) [r2(t)− a2(t)u(t)− b2(t)v(t)]

(26)

admits a trivial solution (0, 0) and two nonnegative semi-trivial periodic solutions
(p(t), 0) and (0, q(t)), where

p(t) = p0e
∫ t
0 r1(s)ds

1+p0
∫ t
0
e
∫ s
0 r1(τ)dτa1(s)ds

, p0 = e
∫T
0 r1(s)ds−1∫ T

0
e
∫ s
0 r1(τ)dτa1(s)ds

> 0,

q(t) = q0e
∫ t
0 r2(s)ds

1+q0
∫ t
0
e
∫ s
0 r2(τ)dτ b2(s)ds

, q0 = e
∫T
0 r2(s)ds−1∫ T

0
e
∫ s
0 r2(τ)dτ b2(s)ds

> 0.

In addition, under proper conditions, it also admits a positive periodic solution
(u∗(t), v∗(t)) that is stable or unstable if the initial value of (26) satisfies

(u(0), v(0))� (0, 0).

In what follows, we say that (u∗(t), v∗(t)) is asymptotically stable if (u(t), v(t)) of
(26) satisfies

lim
t→+∞

[|u(t)− u∗(t)|+ |v(t)− v∗(t)|] = 0

with the initial value (u(0), v(0))� (0, 0). There are many sufficient conditions (e.g.

r1 > maxt∈[0,T ]

(
b1(t)
b2(t)

)
r2, r2 > maxt∈[0,T ]

(
a2(t)
a1(t)

)
r1) on the asymptotic stability of

(u∗(t), v∗(t)) in (26). In Hess [19] and Lisena [27], we can find some stable results
of these periodic solutions and we do not list them here.

Let

u(x, t) = U(z, t), v(x, t) = V (z, t), z = x+ ct

be a traveling wave solution of (25). Then the corresponding wave system is
Ut(z, t) = d1Uzz(z, t)− cUz(z, t) + U(z, t) [r1(t)− a1(t)U(z, t)− b1(t)V (z, t)] ,

Vt(z, t) = d2Vzz(z, t)− cVz(z, t) + V (z, t) [r2(t)− a2(t)U(z, t)− b2(t)V (z, t)] ,

U(z, t) = U(z, t+ T ), V (z, t) = V (z, t+ T )

(27)
for z ∈ R, t ∈ R.
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The existence of (27) has been well investigated under different conditions. If
(u∗(t), v∗(t)) vanishes in (26), then Zhao and Ruan [51, 52] studied the existence,
uniqueness and stability of positive solutions connecting (p(t), 0) with (0, q(t)). With
conditions in [51, 52], one of (p(t), 0) and (0, q(t)) is stable while the other is un-
stable. When (u∗(t), v∗(t)) exists and is unstable, Bao and Wang [4] considered
the existence and stability of positive solutions connecting (p(t), 0) with (0, q(t)), in
which both (p(t), 0) and (0, q(t)) are locally stable. Moreover, there are some im-
portant results on the propagation theory of competitive systems when the habitat
and environments depend on t, x, we refer to some very recent conclusions by Wang
and Zhang [43], Yu and Zhao [50].

We now consider the positive solutions of (27) connecting (0, 0) with (u∗(t), v∗(t))
when (u∗(t), v∗(t)) is an asymptotically stable periodic solution of (26). Let

M1 =
maxt∈[0,T ] r1(t)

mint∈[0,T ] a1(t)
, M2 =

maxt∈[0,T ] r2(t)

mint∈[0,T ] b2(t)
.

Then (A1)-(A5) hold. For i = 1, 2, we define

ri =
1

T

∫ T

0

ri(t)dt,

then they are positive constants. If c > c∗ := max{2
√
d1r1, 2

√
d2r2}, then we define

constants

γi =
c−
√
c2 − 4diri
2di

, γi+2 =
c+
√
c2 − 4diri
2di

, i = 1, 2,

and continuous functions

φi(t) = e
∫ t
0
[diγ

2
i−cγi+ri(s)]ds, i = 1, 2,

then φ1(t), φ2(t) are T -periodic functions in t. It should be noted that diγ
2
i − cγi +

ri = 0, then

φi(t) = e
∫ t
0
[ri(s)−ri]ds = e

∫ t
0
[di(γi+ε)

2−c(γi+ε)+ri(s)−(di(γi+ε)2−c(γi+ε)+ri)]ds, i = 1, 2.

Lemma 4.1. Assume that r1 > 0, r2 > 0. If c > c∗, then (27) has a nontrivial
solution.

Proof. Let ε > 0 be a constant such that

γi + ε < min{2γi, γ1 + γ2, γi+2}.
Clearly, it is admissible.

Define continuous functions

U(z, t) = min{φ1(t)eγ1z, p(t)},
V (z, t) = min{φ2(t)eγ2z, q(t)},
U(z, t) = max{φ1(t)eγ1z − Lφ1(t)e(γ1+ε)z, 0},
V (z, t) = max{φ2(t)eγ2z − Lφ2(t)e(γ2+ε)z, 0}

for L > 0 clarified later. Firstly, let L1 > 1 be a constant such that

(U, V ) ≥ (U, V ), L > L1,

and

φ1(t)eγ1z − L1φ1(t)e(γ1+ε)z < 0, φ2(t)eγ2z − L1φ2(t)e(γ2+ε)z < 0

if t ∈ [0, T ], z ≥ 0.
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We now verify that (U, V ) and (U, V ) are a pair of super- and sub-solutions of
(27).

(1) If U = φ1(t)eγ1z, then it is differentiable in any neighborhood of (z, t) and

U t(z, t) = φ1(t)eγ1z(d1γ
2
1 − cγ1 + r1(t)),

while

d1Uzz(z, t)− cUz(z, t) + U(z, t)
[
r1(t)− a1(t)U(z, t)− b1(t)V (z, t)

]
≤ d1Uzz(z, t)− cUz(z, t) + U(z, t)r1(t)

= [d1γ
2
1 − cγ1 + r1(t)]φ1(t)eγ1z

= U t(z, t).

If U = p(t), then

d1Uzz(z, t)− cUz(z, t) + U(z, t)
[
r1(t)− a1(t)U(z, t)− b1(t)V (z, t)

]
= p(t) [r1(t)− a1(t)p(t)− b1(t)V (z, t)]

≤ p(t) [r1(t)− a1(t)p(t)]

= U t(z, t).

(2) Similar to that in (1), we have

V t(z, t) ≥ d2V zz(z, t)− cV z(z, t) + V (z, t)
[
r2(t)− a2(t)U(z, t)− b2(t)V (z, t)

]
with V = φ2(t)eγ2z or V = q(t).

(3) If U = 0, then

U t(z, t) = d1Uzz(z, t)− cUz(z, t) + U(z, t)
[
r1(t)− a1(t)U(z, t)− b1(t)V (z, t)

]
= 0.

Otherwise,

U t(z, t) = (d1γ
2
1 − cγ1 + r1(t))φ1(t)eγ1z

−L(d1(γ1 + ε)2 − c(γ1 + ε) + r1(t))φ1(t)e(γ1+ε)z

+L[d1(γ1 + ε)2 − c(γ1 + ε) + r1]φ1(t)e(γ1+ε)z

and

d1Uzz(z, t)− cUz(z, t) + U(z, t)
[
r1(t)− a1(t)U(z, t)− b1(t)V (z, t)

]
≥ d1Uzz(z, t)− cUz(z, t) + U(z, t)r1(t)

−a1(t)φ21(t)e2γ1z − b1(t)φ1(t)φ2(t)e(γ1+γ2)z

= φ1(t)eγ1z(d1γ
2
1 − cγ1 + r1(t))

−Lφ1(t)e(γ1+ε)z(d1(γ1 + ε)2 − c(γ1 + ε)γ1 + r1(t))

−a1(t)φ21(t)e2γ1z − b1(t)φ1(t)φ2(t)e(γ1+γ2)z.

Then

U t(z, t) ≤ d1Uzz(z, t)− cUz(z, t) + U(z, t)
[
r1(t)− a1(t)U(z, t)− b1(t)V (z, t)

]
if

(d1γ
2
1 − cγ1 + r1(t))φ1(t)eγ1z − L(d1(γ1 + ε)2 − c(γ1 + ε) + r1(t))φ1(t)e(γ1+ε)z

+L[d1(γ1 + ε)2 − c(γ1 + ε) + r1]φ1(t)e(γ1+ε)z

≤ φ1(t)eγ1z(d1γ
2
1 − cγ1 + r1(t))

−Lφ1(t)e(γ1+ε)z(d1(γ1 + ε)2 − c(γ1 + ε)γ1 + r1(t))

−a1(t)φ21(t)e2γ1z − b1(t)φ1(t)φ2(t)e(γ1+γ2)z
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or

L[d1(γ1 + ε)2 − c(γ1 + ε) + r1]φ1(t)e(γ1+ε)z

≤ −a1(t)φ21(t)e2γ1z − b1(t)φ1(t)φ2(t)e(γ1+γ2)z,

which is true when

L > −
maxt∈[0,T ]{a1(t)φ1(t) + b1(t)φ2(t)}

d1(γ1 + ε)2 − c(γ1 + ε) + r1
+ L1 := L2.

(4) In a similar way, we can prove that

V t(z, t) ≤ d2V zz(z, t)− cV z(z, t) + V (z, t)
[
r2(t)− a2(t)U(z, t)− b2(t)V (z, t)

]
with V = φ2(t)eγ2z − Lφ2(t)e(γ2+ε)z or V = 0 if

L > −
maxt∈[0,T ]{a2(t)φ1(t) + b2(t)φ2(t)}

d2(γ2 + ε)2 − c(γ2 + ε) + r2
+ L1 := L3.

By what we have done, if L = L2 +L3, then we obtain a pair of super- and sub-
solutions of (27). Moreover, they also satisfy the other conditions in Theorem 2.2,
and the existence of traveling wave solution is proved. The proof is complete.

Furthermore, we can establish the existence of traveling wave solutions of (27)
with c = c∗. Without loss of generality, we first assume that d1r1 > d2r2, which
implies that c∗ = 2

√
d1r1. Define positive constants

λ1 =
c∗

2d1
=

√
r1
d1
, γ2 =

c∗ −
√

(c∗)2 − 4d2r2
2d2

, γ4 =
c∗ +

√
(c∗)2 − 4d2r2

2d2
,

further define continuous functions

φ1(t) = e
∫ t
0
[d1λ

2
1−c

∗λ1+r1(s)]ds, φ2(t) = e
∫ t
0
[d2γ

2
2−c

∗γ2+r2(s)]ds,

which are T -periodic in t.

Lemma 4.2. Assume that r1 > 0, r2 > 0 and d1r1 > d2r2. If c = c∗, then (27) has
a nontrivial solution.

Proof. Let ε > 0 be a constant such that

γ2 + ε < min

{
γ2 +

λ1
2
, 2γ2, γ4

}
.

Clearly, it is admissible.
Denote by ρ > 0 a positive constant such that

inf
t∈[0,T ]

φ1(t) sup
z∈R

{
−ρzeλ1z

}
> sup
t∈[0,T ]

p(t),

and z1(t) the smaller root of −ρφ1(t)zeλ1z = p(t). Construct continuous functions

U(z, t) =

{
−ρφ1(t)zeλ1z, z ≤ z1(t),

p(t), z > z1(t),

V (z, t) = min{φ2(t)eγ2z, q(t)},

U(z, t) =

(−ρz − L
√
−z)φ1(t)eλ1z, z ≤ −

(
L
ρ

)2
,

0, z > −
(
L
ρ

)2
,

V (z, t) = max{φ2(t)eγ2z − Lφ2(t)e(γ2+ε)z, 0},
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where L > 0 will be clarified latter. Let L1 > 1 be a constant such that

(U, V ) ≥ (U, V ) if L > L1

and

φ2(t)eγ2z − L1φ2(t)e(γ2+ε)z < 0

if t ∈ [0, T ], z ≥ 0.
We now verify that (U, V ) and (U, V ) are a pair of super- and sub-solutions of

(27).
(1) Similar to that in (2) of Lemma 4.1, we have

V t(z, t) ≥ d2V zz(z, t)− c∗V z(z, t) + V (z, t)
[
r2(t)− a2(t)U(z, t)− b2(t)V (z, t)

]
with V = φ2(t)eγ2z or V = q(t).

(2) If U = −ρφ1(t)zeλ1z, then it is differentiable in any neighborhood of (z, t)
and

U t(z, t) = U(z, t)(d1λ
2
1 − c∗λ1 + r1(t)).

In addition,

Uz(z, t) = −ρφ1(t)eλ1z + λ1U(z, t),

Uzz(z, t) = −2ρλ1φ1(t)eλ1z + λ21U(z, t),

and

d1Uzz(z, t)− c∗Uz(z, t) + U(z, t)
[
r1(t)− a1(t)U(z, t)− b1(t)V (z, t)

]
≤ d1Uzz(z, t)− c∗Uz(z, t) + U(z, t)r1(t)

= d1
[
−2ρλ1φ1(t)eλ1z + λ21U(z, t)

]
−c∗

[
−ρφ1(t)eλ1z + λ1U(z, t)

]
+ U(z, t)r1(t)

= U t(z, t).

If U = p(t), then

d1Uzz(z, t)− cUz(z, t) + U(z, t)
[
r1(t)− a1(t)U(z, t)− b1(t)V (z, t)

]
= p(t) [r1(t)− a1(t)p(t)− b1(t)V (z, t)]

≤ p(t) [r1(t)− a1(t)p(t)]

= U t(z, t).

(3) If V = 0, then

V t(z, t) = d2V zz(z, t)− c∗V z(z, t) + V (z, t)
[
r2(t)− a2(t)U(z, t)− b2(t)V (z, t)

]
.

Otherwise, we can find a positive number L2 > 0 such that if L > L1 + L2, then
eγ2z > Le(γ2+ε)z implies that −ρφ1(t)zeλ1z < φ1(t)eλ1z/2. A directly calculation
yields

V t(z, t) = (d2γ
2
2 − c∗γ2 + r2(t))φ2(t)eγ2z

−L(d2(γ2 + ε)2 − c∗(γ2 + ε) + r2(t))φ2(t)e(γ2+ε)z

+L[d2(γ2 + ε)2 − c∗(γ2 + ε) + r2]φ2(t)e(γ2+ε)z
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and

d2V zz(z, t)− c∗V z(z, t) + V (z, t)
[
r2(t)− a2(t)U(z, t)− b2(t)V (z, t)

]
≥ d2V zz(z, t)− c∗V z(z, t) + V (z, t)r2(t)

−a2(t)φ1(t)φ2(t)e(γ2+
λ1
2 )z − b2(t)φ22(t)e2γ2z

≥ φ2(t)eγ2z(d2γ
2
2 − c∗γ2 + r2(t))

−Lφ2(t)e(γ2+ε)z(d2(γ2 + ε)2 − c∗(γ2 + ε)γ2 + r2(t))

−a2(t)φ1(t)φ2(t)e(γ2+
λ1
2 )z − b2(t)φ22(t)e2γ2z.

Then

V t(z, t) ≤ d2V zz(z, t)− c∗V z(z, t) + V (z, t)
[
r2(t)− a2(t)U(z, t)− b2(t)V (z, t)

]
if

L[d2(γ2 + ε)2 − c∗(γ2 + ε) + r2]φ2(t)e(γ2+ε)z

≤ −a2(t)φ1(t)φ2(t)e(γ2+
λ1
2 )z − b2(t)φ22(t)e2γ2z.

This is true when

L > −
maxt∈[0,T ]{a2(t)φ1(t) + b2(t)φ2(t)}

d2(γ2 + ε)2 − c∗(γ2 + ε) + r2
+ L1 := L3.

(4) If U = 0, then

U t(z, t) = d1Uzz(z, t)− c∗Uz(z, t) +U(z, t)
[
r1(t)− a1(t)U(z, t)− b1(t)V (z, t)

]
= 0.

If U = (−ρz − L
√
−z)φ1(t)eλ1z, then

U t(z, t) = (d1λ
2
1 − c∗λ1 + r1(t))U(z, t),

and

Uz(z, t) = λ1U(z, t) +

[
L

2
(−z)−1/2 − ρ

]
φ1(t)eλ1z,

Uzz(z, t) = λ21U(z, t) +

[
λ1L(−z)−1/2 − 2λ1ρ+

L

4
(−z)−3/2

]
φ1(t)eλ1z.

Hence, we have

d1Uzz(z, t)− c∗Uz(z, t) + U(z, t)
[
r1(t)− a1(t)U(z, t)− b1(t)V (z, t)

]
= d1

(
λ21U(z, t) +

[
λ1L(−z)−1/2 − 2λ1ρ+

L

4
(−z)−3/2

]
φ1(t)eλ1z

)
−c∗

(
λ1U(z, t) +

[
L

2
(−z)−1/2 − ρ

]
φ1(t)eλ1z

)
+U(z, t)

[
r1(t)− a1(t)U(z, t)− b1(t)V (z, t)

]
= U t(z, t) + d1

L

4
(−z)−3/2φ1(t)eλ1z − U(z, t)

[
a1(t)U(z, t) + b1(t)V (z, t)

]
,

which implies that

U t(z, t) ≤ d1Uzz(z, t)− c∗Uz(z, t) + U(z, t)
[
r1(t)− a1(t)U(z, t)− b1(t)V (z, t)

]
if

d1
L

4
(−z)−3/2φ1(t)eλ1z

≥ a1(t)ρ2z2φ21(t)e2λ1z + b1(t)(−ρz)φ1(t)φ2(t)e(λ1+γ2)z.
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This is true if

L >
4

d1
sup

z≤0,t∈[0,T ]

{
(−z)3/2

[
a1(t)ρ2z2φ1(t)eλ1z + b1(t)(−ρz)φ2(t)eγ2z

]}
:= L4.

Take L = L1 + L2 + L3 + L4, then we obtain a pair of super- and sub-solutions
of (27). Similar to that in Lemma 4.1, the existence of traveling wave solution is
proved. The proof is complete.

Lemma 4.3. Assume that r1 > 0, r2 > 0 and d2r2 > d1r1. If c = c∗, then (27) has
a nontrivial solution.

Proof. By following exactly the same argument in Lemma 4.2, the proof is complete.

Lemma 4.4. Assume that r1 > 0, r2 > 0 and d1r1 = d2r2. If c = c∗, then (27) has
a nontrivial solution.

Proof. Define positive constants

λ1 =
c∗

2d1
=

√
r1
d1
, λ2 =

c∗

2d2
=

√
r2
d2
,

further define continuous functions

φi(t) = e
∫ t
0
[diλ

2
i−c

∗λi+ri(s)]ds, i = 1, 2,

which are T -periodic functions in t.
Let ρ > 0 be a positive constant such that

inf
t∈[0,T ]

φ1(t) sup
z∈R

{
−ρzeλ1z

}
> sup
t∈[0,T ]

p(t),

inf
t∈[0,T ]

φ2(t) sup
z∈R

{
−ρzeλ2z

}
> sup
t∈[0,T ]

q(t),

and z1(t)(z2(t)) be the smaller root of −ρφ1(t)zeλ1z = p(t)(−ρφ2(t)zeλ2z = q(t)).
Construct continuous functions

U(z, t) =

{
−ρφ1(t)zeλ1z, z ≤ z1(t),

p(t), z > z1(t),

V (z, t) =

{
−ρφ2(t)zeλ2z, z ≤ z2(t),

q(t), z > z2(t),

U(z, t) =

(−ρz − L
√
−z)φ1(t)eλ1z, z ≤ −

(
L
ρ

)2
,

0, z > −
(
L
ρ

)2
,

V (z, t) =

(−ρz − L
√
−z)φ2(t)eλ2z, z ≤ −

(
L
ρ

)2
,

0, z > −
(
L
ρ

)2
.

Similar to that of d1r1 6= d2r2, there exists L > 0 such that (U, V ), (U, V ) are a pair
of super- and sub- solutions of (27). Hence, (27) admits a nontrivial solution.
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To continue our discussion, we now recall the following initial value problem
involving Fisher nonlinearity with time periodic parameters{

wt(x, t) = dwxx(x, t) + w(x, t)[r(t)− a(t)w(x, t)],

w(x, 0) = w0(x),
(28)

in which x ∈ R, t > 0, all the parameters are T -periodic and Cθ functions in t for

some T > 0 and θ ∈ (0, 1). Moreover, d > 0, a(t) > 0 and
∫ T
0
r(t)dt > 0. Under these

conditions, the corresponding kinetic equation admits a positive periodic solution
w∗(t), which attracts all solutions with positive initial values. For this equation, we
have the following results on asymptotic spreading [6, 24, 31].

Lemma 4.5. Assume that w0(x) ∈ [0, w∗(0)] is a positive continuous function with
nonempty compact support. If

c∗1 = 2

√
d

∫ T

0

r(t)dt/T ,

then
lim
t→∞

sup
|x|<(c∗1−ε)t

|w(x, t)− w∗(t)| = 0, lim
t→∞

sup
|x|>(c∗1+ε)t

w(x, t) = 0

for any ε ∈ (0, c∗1).

Lemma 4.6. Assume that (U(z, t), V (z, t)) is given by Lemmas 4.1-4.4. If∫ T

0

[r1(t)− b1(t)q(t)] dt > 0,

∫ T

0

[r2(t)− a2(t)p(t)] dt > 0, (29)

then
lim inf
z→∞

inf
t∈[0,T ]

(U(z, t), V (z, t))� (0, 0).

Moreover, if (u∗(t), v∗(t)) is asymptotically stable, then

lim
z→∞

(U(z, t), V (z, t)) = (u∗(t), v∗(t))

uniformly in t ∈ R.

Proof. Let m∗(t) be the unique positive periodic solution of

dm(t)

dt
= m(t) [r1(t)− b1(t)q(t)− a1(t)m(t)] ,

of which the existence and stability are obtained by (29).
By Lemma 4.1, u(x, t) = U(x+ ct, t) satisfies{

∂u(x,t)
∂t ≥ d1uxx(x, t) + u(x, t) [r1(t)− b1(t)q(t)− a1(t)u(x, t)] ,

u(x, 0) = U(x, 0) > 0

for x ∈ R, t > 0. By the comparison principle and Lemma 4.5, we have

lim inf
t→∞

(u(0, t)−m∗(t)) ≥ 0,

that is
lim inf
t→∞

u(0, t) = lim inf
z→∞

U(z, t) ≥ m∗(t)

by the definition of traveling wave solution and z = 0 + ct→∞ when t→∞.
Similarly, we can obtain a small positive constant ε such that

ε < lim inf
z→∞

inf
t∈[0,T ]

U(z, t) < max
t∈[0,T ]

p(t) := p̂
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and
ε < lim inf

z→∞
inf

t∈[0,T ]
V (z, t) < max

t∈[0,T ]
q(t) := q̂.

In the corresponding kinetic system of (25), (u∗(t), v∗(t)) is asymptotically stable
if the initial value belongs to the set [ε, p̂] × [ε, q̂], then Theorem 3.1 implies what
we wanted. The proof is complete.

Lemma 4.7. If c < c∗, then (27) does not have a positive solution (U(z, t), V (z, t))
such that

lim
z→−∞

(U(z, t), V (z, t)) = (0, 0), lim inf
z→∞

inf
t∈[0,T ]

(U(z, t), V (z, t))� (0, 0). (30)

Proof. Without loss of generality, we assume that c∗ = 2
√
d1r1. Were the statement

false, then there exists some c′ ∈ (0, c∗) such that (27) with c = c′ has a bounded
positive T -periodic solution (U(z, t), V (z, t)). Let ε > 0 be a small constant such
that

c′ < 2
√
d1(r1 − 2ε) < c∗.

For convenience, we denote 2
√
d1(r1 − 2ε) := c′′.

By (30), there exist z0 ∈ R,M > 0 such that

b1(t)V (z, t) < ε, z < z0, t ∈ [0, T ],

and
a1(t)U(z, t) + b1(t)V (z, t) < MU(z, t), z ≥ z0, t ∈ [0, T ].

Thus, u(x, t) = U(x+ c′t, t) satisfies{
ut(x, t) ≥ d1uxx(x, t) + u(x, t) [r1(t)− ε−Mu(x, t)] ,

u(x, 0) = U(x, 0).

By Lemma 4.5, we see that

lim inf
t→∞

u(−c′′t, t) ≥ min
t∈[0,T ]

u(t) > 0,

where u(t) is the unique positive solution of

du(t)

dt
= u(t) [r1(t)− ε−Mu(t)] .

On the other hand, x = −c′′t implies that

z = x+ c′t = (c′ − c′′)t→ −∞ as t→∞,
which further indicates that

lim
t→∞

u(−c′′t, t) = lim
z→−∞

U(z, t) = 0,

and a contradiction occurs. The proof is complete.

Summarizing the above analysis, we have the following results.

Theorem 4.8. Assume that (C1)-(C4) hold.

(1) If (29) is true, then for any c ≥ c∗, (27) has a positive solution satisfying

lim
z→−∞

(U(z, t), V (z, t)) = (0, 0), lim inf
z→∞

inf
t∈[0,T ]

(U(z, t), V (z, t))� (0, 0).

Moreover, if (u∗(t), v∗(t)) is asymptotically stable, then

lim
z→∞

(U(z, t), V (z, t)) = (u∗(t), v∗(t))

uniformly in t ∈ R.
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(2) If c < c∗, then (27) does not have a positive solution satisfying (30).

Remark 2. From our results, we can see that the solution of (27) with c = c∗ does
not decay exponentially as z → −∞, while it decays exponentially as z → −∞ if
c > c∗.

Appendix. In this part, we collect some optimal regularity results in [28]. For
convenience, we use the notations similar to those in [28]. Assume that the Banach
spaces X,Y are given by Section 2, we consider the following initial problem{

ut(x, t) = Au(x, t) + f(x, t), 0 < t ≤ T, x ∈ R,
u(x, 0) = u0(x), x ∈ R,

(31)

where f : R× [0, T ] 7→ R is a continuous function, A = d∂xx + c∂x + a is the second
order elliptic operator with constant coefficients d, c, a ∈ R. We write problem (31)
as an evolution equation in the space X by setting u(t) = u(·, t), f(t) = f(·, t) andD(A) =

{
ϕ ∈

⋂
p≥1

W 2,p
loc (R,R) : ϕ,Aϕ ∈ X

}
,

A : D(A) 7→ X,Aϕ = Aϕ.

The realization A of A in X is a sectorial operator, and that D(A) = C2(R,R).

Moreover, D(A) = X. Let f : R × [0, T ] 7→ R be a continuous function such that
t 7→ f(·, t) belongs to C([0, T ], X), and let u0 ∈ X. Then

u(x, t) = (etAu0)(x) +

∫ T

0

e(t−s)Af(·, s)ds(x), 0 ≤ t ≤ T, x ∈ R (32)

defines a mild solution of (31) (see [28, Section 5.1.1]).

Theorem A. ([28, Theorem 5.1.2]) Let f : R× [0, T ] 7→ R be a continuous function
such that t 7→ f(·, t) belongs to C([0, T ], X), and let u0 ∈ X. Then the function u
defined by (32) belongs to Y ∩ C2θ,θ(R × [ε, T ],R) for every ε ∈ (0, T ) and some
θ ∈ (0, 1), and there are C > 0, C(ε, θ) > 0 such that

‖u‖∞ ≤ C (‖u0‖∞ + ‖f‖∞) ,

‖u‖C2θ,θ(R×[ε,T ],R) ≤ C(ε, θ)
(
ε−θ‖u0‖∞ + ‖f‖∞

)
.

In addition, if u0 ∈ C2θ(R,R), with 0 < θ < 1, then u belongs to C2θ,θ(R×[0, T ],R),
and

‖u‖C2θ,θ(R×[0,T ],R) ≤ C
(
‖u0‖C2θ(R,R) + ‖f‖∞

)
.

Theorem B. ([28, Theorem 5.1.4]) Let f ∈ Y ∩ Cα,0(R × [0, T ],R), with α ∈
(0, 2), α 6= 1, and let u0 ∈ X. Then the mild solution u of problem (31) is differen-

tiable with respect to t in R×(0, T ], u(·, t) belongs to W 2,p
loc (R) for every p ≥ 1. More-

over, u satisfies pointwise (31), and it is the unique solution of (31) belonging to Y
and enjoying the above regularity properties. In addition, u ∈ C2+α,1(R× [ε, T ],R)
for every ε ∈ (0, T ), and

‖u‖C2+α,1(R×[ε,T ],R) ≤
C

εα/2+1

(
‖u0‖∞ + ‖f‖Cα,0(R×[0,T ],R)

)
.

If also u0 ∈ C2+α(R,R), then u ∈ C2+α,1(R× [0, T ],R), and

‖u‖C2+α,1(R×[0,T ],R) ≤ C
(
‖u0‖C2+α(R,R) + ‖f‖Cα,0(R×[0,T ],R)

)
.
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