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Abstract. In this paper, we consider a two-dimensional delay differential system with two delays. By analyzing
the distribution of eigenvalues, linear stability of the equilibria and existence of Hopf, Bautin, and
Hopf-Hopf bifurcations are obtained in which the time delays are used as the bifurcation parameter.
General formula for the direction, period, and stability of the bifurcated periodic solutions are
given for codimension one and codimension two bifurcations, including Hopf bifurcation, Bautin
bifurcation, and Hopf-Hopf bifurcation. As an application, we study the dynamical behaviors of
a model describing the interaction between tumor cells and effector cells of the immune system.
Numerical examples and simulations are presented to illustrate the obtained results.
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1. Introduction. One of the most important and challenging questions in immunology
and cancer research is to understand how the immune system affects cancer development and
progression (Schreiber, Old, and Smyth [42]). In the 1950s, based on an emerging under-
standing of the cellular basis of transplantation and tumor immunity, Burnet [4] and Thomas
[45] predicted that lymphocytes were responsible for eliminating continuously arising nascent
transformed cells and introduced the concept cancer immunosurveillance. Recent data on both
mice and humans with cancer suggest that innate and adaptive immune cell types, effector
molecules, and pathways can suppress tumor growth by destroying cancer cells or inhibiting
their outgrowth. On the other hand, the immune system can also promote tumor progression
either by selecting tumor cells that are more fit to survive in an immunocompetent host or by
establishing conditions within the tumor microenvironment that facilitate tumor outgrowth
(Dunn, Old, and Schreiber [17], Pardoll [36], Schreiber, Old, and Smyth [42], Sotolongo-Costa
et al. [43], Vesely et al. [46]). Together, the dual host-protective and tumor-promoting actions
of immunity are referred to as cancer immunoediting, which has three processes: elimination
(immunity functions as an extrinsic tumor suppressor in naive hosts); equilibrium (expansion
of transformed cells is held in check by immunity); and escape (tumor cells attenuate immune

“Received by the editors August 13, 2012; accepted for publication (in revised form) by E. Sander July 15, 2013;
published electronically October 28, 2013. This research was partially supported by the National Natural Science
Foundation of China (11171110 and 11228104), Shanghai Leading Academic Discipline Project (B407), 211 Project
of Key Academic Disciplines of East China Normal University, and the National Science Foundation (DMS-1022728).

http://www.siam.org/journals/siads/12-4 /88789.html

fDepartment of Mathematics, East China Normal University, Shanghai 200241, China (pbi@math.ecnu.edu.cn).

{Department of Mathematics, University of Miami, Coral Gables, FL 33124-4250 (ruan@math.miami.edu).

1847

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.


http://www.siam.org/journals/siads/12-4/88789.html
mailto:pbi@math.ecnu.edu.cn
mailto:ruan@math.miami.edu

Downloaded 10/29/13 to 129.171.178.62. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

1848 PING Bl AND SHIGUI RUAN

responses and grow into cancers) (Dunn et al. [16, 17], Koebel et al. [25], Schreiber, Old, and
Smyth [42]).

The theoretical study of tumor-immune system interaction dynamics has a long history
(Adam and Bellomo [1]). In an attempt to make the models closer to reality, more and more
models have been developed (Arciero, Jackson, and Kirschner [2], de Pillis, Radunskaya, and
Wiseman [10], Kirschner and Panetta [24], Kuznetsov et al. [26], Lejeune, Chaplaina, and
Akili [28], Nani and Freedman [34], Owen and Sherratt [35]). We refer the reader to a recent
survey by Eftimie, Bramson, and Earn [18] on spatially homogeneous mathematical models
describing the interactions between a malignant tumor and the immune system. However,
mathematical models for the interaction dynamics of the immune components with a target
population are very idealized. It is almost impossible to construct realistic models due to
the complexity of the processes involved; thus it is feasible to propose simple low dimensional
models which are capable of displaying some of the essential immunological phenomena, in
particular the two-dimensional ODE models for the interaction of tumor cells and effector
cells of the immune system (d’Onofrio [11, 12, 13]). The basic modeling idea is to assume that
effector cells attack tumor cells, and their proliferation is stimulated, in turn, by the presence
of tumor cells. However, tumor cells also induce a loss of effector cells, and there is an influx
of effector cells, whose intensity may depend on the size of the tumor.

Delayed responses cannot be ignored for the tumor—-immune system interaction, just as
Asachenkov et al. [3] and Mayer, Zaenker, and an der Heiden [32] pointed out that the de-
lays should be taken into account to describe the times necessary for molecule production,
proliferation, differentiation of cells, transport, etc. In fact, tumor-immune system interac-
tion models with delay have been studied extensively; see Asachenkov et al. [3], Byrne [5],
Byrne and Gourley [6], d’Onofrio and Gandolfi [14], d’Onofrio et al. [15], Galach [19], Liu,
Hillen, and Freedman [31], Mayer, Zaenker, and an der Heiden [32], Piotrowska and Forys [37],
Rordriguez-Perez et al. [39], Villasana and Radunskaya [47], and the references cited therein.

In this article, based on the models of d’Onofrio et al. [15] and followed by Asacheukov et
al. [3] and Mayer, Zaenker, and an der Heiden [32], we consider a delayed model of tumor—
immune system interaction of the following form:

{ 2'(t) = z(t)[v(a(t — 7)) — ¢(x(t),y(1))],
Y () = Blx(t — p))y(t) — n(=(®)y(t) + oq(z(t) +0(t),

where x(t) and y(t) are the density of tumor cells and immune effector cells at time ¢, respec-
tively. 7 and p are positive constants, and v(x), 5(z), u(x),q(z) € C"(R), ¢(z,y) € C"(R,R),
r > 5, are interpreted as follows:

(i) v(z) describes the relative baseline growth of tumor cells and satisfies 0 < v(0) < +o0,
V() < 0, and lim, o+ zv(z) = 0, and in some relevant cases, we shall suppose
that there exists a 0 < & < 400 such that v(z) = 0. Prototype examples include
the exponential growth v(x) = k > 0 (Wheldon [49]); the Gompertz growth v(x) =
kln(a/x) (Laird [27]); and the logistic growth v(z) = k(1—(x/a)™) (Marusic et al. [33]).
We assume that there is a time delay 7 > 0 in the proliferation of tumor cells (Mayer,
Zaenker, and an der Heiden [32], Byrne [5], d’Onofrio and Gandolfi [14]).

(ii) ¢(z,y) models the loss rate of tumor cells due to the attack by effector cells of the
immune system and satisfies ¢(z,0) = 0, ¢(0,y) > 0, dyé(x,y) <0, and dy¢p(z,y) > 0.

(1.1)
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An example is the Beddington-DeAngelis function ¢(x,y) = ngTercy (Huisman and
De Boer [23] and d’Onofrio [11]), where a is the rate or possibility of successful removal
of tumor cells by immunity effector cells, 1/b is a saturation constant, and ¢ scales the
impact of the immune response.

(iii) B(z) represents the tumor-stimulated proliferation rate of the effector cells and satisfies
B(z) >0, B(0) =0, and f'(z) > 0. The Michaelis-Menten—-Monod function §(z) =
it has been used (Kuznetsov et al. [26]). A time delay p > 0 is introduced into B(z)
to reflect the process of effector cell growth with respect to stimulus by the tumor cell
growth (d’Onofrio et al. [15]).

(iv) The term og(x) > 0 describes the influx of effector cells of the immune system in the
tumor in situ, which may depend on the tumor size. It is assumed that ¢(0) = 1 and
¢ (xz) <0 for x > 1 (d’Onofrio et al. [15]).

(v) p(x) is the loss rate of immune effector cells due to the interaction with tumor cells
and satisfies p(xz) > 0,4/ (z) > 0 (d’Onofrio et al. [15]).

(vi) 6(t) > 0 models the effect of immunotherapy, which could be periodic, constant, or
zero (in the absence of immunotherapy). In this paper, we consider only constant
immunotherapy (that is, 8(t) = 6y, where 6y is the nonnegative constant) or no im-
munotherapy (that is, 8(t) = 0).

We can see that model (1.1) with ¢(z,y) = ¢(x)m(y) and 7 = p = 0 reduces to the model
considered by d’Onofrio [11, 12, 13] who studied the local stability of the equilibria and the
uniqueness of stable limit cycles. When 7 = 0, p # 0, model (1.1) becomes the delay model
proposed in d’Onofrio et al. [15], in which the stability of equilibria and the onset of sustained
oscillations through Hopf bifurcations was investigated. Model (1.1) can be regarded as an
extension of the models of d’Onofrio [11, 12, 13], d’Onofrio et al. [15], and Mayer, Zaenker,
and an der Heiden et al. [32].

In order to study the nonlinear dynamics of model (1.1), in this paper we first consider a
general two-dimensional delay differential system with two delays,

(12) { 2(t) = fl@(t),z(t - 7),y(t),

(z(t),z(t — p),y(t)),

@\
—~
~
~—
I
Q

where z(t), y(t) are scalar variables, f,g € C"(R?,R),r > 3, with f(0,z,y) = 0 and g(z,,0) >
0. From the biological point of view, we will focus on the dynamical behaviors of (1.2) in the
domain D = {(z,y) € R?|z > 0,y > 0}. We will study the local stability of the equilibria,
the existence of Hopf bifurcation, Bautin bifurcation, and Hopf-Hopf bifurcation for system
(1.2) and provide detailed calculations for the normal form of the Hopf bifurcation and Hopf—
Hopf bifurcation. Then we will apply these results to the tumor-immune response interaction
model (1.1).

The rest of this paper is organized as follows. In section 2, for the general delay differen-
tial system (1.2), the linear analysis will be carried out, and local stability of the equilibria
and the existence of Hopf bifurcation, Bautin bifurcation, and Hopf-Hopf bifurcation will be
studied. Detailed calculations for the normal form of the Hopf bifurcation and Hopf-Hopf
bifurcation will be given. In section 3, all theories will be used to study the dynamical be-
haviors of the tumor-immune system interaction model (1.1). In section 4, we summarize the
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methods and conclusions and make some remarks about more general results on degenerated
bifurcations.

2. Bifurcations in the general delay differential equations. In this section, we study
the local stability of the equilibria and the existence of Hopf bifurcation, Bautin bifurcation,
and Hopf-Hopf bifurcation in the general delay differential system (1.2) and give detailed
calculations for the normal form of the Hopf bifurcation and Hopf-Hopf bifurcation.

2.1. Local analysis. In this subsection, we provide some local analysis for system (1.2) in
the domain D. It has three types of equilibria.
(1) Semitrivial (x(t)-absence) equilibrium Fj(0,y;) with f(0,0,y1) = ¢g(0,0,y1) = 0.
(2) Positive equilibria E (25, y5) (25,95 # 0, k € Z), which are the intersecting points of
the nullclines f (x5, 25, y5) = g(2k, 25, y5) = 0 with 25y% £ 0.
(3) Semitrivial (y(t)-absence) equilibrium FEs(x3,0), where x3 satisfies f(z3,23,0) =
g(x3,23,0) = 0.
Let (z;,y;) be the coordinates of the equilibrium E;,i = 1,2, 3. The linearizing system of (1.2)
at the equilibrium is

@.1) 2 (t) = anx(t — 7) + apx(t) + aizy(t),
' Y (t) = anz(t — p) + axnz(t) + asy(t),
where
( 11 = af(xwxwyl) 1o = af(xwxwyl)
1 ox(t—71) 12 Ox(t) ’
22 T Tm T )
a _ ag(‘ruxzuyl) a _ 89(%7%7%)
22 7895@) , Q93 7&%0

It is obvious that the stability of F; depends on the distribution of characteristic roots of
(2.1). The characteristic equation of (2.1) is

(2.3) M AN+ Ay + (BiA + Bg)e N 4 Boge M =0,
where

Al = —a12 — a3, Az = ajpa3 — a13az2,

Bi1 = —a11, B2 = aiiae3, B2 = —ai3a9.

We now study the distribution of the roots of the transcendental equation (2.3) in two
cases, that is, 7 = p and 7 # p. We will give the local analysis in the following two cases.

2.1.1. Equal delays 7 = p. In this case, the characteristic equation (2.3) becomes
(2.4) M4 AN+ Ay + (BIA + By)e ™ =0,

where By = By + Boy = a13a21 — aq1a23 > 0. Analyzing the distribution of eigenvalues, we
obtain the following results.
Lemma 2.1. (1) If

(2.5) A+ By > 0, Ay + By > 0,
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and
(2.6) B} —A? 4245, <0, A3—B2>0 or (B} —A? +24,)% < 4(4% - B?),

then all roots of (2.4) have negative real parts for all T > 0.
(2) If
(2.7) A3—-B3<0 or B?—A?+2A,>0 and (B} — A} +24,)? = 4(43 — B3),

then (2.4) has a pair of purely imaginary roots *iw, at T = Tj+.
(3) If
(2.8) B} — A? 4245 >0, A3— B3>0, and (B} — A? +24,)* > 4(A% - BY),

then (2.4) has a pair of purely imaginary roots tiwy (Liw_, respectively) at T = Tj+ (r=r1,
respectively), where

1 B2 _A2 2
(2.9) wizi(Bf—Af)%—Agi\/%%—AQ(B%—A%H—B%
and
(2.10)
_ 2 _
é (2j7r + arccos { (B2 g}igi@% B2 4> }) if BoAj + Bi(w? — Ag) >0,
+
T, =
J B -
é ((2j + 1)m — arccos { (Bs g%izfgg oAz }) if ByAj + Bi(wi — Ag) < 0.
Let

F(A,7) = A2 + AiA + Ay + eV (B1) + By).

Noting that F(iwy,79) = 0, it is easy to prove that iw is not a root of F.(A\,7) = 0. The
following result can be obtained from the implicit function theorem.
Theorem 2.2. Assume that (2.7) or (2.8) holds; then we have the following conclusions.
(i) The characteristic function F(\,T) is continuously differentiable with respect to T.
(ii) There exist a constant § > 0 and a smooth curve () : (1 — 6,7 +0) — C
such that \(15°) = iws and F(iwg,75) = 0 for all T € (18 — 8,75 + 8). Moreover,
%Re)\(T)L:Tg: > 0.
In fact, if the characteristic roots of (2.4)

(2.11) A =ai(r)+iwi (1), j=0,1,2...,
satisfy ozjc (Tji) =0, w;-c (Tji) = wy, then a pair of complex roots crosses the imaginary axis
and
dReX\ ™! 2\ + Ay + Bie™ |
dr i Xe M(BiAt+ By) T
J
(212) L((B? — A2 +245)° —4(A3 - BY) P >0, r=1F,

~L((B2— A2 4245)% —4(A3 - B2) P <0, =17
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It follows that Tji are bifurcation values. Thus we have the following results on the distribution
of the characteristic roots of (2.4).

Theorem 2.3. Let (2.5) hold and T]TJE (j=1,2...) be defined by (2.10).

(i) If (2.6) holds, then all roots of (2.4) have negative real parts for all T > 0.

(i) If (2.7) holds, then all roots of (2.4) have negative real parts as T € [0,75); (2.4) has a
pair of purely imaginary roots as T = TJ ; and (2.4) has at least one root with positive
real part as T > TS_ ;

(iii) If (2.8) holds, then there is a positive integer k such that the sign of the real part ()
switches k times from negative to positive and then to negative; that is, when

Te0,) Ulry ) U U7y,
all roots of (2.4) have negative real parts, and when
TE[TS‘,T{)U[T{",TQ_)U---U[T]:'_l,Tk_) and T>T]:_,

(2.4) has at least one root with positive real part.

Correspondingly, we have the following results on the stability of the positive equilibrium

Esy(2,y2).

Theorem 2.4. Assume (2.5) holds and Tji (j =1,2...) are defined by (2.10).

(i) If (2.6) holds, then the positive equilibrium Eo(xo,y2) of (1.2) is asymptotically stable
for all T > 0.

(ii) If (2.7) holds, then Ea(w2,y2) is stable for 7 € (0,7,7) and unstable for > 75 .

(iii) If (2.8) holds, then there is a positive integer k such that Fa(xa,y2) is stable for

TE [OaT(;F)U[T(]_’TI—F)U"'U[TIC__DT]:)

and unstable for
TE [T(;F’TO_) U [7—1—’_’7_1_) U---u [ ]:__1’7_14;__1)‘

(iv) If A2 < B2, then system (1.2) undergoes Hopf bifurcation at Ey(z2,y2) as T = 7']:_ such
that 1, # 11 for any nmonnegative integer k # .

Remark 2.5. Results similar to those in Theorems 2.2-2.4 have been obtained in Cooke
and Grossman [9], Ruan [40] and Ruan and Wei [41].

Noting (2.3), we know that Bs is the constant coefficient of e=*7, which is critical in
affecting the dynamical behaviors of (1.2). Thus we chose By and 7 as parameters to determine
the stability regions of the positive equilibrium Fs.

If By = 0, we know that the stability regions of the positive equilibrium Fs are

(1) Ay > By, Ay >0, 7> 0;

(2) Ay =By, Ay >0, 7<1;

(3) By > |A1], A2>0, 7€[0,7))U[rg, 7 )U---Ulrp 1, 70),
where

T

i (2j7r + arccos{_B’?l}) , Ay —wi <0,
(2.13) TE =

é ((Zj + )7 — arccos{_gil }) , Ay —wi >0.
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@

Figure 1. The stability regions. (a) For case (i) in (2.15) with Ay = 2, A2 = 0.8, and B1 = 1. (b) For case
(i) in (2.14) with A1 = 2, A2 = 0.5, and By = /2, where the blue curves represent Tf}i =0,1,2,..., from
bottom to top.

For fixed 7 > 0, E5 will remain stable for By # 0 until By reaches a value for which one of the
corresponding characteristic roots has zero real part, which occurs as By = —As (correspond-
ing to the zero root) or a pair of complex eigenvalues crosses the imaginary axis (17 = Tji). In
the following, we will consider the stable region in terms of parameters Bs and 7.

(a) If Ay > By, recalling (2.9), we have B3 = w? + (A7 — B} — 245)w? + A%; then B}
is an increasing function of w,. Note that lim,_ BS = A%, if By increases from 0; then the
stability regions are given by

(i) —‘A2’<BQ< ’AQ‘, T>0,

2.14 ..
( ) (11) By > |A2|, By Al + Bl(wi — AQ) > 0, T < 7'1—5.

The stable regions are illustrated by the shadowed areas bounded by the dashed curves in
Figure 1.

(2) For Ay < By, if By varies from 0, then the stability region is when By reaches As or
T = Tl;t—whichever occurs first; that is,

(i) By > ‘Ag‘, ByAi + Bl(wi — Ag) > 0, T < Tl-B,

(i) —|Ao] < By < |Aof, 735 <7 <70

(2.15)

This regions are illustrated by the shadowed areas bounded by the dashed curves in Figure 2.

(3) From the expressions of w., we still need to consider the case A? — 24y < B? < A},
Aq > 0. The stability region is when By reaches As or 7 = T,f—whichever occurs first. If By
increases from 0, the stability regions can be given by

(i) —[B*| < By <|B*, >0,
(2.16) (i) —[Aof < By < —|B*|,  0<7 <7y, 7 <T < Ty g
(iil) |B*| < By < |As], 0<T <1y, T; <T <7

where B* = \/(A% — B?)(Ay — @). Let A = 2,45 = 1, and By = /3; then B* = @
Choose the other parameters as A1 = 2, Ay = 1.5, and By = 1.5; then B* = 1.36359, and the
stable regions are the shadowed areas bounded by the dashed curves in Figure 3.
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Figure 2. The stability regions. (a) A1 =1,A2 = 1.5, Bi =1. (b) A1 =0.8,A2 =1, B1 = 1. In (a) the
blue curves represent T;rj,i =0,1,2,..., from bottom to top. In (b) the blue curves represent T1+j, 1 =0,1,2...
and the red curves represent 7,;, i =0,1,2,..., from bottom to top.

Figure 3. The stability regions. (a) For cases (i)—(ii) in (2.16). (b) For case (iii) in (2.16). In (a) the blue

curves represent 7'27;-7 i1=0,1,2..., and the red curves represent 7,;, 1 =0,1,2,..., from bottom to top. In (b)
the blue curves represent Tf} 1 =0,1,2..., and the red curves represent T;, © = 0,1,2,..., from bottom to
top.

The only point that may have significant influence on the dynamical behaviors is when
4 = 0, which is on the border of the stability region of the equilibrium point. Further results
will be given in the following sections.

2.1.2. Distinct delays 7 # p. To study the characteristic equation (2.3) with two delays,
we use a technique developed in Wei and Ruan [48]. Namely, we first let p = 0 and analyze
the characteristic equation with one delay 7. As in the previous subsection, we can obtain
sufficient conditions for all eigenvalues having negative real parts either for all 7 > 0 or when
7 € [0,79), where 79 is the first bifurcation value. Then we fix 7%, in either [0, c0) or [0, 79), and
consider the characteristic equation (2.3) regarding p as a bifurcation value. Once again, we
can find a critical value po(7*) > 0 such that the real parts of all eigenvalues are still negative
when p € [0, po(7*)). Therefore, we can obtain sufficient conditions such that the positive
equilibrium of system (1.2) with two delays is asymptotically stable when either 7 € [0, 00)
and p € [0, po(7*)) or 7 € [0,79) and p € [0, po(T¥)).
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Case (a) 7 > 0 and p = 0. In this case, the characteristic equation (2.3) reduces to
(217) )\2 + AN+ (A2 + ng) + (Bl/\ + B21)€_>\T = 0.

Following the analysis of (2.4) in the previous subsection, we obtain the following results.
Lemma 2.6. Let (2.5) hold.

i) 1f
B% — A? + 2(A2 + B22) <0, (AQ + 322)2 - B%l > 0,

(2.18)
or (B} — A} + 2(As + Ba2))® < 4((A2 + Bx)? — B3)),

then all roots of (2.17) have negative real parts for all T € [0,00).
(i) If
(A2 + 322)2 — B%l <0 or B% — A% + 2(A2 + ng) >0

2.1
(2.19) and (B2~ A2+ 2(As + B))? = 4((As + B)® — BZ),

then all roots of (2.17) have negative real parts when T € [0,79), where

(2.20)
i arccos { (321_1413;%)2%;221(14#322) if Bo1 A1+ Bi(w? — Ay — Ba) > 0,
and
(2.21)
W2 = %(Bf — A2) + (A + Bay) + \/w + (A2 + Bx)(Bf — A?) + B

Case (b) 7 > 0 and p > 0. We assume that the conditions in Lemma 2.1 are satisfied.
Fix 7% € [0,00) if (2.18) holds or 7* € [0, 79) if (2.19) holds. Then the characteristic equation
(2.3) can be written as

(2.22) A2+ (Ay + Bie A+ (Ag + Bore ") + Bage ™™ = 0.

Next, we consider (2.17) with 7 in its stable intervals. Take p as a parameter; then we
have the following lemma.

Lemma 2.7. If 7* € [0,70), then there exists a po(T*) > 0, such that all roots of (2.22) have
negative real parts when p € [0, po(7)).

Summarizing the above analysis, we can obtain some conditions, to ensure that all roots
of the characteristic equation (2.3) with two delays have negative real parts, which imply the
asymptotic stability of the positive equilibrium of system (1.2). That is, we have the following
results.

Theorem 2.8. Let (2.5) hold.

(i) If (2.18) holds, then for any 7* > 0 there exists a po(7*) > 0 such that the positive

equilibrium FEs(x2,y2) of system (1.2) is asymptotically stable for p € [0, po(7*)).

(i) If (2.19) holds, then for any 7" € [0,70) there exists a po(7*) > 0 such that the positive

equilibrium FEs(x2,y2) of system (1.2) is asymptotically stable for p € [0, po(7*)).
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2.2. Codimension one bifurcations. In this subsection, for the sake of simplicity we
consider system (1.2) with equal delay (7 = p). We shall study codimension one bifurcations
of the positive equilibrium FEs, including Hopf bifurcation and Bautin bifurcation. The other
equilibria can be studied similarly, and so we omit them here.

2.2.1. Hopf bifurcation. In the previous subsection, we obtained conditions under which
a family of periodic solutions bifurcated from the positive equilibrium F, at critical values
Tr. As pointed out in Hassard, Kazarinoff, and Wan [22], it is interesting and important to
determine the direction, stability, and period of these bifurcated periodic solutions. We will
derive explicit formulae determining these factors at critical values 75 using the normal form
and the center manifold theory in Hassard, Kazarinoff, and Wan [22]. In this section, we
always assume that (2.7) holds, and +iw are the only purely imaginary roots, where w = w .

Let a = 7 — 7%. Then a = 0 is a Hopf bifurcation value of (1.2) with 7 = p. Set t = 7t, § =
Yy —y2, and T = x — x9, dropping the bars; then (1.2) can be written as a functional differential
equation in C = C([—1,0),R?) as

(2.23) 2'(t) = Lo(xy) + R(a, xy),

where z(t) = (z1,22)7 € R?, L, :C - R, R:R x C — R are given by

o =mea (ot ) (50) +mea (0 0) (203).

(2.24)
R(a,¢) = (1 + a) [D1(47(0), ¢1(0)¢2(0), ¢3(0))™

+ Da(¢3(—1),01(0) 1 (—1), ¢2(0)p1 (—1))

+ E1(¢7(0), $7(0)$2(0), ¢1(0)95(0), ¢3(0))"

+ By (¢} (—1), 1(0)¢7 (—1), ¢2(0)p7 (—1),
$3(0)p1(—1),95(0)p1(—1), d2(0)h2(0) 1 (—1))"

+ F1(67(0), ¢3(0)$2(0), 97 (0)¢3(0), $1(0)¢3(0), ¢5(0))”

+ Fy(¢1(—1), ¢3(—=1)¢1(0), ¢7(—1)$2(0), ¢7(—1)$7(0), ¢7 (—1)93(0),

1(=1)91(0)p2(0), p1(—=1)$3(0), 1 (—1)$3(0),

$1(—=1)67(0)$2(0), d1(—1)¢1(0)¢3(0))"

+ H1(43(0), ¢1(0)2(0), ¢7(0)¢3(0), $7(0)¢3(0), $1(0)$3(0), $5(0))"

+ Ha(¢7(—1), 61(=1)1(0), 7 (—=1)h2(0), 3 (—1)7(0),
¢ (—=1)$3(0), ¢ (—1)¢1(0)¢2(0),
1(=1)¢7(0), 93 (=1)¢7 (0)p2(0), 67 (—1)h1(0)$3(0), ¢7 (—1)#3(0), ¢1(—1)¢71(0),

$1(—1)¢7(0)h2(0), p1(—1)$7(0)¢3(0), ¢1(—1)¢1(0)93(0), p1(—1)95(0)) ],

D1:< fa2,  fs, f33>’ D2:< fu, fiz, f13>’

922, 923, 933 911, 912, 913

_( fa22, f223, f233, f333 _( fin, fiue, fuiz, fizes fizss fi23
El— ’ E2_ ’

9222, 9223, 9233, G333 giii, 9112, 49113, 9122, 9133, 4gi23

F1—< Ja222,  fo223, f2233, fo3s3, f3333>
- bl

92222, 92223, G§2233, 92333, 93333
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F2—< Jut, fiiie,  finss fiize, fiisss fiies, fiee2, fi223,  fi233, f1333>
- M

giii1, 9g1112, 91113, gi122, 91133, gii123, 91222, 91223, Ji1233, 9J1333

7, — f22202,  f22223, [f22233, [f22333, [f33333
1 — )
922222, §22223, §22233, 922333, 933333

Hy — Suns funes funss fiige, fiiss, fiies, fiiee,  fiiees,  fiiess,  fiisss,
giiiil, 911112, 9giiii3, 911122, 911133, 911123, gi1222, 911223, J11233, 911333,

f12222, f12223, f12233, f12333, f13333
912222, 9g12223, 912233, 912333, 913333

By the Riesz representation theorem, there exists a bounded variation matrix 7(, a) whose
components are functions of bounded variation in 6 € [—7p,0] such that

0
(2.25) Lo = /_1 dn(0,0)p(0) for ¢ €C.
For ¢ € C1([~1,0], R?), define
% 6 €[-1,0) 0 0 el-1,0
A _ o> ) ) d R :{ s 6[ s ),
e { [anasets), o=0, 0 T (R 00

Then (2.23) can be written as
(2.26) z; = A(a)zy + R(a)xy,
where x;(t) = x(t + 0) for 6 € [—1,0]. For ¢ € C'([0, 1], (R?)*), define

_%7 86(071]7

A*Y(s) =
¢( ) { f_ol dnT(t70)¢(_t)v s = 0)

and a bilinear inner product

B 0 0
(6(5). 0(6)) = D(0)(0) - / P e o)

where 7(6) = n(6,0); then A(0) and A* are adjoint operators. By the analysis in the last
section, we know that +iwry are eigenvalues of A(0); thus they are also eigenvalues of A*.
We first need to compute the eigenvectors of A(0) and A* corresponding to iwT and —iwTy,
respectively. For A(0), it is easy to obtain that the eigenvector basis of iwg is p(f) and that
of p*(#), which ensure that (p*(9),p(9)) = 1.

In the following, we will compute the coordinates on the center manifold C, at a = 0
with the method of Hassard, Kazarinoff, and Wan [22]. Let x; be the solution of (2.23) when
a = 0. Define z = (p*,x¢), W(t,0) = z4(0) — 2Re{z(¢t)p(#)}. On the center manifold C,
W(t,0) = W(z(t),z(t),0) with the form W (z(t),z(t),0) = W20(9)§ + Wi (0)2Z + W02(9)% +

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 10/29/13 to 129.171.178.62. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

1858 PING Bl AND SHIGUI RUAN

Wgo(@)% + -+, where z and 7 are local coordinates for Cy in the direction of p* and p*,
respectively. For the solution z; € Cy of (2.23), we have

(2.27) 2 (t) = iwtkz + 9(2, 7, a),
where
o(27) = 9202(9)22 +gn(0)23 + 9022(9)22 N 9306(9)23 n 9212(9)222+ 9122(9)222
903(0)— . 931(0) 3_  9a0(0) 4  931(0) 3_  922(0) 5o  g13(0) _3
2.28 3
() +62+622+24z+4zz+6zz+4zz

goa(0) 4 9a1(0) 4 g32(0) 34
21 z 21 2z 2 27z + .

+

Noting that z; = (214(0), 22¢(0)) = W (t,0) +2p(0) +2p() and q(0) = (1,a)” e™? and recalling
(2.27), one has

(2.29) 9(2,Z) = p*(0)R(0, 2, Z).

Inserting (714, z2;) into (2.29) and comparing the coefficients of 2'z7 (i + j > 2) with that of
(2.28), all g;j(i+j > 2) can be obtained. Thus (2.27) can be transformed into an equation of
the form

(2.30) 2'(t) = M(a)z + 3C1(a)2%Z + 5C2(a) 232 + (0]2]%),

where A\ (a) = iwT +aN (0) + (olal®) with A(a) being a smooth function defined by Theorem
2.2 and

7 1 1
C1(0) = % <920911 —2lg11]* — 51902\2> + 2921,

C5(0) = Re{gs2} + LIm {g20g31 — 911(4g31 + 3922) — 3902(910 + G13) — g30912) }
+ L Re {920(911 (3912 — F30) + 902(G12 — 2930) + g03G02)) }
+ L Re {g11(Go2(3730 + 3912) + 3G03g02 — 4911930) }
+ 5 Im{ga0g11 m{ga1 } + —xIm{Go2911 (33, — 320911 — 4971)}
+ L Im{g20911 } (BRe{g11920} — 2|g02/).

Let z = re?. Then (2.30) can be written as

(231) % = arRe)X'(0) + %F)Rj{cl(())} + 11—2r5Rf{02(0)} + ho.t.
= = Wi+ amN(0) + Sr'Im{C1(0)} + 5 m{C5(0)} + hoot.
Hence
dr _ arRe{X (0)} + 37°Re{C1(0)} + 557°Re{C2(0)} + h.o.t.
(2.32) ) wr+alm{N(0)} + 3r2Im{C1(0)} + £ Im{C5(0)} + ho-t.

1 /
= A(7s,a) (aRe{N(0)}r + B(m, a)rd + C(mp, a)r5) +h.o.t.,

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 10/29/13 to 129.171.178.62. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

BIFURCATIONS IN DELAY EQUATIONS 1859

where A(7g,a) = wrg + alm{X\ (0)},

B(g,a) = %RG{CI(O)} - Im{01é(232?i;\/(0)}a7
and
_ Re{C»(0)}  aReXN(0) 3Im2{C1(0)} Re{C1(0)}Im{C1(0)}
Clr,a) = 1§ " 124(15, q) (Im{C’g(O)} - A(Tk,la) > - 14A(Tk,a) —
Let

r(0,19) = r1(0)ro + 7"2(9)7"8 + 7"3(0)7‘5’ + 7‘4(0)7‘61 + 7‘5(9)7"8 + 0(7‘8)

be a solution of (2.32) satisfying r(0,r9) = ro. Then r1(0) = 1, r;(0) = 0 for ¢ > 2. Inserting
the above into (2.32), we have

r1(0)ro 4+ rh(0)rg + ri(0)rf + ri(0)rg + v (0)r + O(rf)

1 /
= ATy, a) (aRe{N(0)}r + B(my, a)r® + C(ty, a)r5) + h.o.t.

Thus r4(8) = 0,74(0) = 0, and

/ o aRe{)‘/(O)} / N B(y,a) / o C(my,a)
O A M T Ay M T Ay
Hence Re{ V(0
r(6) = %9 1, ra(6) =0, ra(8) =0,
o B(Tk,a) . C(Tk,a)
0= Zma? 9= am 0t

Then the Poincaré map P(rg) = r(2m,79) has the form

(2.33) P(ro) = <% + 1> ro + 21](37(]:’“; e 21?5}:’“@? 15+ 003).

Near o = 0, the map has a unique fixed point

—aRe{N(0)}

(2.34) e = B a)

(14 O(Jal))-

We can compute the period of the bifurcated periodic solution as

27 d9
o A(rg,a) + $Im{C1(0)}r2 + h.o.t.
2.35 _ 1 o Im{C1(0)}Re{X (0)}a
( ) B A(Tk7 (1) /0 <1 * ZA(Tkv a)B(Tk7 a)
2

= 2% (14 N(a+ offa))

T(Tk7 CL) =

> d + ofjal)
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where

_ Im{C1(0)}Re{X'(0)} — Re{C1(0)}Im{X'(0)}
wtpRe{C1(0)} ’

Then we can obtain the following result from the above analysis and Hassard, Kazarinoff, and
Wan [22].

Theorem 2.9. If Re{C1(0)} # 0, then system (1.2) has a branch of Hopf bifurcated solutions
for T = 1 + a with a satisfying aRe{\ (0)} B(x,a) < 0. Also, the bifurcated periodic solutions
have the following properties:

(i) they are orbitally stable (resp., unstable) if Re{C1(0)} <0 (resp., Re{C1(0)} > 0);

(i) the bifurcated periodic solution is supercritical (resp., subcritical) if % > 0

(resp., % <0). )

(iii) the period of the bifurcated periodic solution is o asa= 0, and the period T(1y,a)

N ()

is increasing in parameter a (resp., decreasing) if N(1;) > 0 (resp., N(1;) < 0).

2.2.2. Bautin bifurcation. From the last subsection, we know that (1.2) undergoes Hopf
bifurcation if Re{C1(0)} # 0. If Re{C1(0)} = 0 but Re{C2(0)} # 0, then Bautin bifurcation
occurs, which will be analyzed in this subsection. Just as in the previous subsection, we can
obtain (2.30), and (2.31) can be written as

dr_ arReX'(0) + l7“3Re{C1(a)} + i7’5Re{C2(0)} +h.o.t.,
dt 2 12
(2.36) 50 1 .
o T Wt alm) (0) + ir?’lm{Cl(a)} + Er51m{02(0)} +h.o.t.

Similarly, we have the Poincaré map P(rg) = r(2m,79) of the form

(2.37) P(rg) = <—2GIZE(E_2:(3))}W + 1> 2;?;:2)&) o+ 27;16(';;2?) ro +O(rd),
where

~ ~ Re{C2(0)}  aReX(0) 3Im?{C}(a)} Re{C1(a)HHm{C1(a)}
Clre®) = —T5— ~ T2A(r.a) (Im{02(0)} B T ) S da

Since C(a) is a continuously differentiable function of the parameter a, we have

(2.38)  P(rg) =19+

1 _ _
(2aRe{)\/(0)}7T7"0 + 27 B(7y, a)rg + 27 C (7, a)rg) + O(rg).
A(Tk7 a)
Hence the number of periodic solutions of system (2.30) equals the number of positive fixed
points of the Poincaré map P(rg). Now we analyze the distribution of roots of P(ry) = ro.
Finding fixed points of P(rg) = o is equivalent to finding positive roots of

A A(Tk, a)
N Tro

(2.39) Py (ro) (P(ro) —70) = ap + 0417“8 + agré + O(a2, 7“8’) =0,

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 10/29/13 to 129.171.178.62. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

BIFURCATIONS IN DELAY EQUATIONS 1861

which can have zero, one, or two positive solutions of r3. These solutions are branched from
the trivial solution, where

ag = 2aRe{N(0)}, a1 =Re{C1(a)},
Re{X(O)}Im{Cg(O)}a> B Re{Cl(a)}Im{Cl(a)}.

= 1 <Re{C’2(O)} -

6 WTk 4w k
We will give conditions for the existence of positive solutions as follows. The implicit function
theorem implies that a unique function r? = —3 7e=(1 4+ O(an)) = r3(a) exists such that

Pllrg (a, r(z](a)) = 0; then we have

(2.40) Py(a,r?) = (20003 — at + 0(a3)).

205

Substituting ag, a1, as into (2.40) yields

Pi(a,0(a)) = 2Re{X'(0)}a - Pelcll” +0(C1(a)?)
= a0~ smageiy +O(C1(@)")

Let Py(a,73(a)) 2 M(a). Noting that P1/r2(a7 0) = ay(a), Pi(a,0) = ap(a), we obtain the
following results for as(a) > ’

(1) For |a| < 1, Pi(a,rp) has no positive solution if one of the following two cases holds:
(i) M(a) > 0; (ii) ag(a) = 0041( ) 20, M(a) <0.

(2) For |a| < 1, Pi(a,ro) has one positive root if one of the following two cases holds: (i)
ap(a) =0,a1(a) <0, M(a) <0; (i) ap(a) <0, M(a)<O0.

(3) For |a] < 1, Pi(a,rp) has two positive roots as ap(a) > 0,a;(a) < 0, M(a) < 0, and
the two roots become one as M (a) = 0, ag(a) > 0, and ay(a) < 0.

Define

Dy ={M(a) > 0} U{ao(a) > 0,a1(a) > 0, M (a) < 0},
Dy = { ag(a) = 0,a1(a) < 0, M(a) < 0} U{ag(a) < 0, M(a) < 0},

Df = {ap(a) > 0,a1(a) < 0,M(a) < 0},

Il ={ap(a) >0,a;1(a) < 0,M(a) =0},
Dby = {ap(a) < 0,a1(a) >0, M(a) <0},
Dby = {ap(a) < 0,a1(a) <0, M(a) < 0}.

That is, [ : ag = %, aq < 0. Recalling the first equation of (2.36), the above analysis
can be summarized as follows.

(a) If (ap, 1) € D}, (2.39) has no positive root, which means that system (2.30) has no
periodic solution in a sufficiently small neighborhood of the unstable equilibrium z = 0.

(b) If (ag, 1) € D), (2.39) has only one positive root, which means that system (2.30)
has one periodic solution in a sufficiently small neighborhood of the stable equilibrium z = 0.
The periodic solution is stable as (ag, 1) € D), and unstable as («p, 1) € D, .
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(c) If (ap, 1) € D5, (2.39) has two positive roots, which means that system (2.30) has
two periodic solutions in a sufficiently small neighborhood of the unstable equilibrium z = 0;
one is stable, and the other is unstable.

Therefore, we can summarize the above discussions as follows.

Theorem 2.10. If Re{C1(0)} = 0 but Re{C2(0)} # 0, then (1.1) undergoes a Bautin bi-
furcation for T = T + a. On the (ay, a1)-parameter plane, the half-parabola I and the line
l1: a9 = 0 are bifurcation curves. When ag > 0, the bifurcations are outlined as follows:

(i)

(iii)

On the (ap, a1)-parameter plane, if a point (ag, 1) crosses the positive aq-axis from
the region D] to the region D}, then (2.30) undergoes Hopf bifurcation and an unstable
periodic solution T'y with period Ty bifurcates from z = 0. When the point (o, aq)
crosses DY counterclockwise in Dby, the periodic solution I'y expands with the same
periodic Th, and I'y attaches the maximum when (ag, o) reaches the negative ag-azis.
When (a, 1) crosses the negative og-azis from DY, to Dby, then the stability of T'y
changes from unstable to stable; meanwhile, the period changes from Ty to Ty, and at
the same time, an unstable periodic solution I'y bifurcates from I'y and locates inside
Iy, where

T = f—l (1+ Mi(m)a+o(la), To= f—ﬁk (1+ No(7) + oflal, [Cr(@)]))

Re{N(0)Hm{C1(a)} — Re{C1(a) Hm{N(0)}
wrrRe{C1(a)} ’

Ni(1) =

and

_ 3Re{C1(a) Hm{C1(a)} — Im{X(O)}Re{C’g(O)}a‘

Nao(71) wtRe{C2(0)}

On the (g, aq)-parameter plane, if a point (g, 1) crosses the negative o -axis from
the region Dj to the region DY, then (2.30) undergoes Hopf bifurcation, and an unstable
periodic solution I's with period Ty bifurcates from z = 0, and 'y coincides with I's
and disappears, which means that there are two periodic solutions in Dj; one is stable
with period Ty, and the other is unstable with period T7.

On the (ap, a1)-parameter plane, if a point (cp, 1) goes from region Dj to 1, the two
periodic solutions of (2.30) coincide to become one. If the point (g, 1) crosses the
line 1 to D}, the new periodic solution of (2.30) disappears; that is, if a point (co, 1)
crosses the region D to the region DY, then periodic solutions of (2.30) undergo saddle-
node bifurcation, that is, a saddle-node type periodic solution bifurcated from the trivial
solution z = 0.

Proof. First, we will compute the periods 77 and T5 as follows: when (ag, 1) € D}, noting
that ag < 0, near ryg = 0 the Poincaré map has positive fixed points with

(2.41)

«
~ 2 4 hot., o >0,
r¥? “
T ) « «
22y h.o.t., a; < 0.
(651 (65)
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Since
2m dé
L= /0 A(7g,a) + 3Im{C1(a)}r}? + h.o.t.
_ 2n alm{N(0)} Im{Ci(a)} .,
T W (1 - wne 2A(ra) i O(|a|2)> ’
we have
T = 2% (1+ Ma(m)a+ o) . i= 1.2
with
N = RV OHICL @) — Re{Ch (@)} {N(0)
1Tk wTRe{C1(a)} .
Similarly, we have
7, = 2% (1+ Na(m) +o(|Ca()?)

with

3Re{C1(a) Hm{C1(a)} — Im{N(0)}Re{C>(0)}a
wTrRe{C5(0)} ’

In the following, we will prove that the stability of the periodic solutions will change with
the change of ay(a). Set r =7} + b, |b| < 0. From the first equation of (2.36), we have
(2.42) r_ arbri? + O(b?).

dt
Hence, the stability of the bifurcated periodic solution I'y will change when « changes from
a1 > 0 to ag < 0; that is, a new periodic solution I'y will bifurcate from the periodic solution
I'y. On the other hand, we know that z = 0 is a stable equilibrium as («g, 1) € Dj; then the
bifurcated periodic solution I's is unstable and located between I'; and the equilibrium z = 0.
The bifurcation diagram is given in Figure 4.

Combing the above analysis, all results of this theorem have been proven. |
On the other hand, define

Dy = {M(a) < 0} H{ao(a) < 0,a1(a) <0,M(a) = 0},
DY ={ ap(a) =0,a1(a) >0 M(a) > 0} J{ap(a) >0, M(a) > 0},

No(1) =

Di = {ap(a) < 0,a1(a) > 0,M(a) > 0},
I'={ap(a) < 0,a1(a) > 0,M(a) = 0},
21 = {ap(a) > 0,a1(a) <0, M(a) > 0},
Df, = {ap(a) > 0,ai(a) >0, M(a) > 0}.

Similarly to Theorem 2.10, we obtain the following bifurcation results for the case ag < 0.

Theorem 2.11. If Re{C1(0)} = 0 but Re{C2(0)} # 0, then (1.1) undergoes a Bautin bi-
furcation for T = 1 + a. On the (ag, aq)-parameter plane, the half-parabola I' and the line
I} : ap = 0 are bifurcation curves. When ag < 0, the bifurcations are outlined as follows:
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(i)

(iii)

2.3.

1A
&

. . . . . . i . . . . . .
-1 1 2 3 4 5 6 (b) -4 -3 -2 -1 ) 1 2 3 4

Figure 4. The bifurcation diagram for system (2.30). (a) az > 0. (b) az < 0.

On the (g, aq)-parameter plane, if a point (g, 1) crosses the negative o -axis from
the region DY to the region DY, then (2.30) undergoes Hopf bifurcation, and a stable
periodic solution Ty with period Ty bifurcates from z = 0. When the point (ag,aq)
crosses DY counterclockwise in DY, the periodic solution T} expands with the same
periodic Ty, and T} attaches the mazimum when (o, a1) reaches the positive agp-axis.
When (o, 1) crosses the positive ag-azis from Db, to DY, then the stability of T
changes from stable to unstable; meanwhile, the period changes from Ty to To, and at
the same time, an unstable periodic solution Ty bifurcates from I'y and locates inside
ry.

On the (g, aq)-parameter plane, if a point (g, 1) crosses the negative o -axis from
the region DY to the region DY, then (2.30) undergoes Hopf bifurcation, and a stable
periodic solution Ty with period T bifurcates from z = 0, and T coincides with 1%
and disappears, which means that there are two periodic solutions in DY; one is stable
with period Ts, and the other is unstable with period T7.

On the (o, a1)-parameter plane, if a point (g, 1) goes from region DY to l', the two
periodic solutions of (2.30) coincide to become one. If the point (g, ) crosses the
line I to DY, the new periodic solution of (2.30) disappears; that is, if a point (cg, 1)
crosses I from region DY to the region DY, then periodic solutions of (2.30) undergo
saddle-node bifurcation, that is, a saddle-node type periodic solution bifurcated from
the trivial solution z = 0.

Codimension two bifurcation: Hopf—Hopf. In section 2.1, we knew that the char-

acteristic equation (2.4) has two different pairs of purely imaginary roots when (2.8) holds.
Take Ay, As, By, By as parameters. If there exist integers k, j such that Tj+ =T, , then (2.4)
will have two pairs of purely imaginary roots +iwy and +iw_. Let w; = wy, wy = w_; then
one important codimension two bifurcation, Hopf~Hopf bifurcation, may occur. In general,
these points are not easy to solve; however, they can be computed numerically and can be

seen in

Figures 1-3, where they appear at intersection points of two Hopf bifurcation curves.

Lemma 2.12. For any ki,ko € Z and 0 < |k1|+ |ka| < 6, it must hold that kiwi + kows # 0,
where w; = wT, wy =w".
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Proof. If +iw;,i = 1,2, are purely imaginary roots of (2.4), then iw; satisfies

—Ag + wf = By cosw;T + Bjw; sin w;T,
—Ajw; = Biw; cosw;T — By sinw;T.

Differentiating the last two equations with respect to w; twice separately on both sides, we

have
{ 2 = (2B17 — Ba1?) cos wiT — By7m2w; sin w;,

0 = (Ba1? — 2By 7) sinw;T — By72w; cos w;T.
Thus we have

2(2ByT — B27'2) Sinwr — _2B17'2wi .
(2B17 — Ba72)?2 + (B172w;)?’ i (2B17 — Ba12)? + (B17%w;)?’

(2.43)  cosw;T =

hence

BlTo.)i

2.44 tan wir = =
(2:44) T = B 9B,

Then we prove kjwy + kows # 0 for |ki|+ |ke| < 6. If not, assume that there exist ky, ko € Z7F
such that kjw; = kows and |ki| + |k2| < 6. It is easy to see that w; # we. Without loss of
generality, we assume that w; > we, w; > 0; then k; < ko; that is, we need only prove the
following cases.

(i) If wy = 2w9, then (2.44) yields

2B1Tw2
BlTwl BoT—2B;
tanw7 = m = tan 20.)27' = T Birwn 2’
2T — 2B, 1= (5,7 5385)

which leads to wy = 0, which is a contradiction; thus w; # 2ws.
(ii) If wy = 3we, then (2.44) yields

Biwit tan Two(3 — tan? woT)
tanw T = ———— = tan 3weT = 5
Bot — 2B, 1 — 3tan®wsT

which leads to tan?wyr = 0, which is a contradiction; hence w; # 3wa.
(iii) If wq = 4ws, then (2.44) yields

4 tan waT

tanwiT B tan 4wy T (1—tan®ws7)
17 = _ = 27T = 2tanwatT \2'
Bt — 2B, 1— (l—tan2 sz)

which has real roots tan® Twy = 0, tan® 7wy = 5. If tan? 7wy = 5, then cos Tw; = %, COS Two =

%. With the help of (2.43), we have

\/6 . (2317’ — 327—2)2 + (317'2(,02)2

9 (2317’ — B27'2)2 + (4317'20.)2)2 ’

Bitwa \2 . 9-6 : : _ _Bitwa .
Thus (327—231) = Tov6-9" which contradicts tan wer = Bor 0B, — V5, that is, wi # 4ws.
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(iv) If wy = bwa, then (2.44) yields

4tan waT(1—tan? war)
—tan2 woT)2—4tan? woT

Bytw, . tanwsoT + a
tanw 7 = 7327_ B, tan dwoT = L ftanzzwﬁ(lz_tznz w22T) )
(1—tan? wot)2—4 tan? wat

which leads to tan?wsr = 0 and tan®wor = % Similar to the proof of case (iii), it follows
that wi # bws.

(v) If 2wy = 3we, then tan 2w;T = tan 3wy7. Noting (2.44), one has tanw 7 = %tan WoT,
and, similarly to the above, we can get

8 tan? woT + tan? w9 tan? wiT — 3 tan? wiT =0,

which leads to tan?wsr = 0, which is a contradiction.

(vi) If 2wy = 4ws, then wy = 2wy, which is proved in case (i).

Therefore, there are two pairs of purely imaginary roots +iw; and +iws which are not
resonant in low orders. |

In the following, we present the normal form of Hopf-Hopf bifurcation on the center
manifold C,. Noting (2.12), we know that the eigenvalues +iw;, j = 1,2, of (2.4) are simple.
On the other hand, we know that A(a) has simple eigenvalues Ai(a) and A2(a) with A\;(0) =
iwj, j =1,2. From section 2.2.1, we know that A(a) has two eigenvectors pi(a, ) and ps(a, §)
corresponding to the eigenvalues Aj(a) and Ay(a) such that

A(a)pj(a,0) = Nj(a)pj(a,0), j=1,2,

and the adjoint eigenvectors g;(a, ), j = 1,2, corresponding to the eigenvalues \;(a) such
that

A*(a)gj(a,0) = Aj(a)g;(a,0), j=1,2.

Suppose p;(6) 2 p;(0,0), g;(0) 2 ¢;(0,0), j = 1,2, are the eigenvectors of A(0) and A*(0),
respectively; then

pi(0) = (1, ;)"0 g;(€) = Dj(1, By)T e ™,

with (g;(0),q;(0)) = 1. Define z; = (g;, X), j = 1,2, W(t,0) = X4(0) — 2Re{z1(t)q1(9) +
22(t)q2(0)}, where z = (21,22) € Cq, and z; and Z; are the local coordinates for C, in the
direction of ¢; and g, j = 1,2. If X; € C, is a solution of (2.26), then on the center manifold
Cq,, one has the normal form

(2.45) 2= Az(t) + g(z,a),

where A = diag(iwi g, iwaTk),

1 1
1 2 T E 1 E 2
i+j+k+1>2 i+j+k+1>2
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Similar to the computation of Hopf bifurcation, we can obtain

g(z.a) = < Cio(a)z1 + Cu(a)|1?21 + Cia(a)| 22221 + O(|2[°) >
’ CQ()(CL)ZQ +C21(a)‘22‘222 +C'22(a)],21]222 —l—O(‘Z’S) ’

where Cio(a) = aX(a), Ca(a) = ay(a),
Cro(a) = aXi(a),
Cao(a) = aXy(a),
! ' ' o . -
Cii(a) = 595100 + 22719%10095000 + w%(g%mog%wo ~ Gio0191100) — 4w1jr2w2 9010193200
T 12 gl 2 12
T —2w3 9011092000 — &7 [91100] 6w1 90200/

_ 1 i1 2 1 2 i 1 3 i 12
Ciz(a) = gip11 + @(9101090011 = G100196011) — w1422 9000290101 — @ —2ws5 9002091001

+ wil(géooogéon - 9%1009(%011 - 960119(2)110 - 950119%010)
o 7 | 1 |2 o 7 | 1 |2
201 —ws 190110 o1t 19010117
Co1(a) = %9(2)021 + ﬁggonggozo + wil(géong%mo ~ 9001190110) — mg(l)ozog%om
o i 12 _L|2|2_L|2|2
Twn+2w; 9000290101 — oy 190011 6ws 190002175
Cx(a) = 9%110 + %1(9%1009%010 - 981109(1)110) - mg(zmog(lnm + mgénoggooo
+ w%(ggomg%mo — 9001193100 — Yi0109T100 — Gi00191100)
+ 7 ’ 2 ’2 . 7 ‘ 2 ‘2
w1 —2ws 191001 132w 19010117
where g;jx1, 7+ j +k+1 > 2, can be obtained similarly to the above. As shown in Takens
[44] and Wiggins [50], we assume that the following nondegeneracy conditions are satisfied:
Re{Cij(a)} # 0 and Re{Ci1(a)}Re{C22(a)} — Re{Cr2(a)}Re{C2(a)} # 0, i,j = 1,2. Let
21 = r1e, 2o = r9€%2. Then (2.45) can be changed into
r = aReX (0)r1 + Re{C11(0)}r7 + Re{C1a(0)}r173 + O(||r1, 72]|)°,
rhy = aReXy(0)rg 4+ Re{Ca1(0)}75 + Re{Ca(0)}riry + O(||r1,72)°,
9/1 = w1 + aIm)\’l(O) + Im{Cll(O)}T% + Im{Cu(O)}T% + O(|’T1,T2H)4,
6 = w1 4+ aImA5(0) + Im{Cs1(0)}73 + Im{Ca(0)}7} + O(||r1,72|))*.

Then the truncation of the amplitude equation to quadratic order is

(2.47) 07 = w1 + alm\;(0) + Im{C’H(O)}r% + Im{C’lg(O)}rg + O(||r1, 7‘2||)4,
’ 9; = w1 + CLIm)\/Q(O) + Im{Cgl (0)}7‘% + Im{CQQ(O)}T% + O(Hrl, 7‘2”)4,

and the truncation of the phase equations to cubic order is

(2.48) rh = aReX; (0)r1 + Re{C11(0)}r{ + Re{C12(0)}r175 + O(||r1, 72]))°,

' rl, = aReXy(0)rg + Re{Coy (0)}7"5’ + Re{C’gg(O)}r%rg + O(||r1, r2||)5.
Let r; = m, ro = m, dropping the bars; then (2.48) can be written as
- = G erf + b,

' h = (2 + cr? + dri)rs,

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 10/29/13 to 129.171.178.62. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

1868 PING Bl AND SHIGUI RUAN

Re{C22(a)} ::|:1, Re{Czﬂa){" b— Re{C12(a) Re{C11(a) ::l:1> and

where d = 1Reren, (an] ¢ = mech b= Wetoatai € = Moo
w1 = aReX((0), p2 = aReX,(0).

Similar to the previous subsection, we know that system (2.47) determines the period
and direction of the bifurcated solutions. As Guckhenheimer and Holmes [20] and Choi and
LeBlanc [8] pointed out, the possible phase portraits in the neighborhood of the Hopf-Hopf
bifurcation points are classified by the dynamical behaviors of the phase equations; we need
only study the truncation equation of phase equations (2.48) and obtain the following results.

Theorem 2.13.

(i) If (2.49) has an equilibrium (ry,0) (resp., (0,73)), then in the neighborhood of the
positive equilibrium Es, system (1.2) has a periodic solution with period T = fﬁk (1-—
%) +o(a) (resp., T = wi:k (1-— %) +o(a)). The stability of the periodic
solution is same as that of the equilibrium.

(i) If (2.49) has a equilibrium (r{, r3) with r§ > 0, r5 > 0 in the interior of the positive
quadrant, then (1.2) has quasi-periodic solutions in the neighborhood of the positive
equilibrium FEs.

(iil) If (2.49) has a limit cycle in the interior of the positive quadrant, then (1.2) has a
three-dimensional invariant torus in the neighborhood of the positive equilibrium Es.

In order to analyze the qualitative properties of (2.49), there are four cases to be consid-
ered: (1) e>0, d>0;(2)e>0, d<0; 3)e<0, d>0; (4 e<0, d<0.Here, we
consider only the second case, since the other cases can be analyzed similarly. In this case,
system (2.49) takes the form

(250) { Tll = (lul + T% + b'f’%)’l"l,

rh = (2 + crd —r3)ry.
It is easy to see that (2.50) has nonzero equilibria Ef (/—p1,0) with g < 0, E4(0, \/f12) with
ey > 0, and Eé(\/bmﬂ“ \/“2_0’“) with %24 < and #2941 > (. The stability of the

—1—bc >’ 1+be 1+be 1+be
equilibria F; can be determined by the eigenvalues of the linearized matrix of (2.50) at E :
p1 + 3ri2 + bri?, 2briry
(2.51) .o 2| o 2
22riry, po + cri” + 3r;

The determinant of this matrix is
3uars 4 3eri + buars + 9rird — 3ber?ras + 3bry + p1 (g + crd + 37"%)],524,
and the trace of this matrix is
p1 + pg + 3r + erd 4 3r3 + br%|E§.

Hence, with the help of (2.51), we know that the Hopf bifurcation can occur only as ps = cpuq,

w1 = —busg, and po = %. It is well known that the signs of b, ¢, d determine the complex

dynamical behaviors of (2.50). Guckhenheimer and Holmes [20] pointed out that there are 12
unfolding cases for the nonresonant Hopf-Hopf bifurcation for E, which are summarized in
Table 1 (Table 7.5.2 of [20]).
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Table 1
The 12 unfolding cases of (2.49).

Case [ Ta [ Ib | II | I |IVa |[IVb]| V | Via| VIb | VIla | VIIb | VIII
d | F1|+1 ]| 41| +1 [ +1 [ +1 | -1 | 1| 1] -1 -1 -1
b +l+ |+ - | - - - + |+ | - - -
c + |+ - + | -] - - - - |+ + —

d=bc| + | = | B[4 | + | = [44|4+ | - | + - | =
l"'2

III
1, =t (c=1)/(g 1)

va
i
P/f

Hy =i, v
o

M I

vil

Vi

-
7
7

(a) = - 3 v : ; d (b)

Figure 5. Phase portraits for the case VIa in Table 1. (a) Bifurcation diagram in (p1,p2). (b) Phase
portraits of (2.50).

We choose only VIa as an example; that is, e =1,d = —1,b > 0,¢ < 0, and —1 — bc > 0.
From —1 — bec > 0, it is easy to obtain ¢ < g;i < _Tl; then the line puo = gjr—i,ul must lie
between the lines py = cpy and pg = —bug. As shown in Guckhenheimer and Holmes [20],
the partial bifurcation sets and the phase portraits for the unfoldings of this case are given in

Figure 5.

From (2.43) and Figure 5, we have the following results.

Theorem 2.14. Assume that Re{C11(a)} > 0, Re{C12(a)} > 0, Re{C21(a)} < 0, Re{C92(a)}
< 0, and Re{C11(a)}Re{Ca2(a)} > 0 # Re{Ca1(a)}Re{C12(a)}. Then on the (1, u2)-para-
meter plane, we have the following cases:

(i) If a point (u1, pu2) crosses the positive py-azis from Dy to Dy, Hopf bifurcation occurs,
an unstable periodic solution I'1 is bifurcated from the trivial solution, and I'v persists
for (1, p2) in regions Dy — Ds.

(ii) If a point (u1, pe) crosses the positive ps-azis from Dy to Da, another Hopf bifurcation
occurs, an unstable periodic solution I'y is bifurcated from the trivial solution. I'g
persists for (w1, p2) in regions Dy — Dg.

(iil) If a point (u1,ue) crosses the line ps = cuy from Do to Ds, a stable quasi-periodic
solution ©1 is bifurcated from Ty, and Oy persists for (1, p2) in regions D3 and Dy.

(iv) If a point (p1,pu2) crosses the line (b+ 1)us = (¢ — 1)py from D3 to Dy, a torus ©q
is bifurcated from ©1, and the bifurcated torus Oy exists in a small neighborhood of
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“'2
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My =CHy
1, =t (c-1)/(Rs1) D
4 D 2
3
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-6 -4 -2 0 2 4 6

Figure 6. The bifurcation diagram of (2.50) on the (p1, p2)-plane.

(11, (c;i)l’“) when (u1,u2) goes anticlockwise in Dy. ©o will coincide with ©1 and

disappear.
(v) If a point (p1, pe) crosses the line g = —busg from Dy to Dy, the quasi-periodic solution
©1 coincides with I's and disappears.
(vi) If a point (p1,p2) crosses the line py = —bus from Ds to Deg, the bifurcated periodic
solution I'1 coincides with the trivial solution and disappears.
(vil) If a point (p1, pe2) crosses the line py = —bus from Dg to Dz, the bifurcated periodic
solution I'y coincides with the trivial solution and disappears.

The bifurcation diagram is given in Figure 6.

Finally, we need to point out again that Bs is an important parameter for the dynamical
behaviors of (1.2). By Lemma 2.12, we know that w; and wy are not resonant in low order as
By # 0. But as By = 0, from Theorem 3.5 of Campbell and Bélair [7], we know that w; and
wo are resonant with any possible ratio. The result can be described as follows.

Theorem 2.15. For Ay > 0, system (1.2) possesses Hopf-~Hopf points with frequencies hav-
ing all possible ratios w1 :wes=m:n, m<n € Z.

3. Applications to tumor-immune system interaction models. In this section we ap-
ply the results obtained in last section to study the nonlinear dynamics in the tumor—immune
system interaction model (1.1) in terms of the model parameters. This will be helpful in deter-
mining the model parameters that are crucial in controlling the development and progression
of tumor.

3.1. Local analysis. Model (1.1) has the following possible equilibria:

_ otb

Tou(0)”

(2) Tumor-present equilibria E% (2%, y%) (v5,95 # 0, k € Z), which are the intersecting
points of the nullclines v(z) = ¢(x,y) and y(B(x) — u(x)) + oq(x) + 0 = 0. 25 and v}
satisfy v(z8) = ¢ (25, y5), yp = %.

Lo )P T3

(3) Immune-free equilibrium Ej3(z3,0) for og(xs) > 0,0 > 0.

(1) Tumor-free equilibrium E;(0,y;) with y;
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First, we consider (1.1) without immunotherapy; then the linearizing system of (1.1) can
be obtained as

(3.1) { w’(t) = wiy’(xi)w(t —7T)+ (_wz(blx(wz,yz) + (v(x) — d(xi,9:)))z(t) — xi¢;($i,yi)y(t),
Y (t) = 5B (@t — p) + (00 (2) — it (£)alt) + (Blw:) — p(z)y(0),

where (x;,y;) are the coordinates of the equilibrium FE;,i = 1,2,3. It is well known that the
stability of E; depends on the distribution of characteristic roots of (3.1). We now analyze
the stability of the equilibrium E; of (1.1) separately as follows.

3.1.1. Tumor-free equilibrium. It is easy to see that the linearizing system (3.1) at the
tumor-free equilibrium Fj (0, yp) becomes

2'(t) = (v(0) = ¢(0,0))z(t),
y'(t) = yoB' (0)x(t — p) + (0q'(0) — yor'(0))x(t) — (0)y(t).

Since o > 0, for any initial point (x{, y,) with 2, > 0, y{, > 0, the condition for the asymptotic
annihilation of z is

(3.2)

v(0) < ¢(0,yo).
Then y' — —pu(0)y; that is, y — 0.

From the above analysis, we have the following results.

Theorem 3.1. In the absence of immunotherapy (6 = 0) in (1.1), we have the following
conclusions:

(i) If v(0) < ¢ (0,y0) , then the tumor-free equilibrium Ey is a stable node.

(i) If v(0) > ¢ (0,y0), then the tumor-free equilibrium E is a saddle.

The results in Theorem 3.1 indicate that when the influx rate ¢ of the immune effect cells
is not zero, if the relative growth rate of tumor cells is less than their loss rate due to the
attraction by immune effector cells (v(0) < ¢ (0,yo)), then tumor cells will die out. Otherwise
(v(0) > ¢(0,yp)), the tumor-free equilibrium is unstable and tumor cells will appear either at
the immune-free equilibrium or at the tumor-present equilibrium. The result also indicates
that the stability of the tumor-free equilibrium F; will not change for all values of 7 > 0 and
p > 0; that is to say, the Hopf bifurcation will not occur at the tumor-free equilibrium F; in
the absence of immunotherapy.

Remark 3.2. (a) The linearizing system (3.2) is same as that in d’Onofrio [13] and d’Onofrio
et al. [15], so the linear stability of the tumor-free equilibrium for these systems are same.
Lemma 2.1 summarized the results and presented more concrete classifications.

(b) In the case of constant immunotherapy, the tumor-free equilibrium of (3.2) is

Eq (0, Gt;ggo)). Because 6 is a constant, the tumor-free equilibrium F; is locally asymptot-

ically stable if 6 + o # 0,1(0) < ¢(0, %) and unstable in the other cases.

3.1.2. Tumor-present equilibrium. The positive (tumor-present) equilibrium Fs(x2,y2)
of (1.1) is the intersecting point of the two nullclinies. In the absence of immunotherapy, the
linearizing system (3.1) at Es is

{ 2 (t) = anz(t — 7) — appz(t) — azy(t),

(3.3) y/(t) = ag12(t — p) + agx(t) + azsy(t),
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where
aj; = zov'(22) <0,

a13 = T2¢),(T2,y2) > 0,
azy = oq'(x2) — 1 (22)y2,

aiz = xadl(x2,92) < 0,
agr = f'(x2)y2 > 0,

azs = B(w2) — plez) = T <.

Then the characteristic equation of (3.3) is

(3-4) A2+ AJA+ Ag + (BiA + Byt )e ™ + Byye ™ =0,

where

Ay = a12 — a3 = x2¢ (T2, y2) — B(x2) + p(w2),

Ag = arzaz — a12a23 = a(dy(r2,y2)(0q

B1:—a11——xgy( )>O

_ ozaq(z2)V (22) >0,

Ba1 = anaz = .

"(22) — W (22)y2) — (B(w2) — p(22)) 5 (22, y2)),

By = ai3a21 = 22y26y (2, y2) 8’ (22) > 0.

Let
f1 = xadl (2, y2) — Blaa) +
f2 = 229l (w2, y2) — B(w2) + p(w2) + w20/ (22),
f3 = x2(¢), (v2,y2)(0q (72)
fa = 22(y, (xz,yz)( "(z2) — i (x2)y2 — y2.8' (22)) —
f5 = 22(¢), (22, y2) (0q (x2) — p' (x2)y2) + ) —

fo = $2(y2¢y($27y2)5'($2) + (B(x2) —

(w2) — /' (x2)y2 + Y28 (x2)) +

w(za) — zov' (72),

(B(w2) — plx2)) (V' (22) — ¢l (22,92))),
(B(w2) = plx2)) (V' (22) + ¢ (22,92))),
((x2 (x2)) (72, 92)),

1(22)) bl (22, y2))-

In the following, we consider the case T = p; then the characteristic equation of (3.3) is

(3.5) A2+ A A+ Ag + (Bid + By)e M = 0.
Define
2]
(3.6) Wi =5 |(fs = fufa) £/ (fufo)? + 25 o+ 4F2
and
(3.7)
wi— 5 .
+ wi <2‘77r +arccos { (f(ljiigifﬁ)g);wgﬁg }) if fof1+ zov/(22)(fo —wi + f5) >0
T _=

(fo+f1f2)wi —Fsfo

o (@4 D —avceos { ZESESE TR }) i fofy+ oo/ () (fo =k + £5) <O

By Theorems 2.2-2.4, We have the following stability results.
Theorem 3.3. Let 7; £(j=1,2,...) be defined by (3.7), and assume that

(3'8) f1 > 0, f3 > 0.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 10/29/13 to 129.171.178.62. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

BIFURCATIONS IN DELAY EQUATIONS 1873

(i) If
(3.9) fs = Nifa <0, fsfa>0, or fs— fifs <4fsfa,
then (2, 1s) of (1.1) is asymptotically stable for all 7> 0.

(i) If
(3.10) fafs <0 or fs—fifo>0 and (fs — fif2)* = 4fsfa,

then Es(x2,y2) is stable for all T € (0,7,7) and unstable for T > 0.

(iii) If
(3.11) fs—fife>0, fsfa>0, and (fs— fif2)* > 4fsfa,

then there is a positive integer k such that Es is stable for
Tel0, ) Ul 7V Ul n)

and unstable for

TE [TS_,TO_)U[Tf_,Tl_)U"'U[T:_l,Tk__l).

(iv) If f2 < fZ holds, then system (1.1) undergoes a Hopf bifurcation at E2(x9,y2) as
T = le such that i, # 1 for any nonnegative integer number s # I.

In order to analyze the stability of the positive equilibria of model (1.1), we use the
functions proposed in d’Onofrio [11] as an example, that is, v(x) = 1.636(1—0.002z), ¢(x,y) =
y, B(x) = 2})'.11?5’#‘;, oq(z) = 0.1181, p(z) = 0.00311z + 0.3743. Then (1.1) has a tumor-
free equilibrium (0, 0.315522) which is a saddle and three positive equilibria: a microscopic
equilibrium point (8.18971, 1.6092) which is locally asymptotically stable, an unstable saddle
(267.798, 0.759765), and a macroscopic equilibrium point (447.134, 0.17298) which is also
locally asymptotically stable. Since the stability of the saddle does not change with small
perturbation, we analyze only the local stability of the two stable equilibria (8.18971, 1.6092)
and (447.134, 0.172977) as follows.

(a) For the equilibrium (8.18971, 1.6092), we know that ay; = —0.0268,a12 = 0, aj3 =
1.6902, ag; = 0.0456, ase = —0.005, and as3 = —0.0734; then A; = 0.0734, As = —0.008451,
B1 = 0.0268, Bs = 0.07904, and w? = 0.0685379. It is obvious that A; > By, By > |As|, and
By A1 + By (w} — Ay) = 0.00786484 > 0. If By varies from 0, then the stability region is when
B reaches 7 = TJ_ . The stable regions are illustrated by the shadowed areas bounded by the
dashed lines in Figure 7. In this case, Bo = 0.07904; then we can obtain that the equilibrium
is stable as 7 < 1.27248.

(2) For the equilibrium (447.134, 0.172977), we know that a;; = —1.46302,a12 = 0,
a1z = 0.172977,a91 = 0.000169,a22 = —0.000537958, and as3 = —0.68275; then A; =
—0.68275, Ay = —0.00009, B; = 1.46302, By = 0.998906, and w? = 2.1403. It is obvi-
ous that A; < By, By > |As|, and BoA; + By(w} — Ay) = 2.44943 > 0. If By varies from 0,
then the stability region is when By reaches 7 = TO+ . The stable regions are illustrated by the
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Figure 7. The local stability regions of the equilibrium (8.18971,1.6092) with blue dashed lines.

25

05

Figure 8. The local stability regions of the equilibrium (447.134,0.172977) with blue dashed lines.

blue shadowed areas bounded by the dashed lines in Figure 8. Since By = 0.998906, we can
see that the equilibrium is stable as 7 < 0.476779.

Remark 3.4. If the immunotherapy is constant, then the variational system of (1.1) at Fs is
same as (3.3); we need only replace (z2,y2) with (4, v5), and then we can analyze the stability
of Es in a similar way, where (2, y5) is the positive equilibrium of (1.1) with immunotherapy.

3.1.3. Hopf bifurcation. Let a = 7 — 7. Then a = 0 is a Hopf bifurcation value of (1.1)

with 7 = p. Set t = 7t, § = y — yo, and T = x — x9, dropping the bars; then (1.1) can be
written as a functional differential equation in C = C([—1,0),R?) as

(3.12) 2(t) = La(w) + R(a,z1),

where z(t) = (z1,29)7 € R%, L, :C — R, and R : R x C — R are given in (2.24), where a;;
are defined in subsection 3.1.2, in which

dy1, di2, di3 )
3.13 Dy =
(3:.13) ! ( dyy dyp 0
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with
(w2, 9% p(x2, (2, (a2,
dyy = ¢(:§;y2) 4 22 2%(;022 yz), diy = ¢(:§Zyz) 2 6(2(5;0; yz)’
d _ 220%¢(x2,y2) dor = L(gd" _on
13 = Y2 ) 21 = 2(07] (z2) — 1" (22)y2),
dao = —p/ (22), 0
D 20" (x2), V'(x2) 0
2 = )
%_25//(%2)7 07 /Bl(xQ)
14 > €11, €12, €13, €14
(3 ) 1= oq® (22)—p® (22)yo W (x2) 0 0 )
6 2 b Y
with , , , ,
d , ) ; 0 ; 9 ;
en = S ¢ RO, oy = DGRl 4 ),
92¢(2, 23 p(xz, 23 p(2,
€13 = ¢2(8xy22y2) + 2 28?0(;;;/2)7 €14 = - 6(1)6(;32 y2)7
ey = crq(s)(mz)—(;u(?’)(mz)yz’ €9y = _u”(2:v2)7
g #O), SO 00 0
X
% (3)($2)7 07 —27 07 07 0
o fi1, fiz, iz, fuas fis
B e LA
with

_ O3¢(x2y2) | 20%¢(w2,y2)
fu = 6025 T 2a0z1

220 ¢ (x2,y2)

fi2 = B p(22,y2)
12 = T25z20y

60z30y

(o, (a2,
220" @(22 92)7 flp = 2 b(x2,y2)

)

83 ) 84 ) 83 )
f13 - 2%(:?62@/%2) + $248i£-’g§/2y2)7 f14 - %(55392)
Fy= < 53/ W (wa), §v(x2), 0,
ﬂ5(4)(332)7 07 %5(3)($2)7
- hui, hia,
1= og® @) —p® @)y p®(22)
120 ) 24
in which X )
d , E) ,
hi = iﬁ;ii’?’ + = 1248((%5;,2)7 hiz =
9 9’
hiz = 43:&%522) t x212ai(§82;;22)’ hna =
L a1
his = LEge) 4 O oliagn) -y
H2 — ( %f(g])(x?)’ i (4)(332)7 07 07 07
155,80 (), 0, 5:8W (z2), 0, 0,

60z0y3
0o, 0, 0, 0, 0, 0, O
0o, 0, 0, 0, 0, 0, O
hiz, hia, his, hie
o0 0, 0 /)’
_ O*¢(z2,y2) | 220°¢(x2,y2)
603x0y 240x40y
_ 9¢(xa,y2) + z20°P(z2,y2)
60220y? 120z30y?
220°P(w2,y2)
12005
0, 0, 0, 0, 0, 0, O
07 07 O 07 07 07 0
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By the Riesz representation theorem, there exists a bounded variation matrix 7(6,a) whose
components are functions of bounded variation in 6 € [—7p,0] such that

0
(3.15) Lo, = / dn(0,0)p(0) for ¢ €C.
-1
In fact, we can choose
(3.16)  n(6,a) = (1 + a) < —2 _“13> 5(0) — (1 + a) < - 0) 5(0+ 1),
22 a23 agr 0
where ¢ is defined by
0, 6#0
=11 470

For ¢ € C*([—1,0],R?), define

do. 6 c[-1,0), 0 ¢ €[-1,0)
_ g an a)p = ) o
A(W_{ffldn<a,s>eo<s>, oo, e me= {55

Then (3.12) can be written as
(3.17) xp = A(a)xy + R(a)xy,
where x;(t) = x(t + 0) for 6 € [—1,0]. For ¢ € C'([0, 1], (R?)*), define

{_%7 86(071]7

A*Y(s) =
V=10 ant e 0ps=), s =0,

and a bilinear inner product

_ 0 0
(6(5). 0(6)) = B(0)(0) - / P e oo

where 1n(6) = n(0,0); then A(0) and A* are adjoint operators. By the analysis in the
last section, we know that +iwTy are eigenvalues of A(0); thus they are also eigenvalues
of A*. We first need to compute the eigenvectors of A(0) and A* corresponding to iwTy
and —iwTy, respectively. For A(0), it is easy to obtain that the eigenvector basis of iwp is
p(0) = (1,a)Te™? and p*(h) = D(1,a*)T e where o = 7“2162.::2:“22, of = . In
order to ensure that (p*(6),p(f)) = 1, we have

(3.18) D= (1+aa* — m(ana”™ + an)ei‘”k)_l .

In the following, we will compute the coordinates on the center manifold C, at a = 0. Let
x¢ be the solution of (3.12) when a = 0. Define z = (p*, x1), W(t,0) = z(0) — 2Re{z(t)p(0)}.
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On the center manifold Cy, W (t,8) = W (z(t),Z(t),6) with the form W (z(t),z(t),0) = Wy
(9)%2 + W11(0)zz + W02(0)§ + W30(9)% + -+ . For the solution z; € Cj of (3.12), we have

(3.19) 2 (t) = iwtpz + g(2,Z,a),
where
g(z, z) = 9202(9)22 + 911(9)23 + 9022(6)22 + 9306(6) 23 + 9212(9) 2z Z+ 9122(6) 272
903(0)— | 951(0) 5 ga0(0) 4 931(9) 922(0) oo  913(0) 5
(3.20) + 5 23 + 5 2°Z + 24,24— 1 747 5 zz—l——4 2Z
goa(0) 4, 911(0) 4_ | 932(0) 5 9
+24z—|— 24zz+ 1222+ )
OP(x2,y2)  220%¢(m2,y2) Op(x2,y2) 220 ¢(2,12)
920 = TkD< O + 2022 + 2y + D20y e
0? , 1 _ _
n <$2 (gfyx; y2)> o+ §(Jq”(x2) o ,u”(xg)yg)oz* _ /L,(xg)a*a
+ %I/”($2)€_2iw7—k + l//( 2) —iWTE + Y2 5//( ) e —2iwTy +a Oéﬁ ( ) zw‘rk>,
200(z2,y2)  120%¢(22,y2) 8¢($27y2) 220° (22, 2) _
g1 = TkD< . 92 + oy = By (a4 @)
2190 _ _
+ <—$2 g;;ﬂz, y2) yaa + (oq" (z2) — ,u”(xg)y2> a* — i (z2)a* (a + @)
+ 1’2V”($2) + V/(x2)(e—iw'rk + eiw‘rk) + y25”(‘r2)?
FT e ) ),
OP(x2,y2)  220°¢(22,y2) Od(x2,y2)  20°P(22,12) \ _
goz = TkD< I + 2022 + 2y + D20y a

ol

2 —
(PR ) G o o) — ) e

+ %V//($2)e2iw7k + I//( ) WT) + Y2 5//( ) 22w7—k +a Oéﬁ ( )eiwﬂ-k)’
g1 = 7D (3e11 + (20 + @)erz + (o + 20@)e13 + 3a’Tery + 30 egr + ¥ (20 + W)exs

" — '
+ %y(i%) (:Ez)e—iw'rk + %m(e—%wm + 2) + %5(3) (332)6_“‘”7“
o | w0 w0
+ %ﬁ”(ﬂsz)(ae‘zw +2a) + dio ( % UR : © aw P 0) + WP (0)

+diy (Way (0) +2W11(0)) + dis (W3 (0)@ + 2a W7 (0)) + doya® (W5 (0)

(Wi Wi (o
+ 2w (0)) + dyp ( O, 0) + WD 0)a + wP(0)

2 2
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+ %V//($2)(W2(é)(_l)eiw7k + 2W1(11)(_1)e—iw7—k)

(1) (1)
W —1 W 0) . )
V/(£2) ( 20 ( ) 20 ( )ezwq—k ”r(l)( ) e—szk”rl(ll)(O)>

2 2
+ @B”(xz)?(Wz(ol)(—l)emk + oW D (= 1)em)

+ao*f3 (3:2)(W2(0)( 1)a + 2W1(1)( Da + W2(0)( 0)em 4 QWI(f) (0)e= ™)),

g2 = Tkﬁ <3611 + (a + 26)612 + (52 + 2045)613 + 304@2614 + 3a*ey + E(Oé + 26)622

V//(x2)

V(3) (:Eg)eiwﬂ“ + 5

+ % (e2iwrk + 2) + %5(3) (IEQ)eiWTk
- , (1) (2)
+ %,8”(%2)(&62“07% + 25) + d12 <W022 (0) a+ W022 (0)

+awi (0) + Wf?’m))
+dy (WD 0) + 2w D(0)) + dis(W2 (0)or + 2aW,2(0)) + dgra® (W (0)

_(wH o) wHo
+2W,7(0)) + dasa® < 20, Vo 0 4 oo 1 w(o)

2 2
+ 20 @) W) (~Dem 4 2w (1))

w0 wOe |
—|—l//(l‘2) < 02 ( ) + 02 ( )e—zw'rk + Wl(ll)(_l) +eszkW1(11)(0)

2 2

+ %ﬁ//($2)?(w(§21)(_1)6—iw7k + 2W1(11) (_1)e+iw7—k)

+a*f (332)(W(§2)( Da+ 2W1(1)(_ Da + W(g) (O)E—z’w'rk + ZWI(f)(O)eiwrk)) :

— _ _ ) _a:
930 = T D <€11 + aejg + ez + adey + aFeqy + aFaegy + Eu(?’) (x2)e Biw

" * . * .
4 v (2$2)ae—2zw‘rk + y?gy 6(3) (x2)e—32w'rk + %ﬁ”(xg)ae_2“”k + dllwg(é) (0)

W(l) 0 W(2) 0 o W(l) 0 W(2) 0
+d12< 202( )Oé+ 202( ) +d13W2(01)(0)a+d22a* 2( )a—i— 2( )

+ d21?W2%)(0) + xgy”(a:g)Wz(g)(—l)e_i“Tk
+ 1/ (w0) (WD (1) + Wi (0)e~ )

+ 28" (@A Wiy (—1)e ™7 + 078 (a9) (W) (~ D)+ Wy (0)e™! >>

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 10/29/13 to 129.171.178.62. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

BIFURCATIONS IN DELAY EQUATIONS 1879

J— _ . _ - R x2 .
goz3 = 1D <€11 + aejg + oz2613 + a3614 + a*egr + a*aegs + El/(s) (:Eg)egw‘rk

" = . o= .
n 14 (2$2)ae22w7'k + y2g‘ 6(3) (:E2)€3Zw7—k + %5//(x2)ae2zw7k + d11W(§21)(0)

(1) (2)
iy <W022 )5, W <o>)

2

W' (0)_ Wé§><o>>
2 2

+dizW) (0)a + dpsa” ( 02 a+
Ao @ W (0) + a0 (w2) W (= 1)e™ 0/ (2) (W5 (1) + W3 (0)e™7)

+ %5//(;1;2)?1/‘/&;)(_1)6@@ + Jﬁl(l‘g)(Wz%)(—l)a + Wég)(O)eiWT’“)> .

Similarly, we can give the expression of g31,g22, 940, and gzz; then all useful g;;’s are given.
The W;;’s can be obtained with the constant variation formula; we will not go into the details
of them here.

To show the results of Theorem 2.9, we still consider the model proposed in d’Onofrio
[11] as an example, that is, v(z) = 1.636(1 — 0.002z), ¢(z,y) =y, B(x) = 2})'.11?5’#‘;, oq(x) =
0.1181, p(z) = 0.00311x + 0.3743.

9(zy) _ 92¢(zyy)

Ox - 0y?
equilibrium (8.18971, 1.6092), we know that the equilibrium will undergo Hopf bifurcation
when 7 = TJ'_. Then we have @ = —0.0149845 — 0.149707i, o* = —1.67819 — 5.98562¢, and
D = 0.511595 — 0.0555238:. Also, gog = 0.013352 — 0.0989036¢, ¢11 = 0.0140638 — 0.1045761,
and ggo = —0.0332515 + 0.0830015¢. In order to compute g2, we need to give Wy; and Wy
first. From

It is easy to see V'(z) = = ¢'(x) = p(z) = 0. For the microscopic

- AW — 2Re{ﬁT(O)Rop(9)} 0 € [—71,0)

W/ = —2Zp—Zp= ’ ) ’

(3.21) TP 2P { AW — 2Re{pT(0)Rop(6)} + Ry, 6 =0,
déf AOW + H(Z, 27 9)7
where
22 =2 23
H(2,%) = Hao(6) 7 + Hi(0)2% + Hoa(0) 5 + Hzo(0) 5 + -+,
we can obtain
(3.22) Wao(6) = @p(o)e“‘)e + wﬁme—woe 4 Ky 2ol
wo 3wo
Similarly,
wo wo
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where K; = (Ki(l), KZ-@))T € R?,i =1,2, are constant vectors. With the boundary conditions,
we can obtain K; = (0.281858 — 1.724997, —0.129063 + 0.0178572i) and Ky = (0.178478 —
1.70488i, —0.128644 + 0.0179399:).

Hence

W3y (0) = 0.479785 — 1.67155i, W2 (0) = — — 0.128029 — 0.04220561,
Wao(—1) = 0.451428 — 1.60976i,  Way(—1) = —0.104795 — 0.01153314,

and

Wi (0) = 0.178478 — 1.70488;, W (0) = —0.138052 + 0.0166747i,
Wi (—1) = 0.744189 — 1.41978i,  WH (—1) = —0.125589 — 0.07208i.

Then go; = —0.222815 — 0.0610833¢ and C7(0) = —0.107224 — 0.0832058. Now we have the
following results.

Theorem 3.5. The system (1.1) has a supercritical Hopf bifurcation at the equilibrium
(8.18971,1.6092) for T = 19, the bifurcating periodic solution is stable.

Similarly, we can give the results about the macroscopic equilibrium point (447.134,
0.17298). We simulate the periodic solutions bifurcated from the two stable equilibria (8.18971,
1.6092) and (447.134, 0.172977) with bifurcation parameters 7, = 2.08803 and 73, = 0.333814,
which are given in (a)(b) and (c)(d) in Figure 9, respectively.

For the model proposed in d’Onofrio [11], which we have analyzed, we can obtain all
positive equilibria. Then the results of the Bautin bifurcation can be obtained similarly; we
will not provide the details here for the sake of simplicity.

3.1.4. Hopf-Hopf bifurcation. In the following, we consider Hopf-Hopf bifurcation in
the tumor—immune system interaction model (1.1). Noting (2.12), we know that the eigen-
values +iw;,j = 1,2, of (2.4) are simple. On the other hand, we know that A(a) has simple
eigenvalues Ai(a) and Ao(a) with X\;(0) = iw;, j = 1,2. From Theorem 2.2, we know that
A(a) has two eigenvectors pi(a, ) and ps(a, ) corresponding to the eigenvalues A;(a) and
A2(a) and the adjoint eigenvectors g;j(a,0), j = 1,2, corresponding to the eigenvalues \;(a).
Suppose p;(6) 2 p;(0,0), g;(0) 2 ¢;(0,0), j = 1,2, are the eigenvectors of A(0) and A*(0),
respectively; then

pi(0) = (L, v)Te™im™0  q;(€) = Dj(1, B;)Te™ime,

where 5j = @120 5 = as e and
(3.24) Dj = (147,B; + mr(ag1B; + ann)e™ ™).

Define 2; = (g, X), j = 1.2, W(t,6) = X,(6) — 2Re{z1(8)q1(8) + 22(£)q2(0)}, where = =
(21,22) € Cq, and z; and Z; are the local coordinates for C, in the direction of ¢; and g;,
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( -b ) 0 50 100 150 200 250 300 350 400 450 500

— <UL

|
( c ) 0 50 100 150 200 ( d ) 0 50 100 150 200 250 300 350 400 450 500
x t

Figure 9. (a) The periodic solution (xz(t),y(t)) bifurcated from the microscopic equilibrium (8.18971, 1.6092)
with 7 = 0.333814. (b) The corresponding solution x(t) in terms of time t. (c) The periodic solution (z(t),y(t))
bifurcated from the macroscopic equilibrium (447.134,0.172977) as T = 2.08803. (d) The corresponding solution
z(t) in terms of time t.

j=121If X; € C, is a solution of (2.26), then on the center manifold C,, one has the normal
form

(3.25) 2 = Az(t) + g(z,a).

In order to derive the concrete expressions for g;x,i +j + k +1 > 2, we will use the
normal form and the center manifold theory in Hassard, Kazarinoff, and Wan [22] and derive
the explicit formulae determining these properties at the critical value of a = 0. From last
section, we know that at a = 0,

zi(t) = (¢*, x}) = iw;jz;(t) + G;TR(W + 2Re{z1q1 + 22¢2})

iwjzj(t)‘i‘g(Zl,Z_l,ZQ,@)’ j:1,27

el

where g(zlaza 2275) = (gl(z7a)7g2(z7a))T7 Z = (217 ZQ)T' ThUS,
(3.26) ¢ (z,a) = q]TRo(W + 2Re{z1q1 + 22¢2}),

where Ry(z1, 2z2) = R(0, 21, 22). Noting that z; = (21:(0), z2:(0)) =

W (t
22q(0) + 29q(0) and ¢;(0) = (1, 3;)Te™?, comparing the coefficients of (3

:0) +219(0) + 219(0) +
(3.26) and (2.46), gijw
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can be obtained as follows:

1 _
92000 =
1 _
90200 =
1 _
90020 —

1 _
Y0002 =

9‘:1[100
9%010 =
9%001 =
95110
9(1)101 =

1
Y0011 =

92100 -

1 _
J1011 =

2
92000 —

xo (22)
2
xgu”(a:g)
2
xo (22)
2

zov" (z
(d1y + draBa + di3f2 + 27(2)

D (2d11 + dia(B1 + B1) + 2di3 1B + wav" (22)

+ U/ () (e17F 4 7 TH)),

(2d11 + dy2(B2 + B1) + 2d1381 Bo + war (wg)e W1 Hw2)T
(a2) (€727 4 €71,

(2d11 + dy2 (B2 + B1) + 2d1351 P2 + o (z2)e i(w2—w1)Tk
v (wg) (€2 4 e7HTH)),

3 D(2d11 + dio(B1 + B2) + 2d13B2B1 + wav” (wo)e! @172
+ 1/ () (€7 ™27k 4 1TRY),

76 D(2d11 + di2(B1 + B2) + 2d13B2B1 + 2o (wg)e! W1 T
+ 1/ (@) (€77 + €1 TH)),

TkD(2d11 +di2(B2 + B2) + 2d13ﬂ2ﬂ2 + 91" (332) + U (mg) (e792Tk 4 i92TkY),
D (Wigdo + 2Wlo) + a5 W200051 +3 W2(§())o + WithoB1 + Witho)
+ d13(EW2000 + 261 Wnoo) + %(xg)(
t V'<$2)(%W§33}oeiw”’“ + %Wz(égo(_l) + Wihe(—1) + Wijgge 1)
+3en1 + e12(B1 + 261) + e13(26181 + 1) + 3e1aBi 57

3
Me—mm + V_"(;?) (e721™ +2)),

TkE(lel(Wéolh + Wl(O%O + W1(031) + 2d13(ﬂ1W0011 + B2 W 1010 + 52W1001)
+ d12(W(§oz1 + Wl(gio + W1(§01 + 52W1001 + 51W(%11 + 52W1010)

+ $2V”($2)(W0%%1(_1)€_iwm“ + Wfé%g(—l)eiszk + Wl(ol())l(—l)e_iWQTk)

+ 0/ () (Wglye ™™ + Wigloe™?™ + Wighe ™™ + Wi (1)

+ Wl%io(—l) + W1%()J1(—1)) + 6e11 + 2e12(B1 + B2 + B2) + 6€148251 52

+ 1/”($2)(1 4 e~ i(witwa) Tk + ei(UJg—wl)Tk))7

yg,@/;($2) 6_2iw1Tk + ﬁ/(l‘Q)ﬁle_iwlTk),

7. D(dv1 + di2f1 + disfi + eTNTE ) (zg)e” T,

bl

di + d12,81 -+ d13,8 211 Tk +/ o LT 7
1

UI

e—2iw27-k + V/($2)e—iw27—k)’

(di1 + d12f2 + di353 +

bl

e2iw27—k + V/(.Z'Q)eiw27—k),

\]

\]

k

_l_
o SOl S

\]

k

+

\]

I/Vz%())o(_l)eiwmc + 2W1(1())oe_iw1Tk)

76D (do1 + da2ff1 +
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!
_ o ) o -
o200 = Tk D(da1 + da2B1 + %(2)62“1% + B (z2) Bre 1),
!
_ . ‘ |
Joo20 = Tk D(do1 + doz B2 + %(2)6_2“"27’“ + ' (wg) Bae™" 2T ),
!
x ] —_— .
o002 = Tk D(da1 + d222 + %Mezwm + B (x9) Bae’2™),
9ir00 = T D(2da1 + daa(Br + B1) + y2B" (w2) + B/ (22) (B1€™1 7 + Bre™1™)),
gioro = TD(2da1 + d22(ﬁ2 + 1) + Y28 (wg)e W)
B aa) (e + e,
Poo1 = TeD(2da1 + dao(Ba + B1) + 128" (w2) et @2 w) T
+ B (22) (BLe™2™ + Bae 17kY),
G110 = Tk D (2da1 + daz (B + Ba) + 28" (wp)e! W1 —2)k
+6/($ )(/816 ’szTk +62elwl7'k))
G101 = T D (2d1 + dao(Br + Ba) + y28" (2g) et @1 Hw2)me
+ B (w2) (BLe™?™ + Bae™ ™)),
90011 = 7, D(2da1 + doa (P2 + B2) + y2ﬁ”(:1:2) + 5 ($2)(ﬁzezw2ﬂc + 526—2w27—k))

1 2 1)
9oo21 = TkD(dm(W(go%o + 2W(§0%1) + d22(§W002052 + §W(§0%0 + Wé(mﬁ? + Wéo%l)

28" (22)
T

1 WaTh 1— — W T,
+ B (2) (5 Wano™*™ + SBaWiigan(—1) + B2 Wl (—1) + Wi =27

— (3) ) 1"
+ 3eo1 + 622(52 + 2ﬁ2) + Me—wzm + B (2$2)(

91110 = TkD(2d21(W1(1())0 + Wl(ozo + Wéﬁo)
+ d22(ﬁ2W1100 + ﬁlWouo + 51W1010 + Wl(%%o + Wo(ao + Wl(g%o)
+ 8 () (Wiigoe ™™™ + WGloe™i ™ + Wytloe ™17 + BaWjo0(~1)
+EW1((¥0( 1) + 51W0110) + y2 " (2)( 1100( e 2T 4 Wl%%o(—l)eiwm
+ Witlo(—1)e ™ 1) + Geas + 262 (Br + i + Ba) + 4B (wa)e ™2™
+ 8" () (B + Bre "1 twa)me 4 gy eilwr—w2)iyy

1 W T, 1 — W2 T
(Wigpao(—1)e™2™ + 231 (—1)e2m)

ge—%wgrk + 2ﬁ2)),

where D and E are defined in (3.13) and (3.14), respectively. Since Wagoo, Woo20, Wi100,
W1010, W1001, WOHQ, W0101, and W0011 appear in Gijkls 1+ ] + k —l—l == 3, we still need to
compute them. It is easy to see that
(3.27)
W' = X{ — 21q1 — 21q1 — 25q2 — 25q2
— {AOW - 2Re{QTT(O)ROQI} - 2Re{qu(0)ROQ2}7 AS [_Tv 0)7
| AoW — 2Re{qiT (0)Roq1} — 2Re{q3T (0)Roqa} + Ro(21,71, 22, %3), 6 =0,
é AgW + H(Zl,z, 29,292, 9),
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where H(z1,71,22,%2,0) = ZZ+]+k+l>2 Z,J,k,l,HZ]klzlzljzzzQ On the other hand, we have
W' =W, 2] + W26 + W, 2'1 + We32h. Then

(Ao — 2iw17)Wagoo (0) = —Hapoo(6), (Ao — 2iwa)Woo20(8) = —Hoo20(0),

3.28
( ) AOW1100(9) = —Hlloo(o), AOW0011(9) - —H()011(0)7
(Ao — iw1 Ty — iwaTk) Wio10(0) = —Hi010(0),
(Ao — w1 T + iwaTk ) Wigo1(0) = —H1o01(0),
(Ao + iwi T — dwaTk) Wio10(0) = —Ho110(0),
(Ao + w1k + iwa Tk ) Wigo1 (0) = —Ho1o1(0)

From (3.27), it is easy to see that

H (21,71, 22,%3,0) = —2Re{q}T (0)Roq1 } — 2Re{q3T (0)Rog2}
—9"(z,2)q1(0) — g*(2,2)q1(0) — ¢°(2,2)q2(0) — ¢°(2,2)q2(0).

From the definition of Ay, (3.28), and (3.29), it follows that

(3.29)

. 1 — 2 —_—
W2/000 = 2iw1 Wanoo — 9200091 (0) — 96200‘11(9) — 9002092(0) — 9(2)002Q2(9)-

Noting the definition of ¢(f), we have

1
Waooo(8) = 9200091 (0) eiw10me 290200(11(0)e—m107k

(3'30) W1 Tk 30.)17']C

- 2
_ Z90020‘]2(0) eiszTk + 190002‘12(0) e—iwztg‘rk + K62iW107k7
(wg — 2w1)7'k (W2 + 2w1)7k

where K = (KU, K®) € R3 is a constant vector which still needs to be obtained. The
definition of Ay and (3.29) yield

0

(3.31) / dn(8)Wa000(0) = 2iw1 Waoo0(0) — Hao00(0).
1

From (3.27), it is easy to obtain Hag00(0) as follows:

(3.32) Ha000(0) = —95000‘11(0) - 93200‘11(0) - 9%000‘12(0) - 93200‘12(0) + Ro.

Submitting (3.29) and (3.32) into (3.31) and noting that +iw;, +iws are characteristic roots
of (3.5) but 2iw; is not, we obtain

: —2iw1 6 -1
(3'33) K — < 2wt + aia + ajre , ais ) Ro.

—agy — ag e 2wl 2wt — ag3

From (3.29), we know that Wagqo is obtained. Similarly, we can obtain other W;jz;’s. Thus, all
gijkl’s are obtained, where ¢ + j + k +1 = 2. Thus, we can analyze the Hopf-Hopf bifurcation
as we analyzed the Hopf bifurcation. We should point out that it is usually difficult to find
the Hopf—Hopf bifurcation parameter 7, and we can find it only by numerical methods.
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4. Discussion. We have studied the nonlinear dynamics of a two-dimensional general
delay differential system. We first provided linear analysis of the system with two delays at the
possible equilibria, namely, the semitrivial and positive equilibria, and discussed the existence
of Hopf bifurcation at the positive equilibrium. In the case when the two delays are equal, we
investigated Hopf bifurcation, Bautin bifurcation, and Hopf—Hopf bifurcation in the system.
The existence and stability of periodic solutions created in these three types of bifurcations
were studied. We then applied the obtained results to a model for the interaction between
tumor cells and effector cells of the immune system. The model is described by a system of
two differential equations with two delays, which describe the proliferation delay (7) of tumor
cells and the growth delay (p) of immune effector cells stimulated by tumor cells, respectively.
Numerical simulations were presented to illustrate the theoretical analysis and results.

Cancer immunosurveillance functions as an important defense against cancer. If the im-
mune system can successfully survey the body for tumor cells based on their acquisition of
neoantigens consequent to genetic alterations, these nascent tumor cells will be destroyed
(Pardoll [36]). This is the elimination process of cancer immunoediting (Dunn et al. [16, 17]).
Our analysis of the existence and stability of the tumor-free equilibrium corresponds to this
elimination process. If tumor cells actively acquire resistant mechanisms that attenuate im-
mune responses, then tumor survival occurs, and tumor cells continue to grow and expand in
an uncontrolled manner and may eventually lead to malignancies (Pardoll [36]). This is the
escape process of cancer immunoediting (Dunn et al. [16, 17]). Our analysis of the immune-
free equilibrium describes this escape process. There are extensive experiments to support
the existence of the elimination and escape processes because immunodeficient mice develop
more carcinogen-induced and spontaneous cancers than wild-type mice, and tumor cells from
immunodeficient mice are more immunogenic than those from immunocompetent mice (Dunn
et al. [16, 17], Schreiber, Old, and Smyth [42]). Recently, Koebel et al. [25] used a mouse
model of primary chemical carcinogenesis and demonstrated that equilibrium occurs. Their
results reveal that the immune system of a naive mouse can restrain cancer growth for ex-
tended time periods; that is, the tumor cells and effector cells of the immune system coexist
for a long time. Our results on the existence and stability of the bifurcated (Hopf, Bautin,
and Hopf-Hopf) periodic solutions describe the equilibrium process. When a stable periodic
orbit exists, it can be understood that the tumor and the immune system can coexist for
a long term although the cancer is not eliminated. The conditions for the existence of the
bifurcations indicate the parameters that are important in controlling the development and
progression of the tumor.

The existence of oscillatory modes in the tumor-immune system interaction models demon-
strate the phenomenon of long-term tumor relapse and have been observed in some related tu-
mor and immune system models (d’Onofrio et al. [15], Kirschner and Panetta [24], Kuznetsov
et al. [26], Lejeune, Chaplaina, and Akili [28], and Liu, Ruan, and Zhu [29, 30]). We should
point out, though, that the oscillatory coexistence of the tumor cells and the effector cells re-
ally depends on the initial values. Numerical simulations indicate that when the initial values
are close to the microscopic (small) positive equilibrium, both the tumor cells and the effector
cells oscillate rapidly with small amplitude. However, when the initial values are close to the
macroscopic (large) positive equilibrium, both the tumor cells and the effector cells oscillate
slowly with very large amplitude.
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We not only presented detailed analysis for the Hopf, Bautin, and Hopf-Hopf bifurcations
but also gave the computation procedures for the normal forms on the center manifold for
these bifurcations in general delay differential equations. These procedures can be used to
analyze other degenerated bifurcations in such delay differential equations, and we mention a
couple of general cases here.

If the linearizing system has eigenvalue sets A as follows,

A ={fw1, fwo,...,twy, LA pmmneZt, ij=1,...,p}

wj n’
A2:{0}U{iw17 :l:w27---7:l:wp7 zj_; %7 p7m7n62+7 ivjzlv"'vp}7

where 0 is a simple root, and w; and w; are nonresonant roots, then by the results of this
paper and in Choi and LeBlanc [8] and Guo, Chen, and Wu [21], we can obtain the following
results.

(1) If system (1.1) has nonresonant purely imaginary roots set Ay, then the truncation
equations of the phase equations on the center manifold in cubic orders have the form

7‘& = (M1 + 1)117’% + 1)127‘% +---+ blpr))Tl
(4.1) :

7";; = (up + bplr% + bpﬂ% et bppr;%)rp-

(2) If system (1.1) has nonresonant root set Ag, then the truncation equations to phase
equations on the center manifold in cubic orders are of the form

rh = ro(ao + boro) + borri + boars + - -+ + bopr,

(4.2) = r1(ar + biro) + (biorg + birri + biars + -+ + bipro)ry

7’/1 = Tp(ap + prO) + (bPOT(2] + bplr% + bp?r% +ot bppTg)Tp.

All b;’s, 1 <'i,j < p,in (4.1) and (4.2) can be given with the methods of Hassard, Kazarinoff,
and Wan [22], although they are tedious.

Finally, we should point out that we have studied system (1.1) under the assumption that
it has only one positive equilibrium. As the example in section 3.1 showed, it could have multi-
ple positive equilibria. Correspondingly, the system can exhibit more degenerate bifurcations
including Bogdanov—Takens bifurcation (see Liu, Ruan, and Zhu [29] for an ODE model of
tumor—immune system interaction) and higher codimension bifurcations. Also, throughout
the paper we assumed that 0(t) = 0; that is, we studied only model (1.1) in the absence
of immunotherapy. As the recent clinical data on the immunotherapy of chronic lymphoid
leukemia were very encouraging (Porter, Levine, and Kalos [38]), it will be very interesting
(and challenging) to study the effect of immunotherapy (periodic or impulsive) on the non-
linear dynamics of the tumor—-immune system interaction models with delay effect. We leave
these for future investigation.
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