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Abstract Hematopoiesis is a complex biological process that leads to the produc-
tion and regulation of blood cells. It is based upon differentiation of stem cells
under the action of growth factors. A mathematical approach of this process is
proposed to understand some blood diseases characterized by very long period os-
cillations in circulating blood cells. A system of three differential equations with
delay, corresponding to the cell cycle duration, is proposed and analyzed. The exis-
tence of a Hopf bifurcation at a positive steady-state is obtained through the study
of an exponential polynomial characteristic equation with delay-dependent coeffi-
cients. Numerical simulations show that long-period oscillations can be obtained in
this model, corresponding to a destabilization of the feedback regulation between
blood cells and growth factors, for reasonable cell cycle durations. These oscilla-
tions can be related to observations on some periodic hematological diseases (such
as chronic myelogenous leukemia, for example).

Keywords Delay differential equations · Characteristic
equation · Delay-dependent coefficients · Stability switch · Hopf
bifurcation · Cell population models · Hematopoiesis · Stem cells

1. Introduction

Hematopoiesis is the process by which erythrocytes (red blood cells), leuko-
cytes (white blood cells), and thrombocytes (platelets) are produced and regu-
lated. These cells perform a variety of vital functions such as transporting oxygen,
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Fig. 1 Blood production process. Hematopoietic stem cells are divided in two groups: prolifer-
ating cells P and nonproliferating (or quiescent) cells Q. Proliferating cells actually perform the
main stages of cell cycle (growth, division). They can die by apoptosis with a rate γ . The pro-
liferating phase duration is assumed to be constant and equals τ . After division, each newborn
cell enters the quiescent phase. Quiescent cells can die with a rate δ and can be introduced in
the proliferating phase with a rate β which depends on Q and on the growth factor concentra-
tion E. Moreover, quiescent cells differentiate with a rate g(Q)/Q in mature blood cells M, that
can be found in the bloodstream. These cells are eliminated with a constant rate µ and trigger
the production of growth factors by the mean of a negative feedback denoted by f . In turn, the
growth factor concentration E acts on the introduction rate β of hematopoietic stem cells, from
the quiescent phase to the proliferating phase. While in blood, growth factors are degraded with a
rate k.

fighting infections, and repairing lesions. Therefore, the body must carefully regu-
late their production. For example, there are about 3.5 × 1011 erythrocytes for each
kg of body weight, so almost 7% of the body mass is red blood cells. The turnover
rate is about 3 × 109 erythrocytes/kg of body weight each day, which must be care-
fully regulated by several O2 sensitive receptors and a collection of growth factors
and hormones. Although understanding of blood production process evolves con-
stantly, the main outlines are clear (see Fig. 1).

Blood cells, that can be observed in blood vessels, originate from a pool of
hematopoietic pluripotent stem cells, located in the bone marrow of most of hu-
man bones. Hematopoietic pluripotent stem cells, which are undifferentiated cells
with a high self-renewal and differentiation capacity, give rise to committed stem
cells. These committed stem cells form bands of cells called colony forming units
(CFU) and are specialized in the sense that they can only produce one of the three
blood cell types: red blood cells, white cells, or platelets. Colony forming units
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differentiate in precursor cells, which are not stem cells anymore, because they
have lost their self-renewal capacity. These cells eventually give birth to mature
blood cells which enter the bloodstream.

One can see that the hematopoiesis process is formed by a succession of complex
differentiations from hematopoietic pluripotent stem cells to precursors. These
different differentiations, occurring in the bone marrow, are mainly mediated by
growth factors. They are proteins acting, in some way, like hormones playing an
activator/inhibitor role. Each type of blood cell is the result of specific growth fac-
tors acting at specific moments during the hematopoiesis process.

The red blood cells production, for example, called erythropoiesis, is mainly me-
diated by erythropoietin (EPO), a growth factor produced at 90% by the kidneys.
Erythropoietin is released in the bloodstream due to tissue hypoxia. It stimulates
the erythropoiesis in the bone marrow, causing an increase in circulating red blood
cells, and consequently an increase in the tissue pO2 levels. Then the release of
erythropoietin decreases and a regulation of the process is observed: there is a
feedback control from the blood to the bone marrow. In extreme situations, like
bleeding or moving to high altitudes, where needs in oxygen are important, ery-
thropoiesis is accelerated.

White blood cells are produced during leukopoiesis and the main growth fac-
tors acting on their regulation are Granulocyte-CSF (Colony Stimulating Factor),
Macrophage-CSF, Granulocyte-Macrophage-CSF, and different interleukins (IL-
1, IL-2, IL-6, IL-8, etc.). Platelets are mainly regulated by thrombopoietin (TPO),
which acts similarly to erythropoietin.

The hematopoiesis process sometimes exhibits abnormalities in blood cells pro-
duction, causing the so-called dynamical hematological diseases Haurie et al.
(1998). They are characterized by oscillations of circulating blood cell counts, with
periods ranging from days (19–21 days for cyclical neutropenia, Haurie et al. (1998,
1999); Bernard et al. (2003a)) to months (periodic chronic myelogenous leukemia
Fortin and Mackey (1999) may exhibit periods about 30–100 days, with a mean
about 70–80 days). Most of these diseases seem to be due to a destabilization of
the pluripotent hematopoietic stem cell compartment caused by the action of one
or more growth factors. For erythropoiesis, abnormalities in the feedback loop
between erythropoietin and the bone marrow production are suspected to cause
periodic hematological disorders, such as autoimmune-induced hemolytic anemia
Bélair et al. (1995); Haurie et al. (1998). Cyclical neutropenia Hearn et al. (1998);
Haurie et al. (1999); Bernard et al. (2003a), one of the most intensively studied pe-
riodic hematological diseases, characterized by a fall of neutrophils (white blood
cells) counts every 3 weeks, to sometimes barely detectable values, is now known
to be due to a destabilization of the apoptotic (mortality) rate during the prolifer-
ating phase of the cell cycle.

Mathematical models of hematopoiesis have been intensively studied since the
end of the 1970s. To our knowledge, Mackey (1978, 1979) proposed the first
model of hematopoiesis, based on early works by Lajtha (1959) and Burns and
Tannock (1970). This model takes the form of a delay differential equation, where
the delay describes the cell cycle duration. Since then it has been modified and
studied by many authors. The works of Mackey and Rudnicki (1994, 1999) and
Mackey and Rey (1993, 1995a,b) deal with age-maturity structured models of
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hematopoiesis based on the model of Mackey (1978). The authors stressed the
role of pluripotent hematopoietic stem cells in hematopoiesis, pointing out in
particular that the destabilization of this population surely led to the destabi-
lization of the entire process. We also mention the works of Dyson et al. (1996,
2000a,b), Adimy and Pujo-Menjouet (2003), Adimy and Crauste (2003, 2005), and
Adimy et al. (2005a) on this topic, taking into account different ways of cell
division.

Recently, the model of Mackey (1978) has been used to bring some information
about some periodic hematological diseases. Pujo-Menjouet and Mackey (2004)
and Pujo-Menjouet et al. (2005) studied the model of Mackey (1978, 1979) and ob-
tained the existence of periodic solutions, with long periods compared to the cell
cycle duration, describing phenomena observed with periodic chronic myeloge-
nous leukemia. Bernard et al. (2003a, 2004) considered a model of leukopoiesis
(white cell production) based on the model of Mackey (1978), formed with two
delay differential equations. Using a quasi steady-state assumption (that reduces
their model to one delay differential equation, whose resolution is equivalent to
the one proposed by Mackey (1978)), the authors applied their model to cyclical
neutropenia and stressed the role of the rate of apoptosis in the appearance of
this disease. More recently, Colijn and Mackey (2005a,b) tried to model the en-
tire process of hematopoiesis (taking into account the three blood cell lineages)
and dealt with a system of four differential equations with six time delays. They
applied their model to the study of periodic chronic myelogenous leukemia and
cyclical neutropenia. However, the influence of growth factors has never been ex-
plicitly incorporated in these models.

In the late 1990s, Bélair et al. (1995) and Mahaffy et al. (1998) considered a
mathematical model for erythropoiesis. The model is a system of age and maturity
structured equations that can be reduced to a system of delay differential equa-
tions. They showed that their model fitted well with experimental observations in
normal erythropoiesis but they stressed some difficulties to reproduce pathological
behaviors observed for periodic hematological diseases.

In this paper we consider a system of differential equations modelling the evolu-
tion of hematopoietic stem cells in the bone marrow, of mature blood cells in the
bloodstream, and of the concentration of some growth factors acting on the stem
cell population (see Fig. 1). A delay naturally appears in the model, describing the
cell cycle duration. This approach is based on the early work of Mackey (1978,
1979) and the recent work of Bélair et al. (1995) and Mahaffy et al. (1998) dealing
with erythropoiesis. Our aim is to show that oscillations with very long periods can
appear in such models for reasonable values of the involved parameters, causing
periodic hematological diseases, and that they are mainly due to the destabilization
of the feedback loop between blood cells and growth factors.

The paper is organized as follows. We first describe the biological background
leading to the mathematical model. After showing the existence of a positive
equilibrium, we analyze its local asymptotic stability. This analysis is performed
through the study of a characteristic equation which takes the form of a third-
degree exponential polynomial with delay-dependent coefficients. Using the ap-
proach of Beretta and Kuang (2002), we show that the positive steady-state can
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be destabilized through a Hopf bifurcation and stability switches can occur. We
illustrate our results with numerical simulations and show that very long-period
oscillations can be observed in this model, as can be observed in patients with
some periodic hematological diseases (periodic chronic myelogenous leukemia for
example).

2. The model

In the bone marrow, hematopoietic stem cells are divided into two groups: qui-
escent (or nonproliferating) and proliferating cells. The existence of a quiescent
phase (also called G0 phase) in the cell cycle is proved, for example, in Burns
and Tannock (1970). Quiescent cells represent the major part of hematopoi-
etic stem cells, that is about 90% of the hematopoietic stem cell population.
Proliferating cells are cells actually in cycle: they are committed to divide dur-
ing mitosis after, in particularly, having synthesized DNA. Immediately after di-
vision, proliferating cells enter the G0 phase where they can stay their entire
life.

We denote by Q(t) and P(t) the quiescent and proliferating cell populations at
time t, respectively (see Fig. 1). In the proliferating phase, apoptosis, which is a
programmed cell death, controls the cell population and eliminates deficient cells.
We assume that the apoptosis rate, denoted by γ , is constant and nonnegative. In
the G0 phase, cells can disappear by natural death with a rate δ. They also differ-
entiate in mature blood cells with a rate g(Q)/Q, where the function g is assumed
to be nonnegative with g(0) = 0, because no cell can become mature when there is
no hematopoietic stem cell, and continuously differentiable. Moreover, we assume
that the function Q �→ g(Q)/Q is nondecreasing for Q ≥ 0, which is equivalent
to

0 ≤ g′(0) ≤ g(Q)
Q

≤ g′(Q) for Q > 0. (1)

It follows, in particular, that g is nondecreasing and limQ→+∞ g(Q) = +∞.
Quiescent cells can also be introduced into the proliferating phase in order to

ensure the population renewal, at a nonconstant rate β. It is generally accepted
that β depends on the total population of nonproliferating cells (Mackey, 1978;
Sachs, 1993). However, the production of mature blood cells is also mediated
by growth factors through the stem cell population: growth factors induce differ-
entiation and maturation of hematopoietic cells via the stem cell compartment.
Thus, the dependence of β on growth factors must be represented. We assume
that β is continuously differentiable. Moreover, in the particular case of erythro-
poiesis, β is an increasing function of the erythropoietin concentration, because a
release of erythropoietin increases the production of red blood cells. Hence, we
assume that β is an increasing function of the growth factor concentration, with
β(Q, 0) = 0, and a nonincreasing function of the G0 phase population (Mackey,
1978).
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Thus, the equations modelling the differentiation of hematopoietic stem cells in
the bone marrow are

dQ
dt

= −δQ(t) − g(Q(t)) − β(Q(t), E(t))Q(t)

+ 2e−γ τ β(Q(t − τ ), E(t − τ ))Q(t − τ ), (2)

dP
dt

= −γ P(t) + β(Q(t), E(t))Q(t)

− e−γ τ β(Q(t − τ ), E(t − τ ))Q(t − τ ), (3)

where E(t) is the growth factor concentration at time t . The parameter τ >

0 denotes the average time needed by a proliferating cell to divide, that is,
τ is an average cell cycle duration. The last term in Eq. (2) represents the
amount of cells coming from the proliferating phase at division. They are, in
fact, quiescent cells introduced in the proliferating phase one generation earlier.
The factor 2 represents the division of each proliferating cell in two daughter
cells.

At the end of their development, precursors give birth to mature blood
cells, which are introduced in the bloodstream. We denote by M(t) the pop-
ulation of circulating mature blood cells (see Fig. 1). These cells only pro-
ceed from G0 cells at the rate g(Q). Mature blood cells are degraded,
in the bloodstream, at a rate µ ≥ 0. Red blood cells usually live an av-
erage of 120 days, whereas platelets live about 1 week and white blood
cells only few hours. Mature blood cell population satisfies the differential
equation

dM
dt

= −µM(t) + g(Q(t)).

The growth factor concentration is governed by a differential equation with
an explicit negative feedback. This feedback describes the control of the bone
marrow production on the growth factor production, explained in the pre-
vious section. This control acts by the mean of circulating blood cells: the
more circulating blood cells the less growth factor produced. We denote by
f the feedback control. The function f depends on the population of cir-
culating cells M and is positive, decreasing, and continuously differentiable.
Then

dE
dt

= −kE(t) + f (M(t)),

where k ≥ 0 is the disappearance rate of the growth factor. In fact, the action
of the mature blood cell population on the production of growth factor is not
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immediate: it is slightly delayed, but this delay is negligible compared with the cell
cycle duration, so we do not consider it here.

At this point, one can notice that system (2)–(3) is not coupled: the population
in the proliferating phase is not needed in the description of the hematopoiesis
process, since circulating blood cells only come from quiescent cells. From a math-
ematical point of view, the solution of (2) does not depend on the solution of (3)
whereas the converse is not true. Consequently, we concentrate on the following
system of delay differential equations in Q(t), M(t), and E(t) :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dQ
dt

= −δQ(t) − g(Q(t)) − β(Q(t), E(t))Q(t)

+2e−γ τ β(Q(t − τ ), E(t − τ ))Q(t − τ ),

dM
dt

= −µM(t) + g(Q(t)),

dE
dt

= −kE(t) + f (M(t)).

(4)

Using the results in Hale and Verduyn Lunel (1993), one can check that for
any continuous initial conditions system (4) has a unique continuous solution
(Q(t), M(t), E(t)). Moreover, we have the following conclusions.

First, solutions Q(t), M(t), and E(t) of system (4) are nonnegative. In fact, let us
suppose, by contradiction, that there exists t0 > 0 such that Q(t) > 0 for t < t0 and
Q(t0) = 0. Then, since g(0) = 0,

dQ
dt

(t0) = 2e−γ τ β(Q(t0 − τ ), E(t0 − τ ))Q(t0 − τ ) > 0.

Hence Q(t) is nonnegative. Since the functions g and f are nonnegative, we sim-
ilarly obtain that M(t) and E(t) are nonnegative. Secondly, solutions of (4) are
bounded when limQ→∞ β(Q, E) = 0 for all E ≥ 0, and δ + g′(0) > 0. This result is
not straightforward, details of the proof are given in Appendix A.

Now, let us focus on the existence of steady states of system (4). A solution
(Q̄, M̄, Ē) of (4) is a steady-state or equilibrium if

dQ̄
dt

= dM̄
dt

= dĒ
dt

= 0,

that is
⎧
⎪⎨

⎪⎩

δQ̄ + g(Q̄) = (2e−γ τ − 1)β(Q̄, Ē)Q̄,

µM̄ = g(Q̄),

kĒ = f (M̄).

(5)

We make some remarks. It would be nonsense to suppose that the rates µ and k
may vanish, because we cannot allow the blood cell population to grow indefinitely
and the growth factor is necessarily degraded while in blood. Hence, we assume
that µ > 0 and k > 0.
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Since g(0) = 0, it follows that (0, 0, f (0)/k) is always a steady-state of (4) that
we will call in the following the trivial equilibrium of (4). This steady-state cor-
responds to the extinction of the cell population with a saturation of the growth
factor concentration.

From now on, we assume that

lim
Q→+∞

β

(

Q,
1
k

f
(

1
µ

g(Q)
))

= 0. (6)

Since limQ→+∞ g(Q) = +∞ and limM→+∞ f (M) = 0, this property holds true if
β(Q, 0) = 0 for all Q ≥ 0, or limQ→+∞ β(Q, E) = 0 for all E ≥ 0.

Let us assume that (4) has a nontrivial positive steady-state (Q∗, M∗, E∗), that
is, Q∗ > 0, M∗ > 0, and E∗ > 0 satisfy (5). Then

(2e−γ τ − 1)β(Q∗, E∗)=δ + g(Q∗)
Q∗ , M∗ = 1

µ
g(Q∗), and E∗ = 1

k
f (M∗). (7)

Necessarily, we have

2e−γ τ − 1 > 0,

which is equivalent to

τ <
ln(2)

γ
. (8)

We assume that (8) holds. Since Q∗ > 0 and

E∗ = 1
k

f (M∗) = 1
k

f
(

1
µ

g(Q∗)
)

,

we must have

(2e−γ τ − 1)β
(

Q∗,
1
k

f
(

1
µ

g(Q∗)
))

= δ + g(Q∗)
Q∗ . (9)

Let us define

β̃(Q) := β

(

Q,
1
k

f
(

1
µ

g(Q)
))

. (10)

Since f is decreasing, g is nondecreasing and β(Q, E) is decreasing with respect to
Q and increasing with respect to E, we deduce that β̃ is decreasing with

β̃(0) = β

(

0,
1
k

f (0)
)

and lim
Q→+∞

β̃(Q) = 0.
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Moreover, from (1), the function Q �→ δ + g(Q)/Q is nondecreasing. Conse-
quently, Eq. (9) has a positive solution, which is unique if and only if

δ + g′(0) <
(
2e−γ τ − 1

)
β

(

0,
1
k

f (0)
)

. (11)

These results are summarized in the next proposition.

Proposition 1. Assume that µ > 0 and k > 0.

(i) If

δ + g′(0) > (2e−γ τ − 1)β
(

0,
1
k

f (0)
)

, (12)

then system (4) has a unique steady-state (0, 0, f (0)/k);
(ii) If condition (11) holds, then system (4) has two steady-states: a trivial one

(0, 0, f (0)/k) and a nontrivial positive one (Q∗, M∗, E∗), where Q∗ is the
unique positive solution of (9), M∗ = g(Q∗)/µ and E∗ = f (M∗)/k.

The above proposition indicates that system (4) undergoes a transcritical bi-
furcation when δ + g′(0) = (2e−γ τ − 1)β(0, f (0)/k). Since the trivial steady-state
(0, 0, f (0)/k) corresponds, biologically, to the extinction of the cell population and
a saturation of the growth factor concentration, it is not a biologically interesting
equilibrium. It describes a pathological situation that can only lead to death with-
out appropriate treatment. Therefore, we focus on the local stability analysis of the
other steady-state (Q∗, M∗, E∗). One can check that condition (11), which ensures
the existence of this steady-state, is equivalent to

δ+g′(0)<β

(

0,
f (0)

k

)

and 0≤τ <τmax := 1
γ

ln

⎛

⎝
2β

(
0,

f (0)
k

)

δ+g′(0)+β
(

0,
f (0)

k

)

⎞

⎠ . (13)

Note that, using the implicit function theorem, we can easily show that the
steady-states Q∗, M∗, and E∗ are continuously differentiable with respect to the
cell cycle duration τ ∈ [0, τmax). Moreover, Q∗ and M∗ are decreasing functions of
τ and E∗ is an increasing function of τ , with

lim
τ→τmax

(Q∗(τ ), M∗(τ ), E∗(τ )) = (0, 0, f (0)/k).

3. Local stability analysis

We concentrate on the study of the stability of the nontrivial equilibrium
(Q∗, M∗, E∗). Hence, we assume throughout this section that µ, k > 0 and con-
dition (13) holds.
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The delay is often seen as a destabilization parameter (see, for example, Metz
and Diekmann (1986); Mackey and Milton (1990)). To compare the long periods
of the bifurcating periodic solutions with the cell cycle duration, we then perform
the stability analysis with respect to the delay parameter τ , which represents the
cell cycle duration.

We recall that Q∗, M∗, and E∗ satisfy (7). To linearize (4) around the equilibrium
(Q∗, M∗, E∗), we set

q(t) = Q(t) − Q∗, m(t) = M(t) − M∗, and e(t) = E(t) − E∗.

The linearized system is

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dq
dt

= −Aq(t) + Bq(t − τ ) − Ce(t) + De(t − τ ),

dm
dt

= −µm(t) + Gq(t),

de
dt

= −ke(t) − Hm(t),

(14)

where the real coefficients A, B, C, D, G, and H are defined by

A = δ + g′(Q∗) + β(Q∗, E∗) + β ′
1(Q∗, E∗)Q∗,

B = 2e−γ τ
[
β(Q∗, E∗) + β ′

1(Q∗, E∗)Q∗] ,

C = β ′
2(Q∗, E∗)Q∗ > 0,

D = 2e−γ τ β ′
2(Q∗, E∗)Q∗ > 0,

G = g′(Q∗) > 0,

H = − f ′(M∗) > 0.

(15)

One can notice that these coefficients depend, explicitly or implicitly, on the pa-
rameter τ through the equilibrium values Q∗, M∗, and E∗. However, we do not
stress this dependence when we write the coefficients. Moreover, from the assump-
tions on β, g, and f , the coefficients C, D, G, and H are strictly positive.

In the above definitions, we have used the notations

β ′
1(Q, E) := ∂β

∂ Q
(Q, E) and β ′

2(Q, E) := ∂β

∂ E
(Q, E).

Furthermore, one can notice that

A− B = g′(Q∗) − g(Q∗)
Q∗ − (2e−γ τ − 1)β ′

1(Q∗, E∗)Q∗ ≥ 0

and

D − C = (2e−γ τ − 1)β ′
2(Q∗, E∗)Q∗ > 0.
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System (14) can be written in the matrix form

dX
dt

= A1 X(t) + A2 X(t − τ )

with

X(t) =

⎛

⎜
⎝

q(t)

m(t)

e(t)

⎞

⎟
⎠ , A1 =

⎛

⎜
⎝

−A 0 −C

G −µ 0

0 −H −k

⎞

⎟
⎠ and A2 =

⎛

⎜
⎝

B 0 D

0 0 0

0 0 0

⎞

⎟
⎠ .

Consequently, the characteristic equation of (14) is given by

det
(
λI − A1 − A2e−λτ

) = 0,

which reduces to

(λ + µ)(λ + k)(λ + A− Be−λτ ) − GH(C − De−λτ ) = 0. (16)

We recall the following result: the trivial solution of system (14), or equiv-
alently the steady-state of system (4), is asymptotically stable if all roots of
(16) have negative real parts, and the stability is lost only if characteristic roots
cross the axis from left to right, or right to left, that is if pure imaginary roots
appear.

Remark 2. If we linearize system (4) around its trivial steady-state (0, 0, f (0)/k),
we obtain a system similar to (14), with

A = δ + g′(0) + β(0, f (0)/k) > 0, D = 0,

B = 2e−γ τ β(0, f (0)/k) > 0, G = g′(0) > 0,

C = 0, H = − f ′(0) > 0.

Therefore, the characteristic Eq. (16) of the linearized system, about the trivial
steady-state, becomes

(λ + µ)(λ + k)(λ + A− Be−λτ ) = 0. (17)

Studying the sign of the real parts of the roots of (17), we obtain the follow-
ing proposition (whose proof is given in Appendix B) which deals with the local
asymptotic stability of the trivial steady-state of (4).

Proposition 3. Assume that µ > 0 and k > 0. If condition (12) holds, then the triv-
ial steady-state of system (4) is locally asymptotically stable for all τ ≥ 0, and if
condition (11) holds, then it is unstable for all τ ≥ 0.
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The results stated in Proposition 3 indicate that the trivial steady-state of (4) is
locally asymptotically stable when it is the only equilibrium and unstable as soon
as the nontrivial equilibrium exists.

We now return to the analysis of the local asymptotic stability of the nontrivial
steady-state (Q∗, M∗, E∗) of system (4).

Equation (16) takes the general form

P(λ, τ ) + Q(λ, τ )e−λτ = 0 (18)

with

P(λ, τ ) = λ3 + a1(τ )λ2 + a2(τ )λ + a3(τ ),

Q(λ, τ ) = a4(τ )λ2 + a5(τ )λ + a6(τ ),

where

a1(τ ) = µ + k + A, a4(τ ) = −B,

a2(τ ) = µk + A(µ + k), a5(τ ) = −B(µ + k),

a3(τ ) = µkA− GHC, a6(τ ) = −Bµk + GHD.

We can check that, for all τ ∈ [0, τmax),

a1(τ ) + a4(τ ) = µ + k + A− B > 0,

a2(τ ) + a5(τ ) = µk + (A− B)(µ + k) > 0,

and

a3(τ ) + a6(τ ) = µk(A− B) + GH(D − C) > 0.

We will remember, in the following, that

ai (τ ) + ai+3(τ ) > 0 for i = 1, 2, 3. (19)

Let us examine the case τ = 0. This case is of importance, because it can be
necessary that the nontrivial positive steady-state of (4) is stable when τ = 0
to be able to obtain the local stability for all nonnegative values of the de-
lay, or to find a critical value which could destabilize the steady-state (see
Theorem 8).

When τ = 0, the characteristic Eq. (18) reduces to

λ3 + [a1(0) + a4(0)]λ2 + [a2(0) + a5(0)]λ + a3(0) + a6(0) = 0. (20)
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The Routh–Hurwitz criterion says that all roots of (20) have negative real parts if
and only if

a1(0) + a4(0) > 0,

a3(0) + a6(0) > 0,

and

[a1(0) + a4(0)][a2(0) + a5(0)] > a3(0) + a6(0). (21)

From (19), it follows that all characteristic roots of (20) have negative real parts if
and only if (21) holds.

Proposition 4. When τ = 0, the nontrivial steady-state (Q∗, M∗, E∗) of (4) is lo-
cally asymptotically stable if and only if

(µ + k) [µk + (A− B)(µ + k + A− B)] > GH(D − C), (22)

where A, B, C, D, G, and H are given by (15).

In the following, we investigate the existence of purely imaginary roots λ =
iω, ω ∈ R, of (18). Equation (18) takes the form of a third-degree exponen-
tial polynomial in λ. In 2001, Ruan and Wei (2001) gave sufficient condi-
tions for the existence of zeros for such an equation, but only in the case
where the coefficients of the polynomial functions P and Q do not depend
on the delay τ , that is when the characteristic Eq. (18) is given by P(λ) +
Q(λ)e−λτ = 0. Since all the coefficients of P and Q depend on τ , we cannot
apply their results directly. In 2002, however, Beretta and Kuang (2002) es-
tablished a geometrical criterion which gives the existence of purely imaginary
roots for a characteristic equation with delay dependent coefficients. We are go-
ing to apply this criterion to Eq. (18) in order to obtain stability results for
Eq. (14). In the following, we use the same notations as inBeretta and Kuang
(2002).

We first have to verify the following properties, for all τ ∈ [0, τmax):

(i) P(0, τ ) + Q(0, τ ) 
= 0;
(ii) P(iω, τ ) + Q(iω, τ ) 
= 0;

(iii) lim sup
{∣
∣
∣

Q(λ,τ )
P(λ,τ )

∣
∣
∣ ; |λ| → ∞, Reλ ≥ 0

}
< 1;

(iv) F(ω, τ ) := |P(iω, τ )|2 − |Q(iω, τ )|2 has a finite number of zeros.

Properties (i), (ii), and (iii) can be easily verified. Let τ ∈ [0, τmax). Using (19), a
simple computation gives

P(0, τ ) + Q(0, τ ) = a3(τ ) + a6(τ ) > 0.
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Moreover,

P(iω, τ ) + Q(iω, τ ) = [−(a1(τ ) + a4(τ ))ω2 + a3(τ ) + a6(τ )]
+ i[−ω3 + (a2(τ ) + a5(τ ))ω],

so (ii) is true. Finally,

∣
∣
∣
∣

Q(λ, τ )
P(λ, τ )

∣
∣
∣
∣
|λ|→∞
∼

∣
∣
∣
∣
a4(τ )

λ

∣
∣
∣
∣ ,

therefore (iii) is also true.
Now, let F be defined as in (iv). Since

|P(iω, τ )|2 = ω6 + [
a2

1(τ ) − 2a2(τ )
]
ω4 + [

a2
2(τ ) − 2a1(τ )a3(τ )

]
ω2 + a2

3(τ )

and

|Q(iω, τ )|2 = a2
4(τ )ω4 + [

a2
5(τ ) − 2a4(τ )a6(τ )

]
ω2 + a2

6(τ ),

we have

F(ω, τ ) = ω6 + b1(τ )ω4 + b2(τ )ω2 + b3(τ )

with

b1(τ ) = a2
1(τ ) − 2a2(τ ) − a2

4(τ ),

b2(τ ) = a2
2(τ ) + 2a4(τ )a6(τ ) − 2a1(τ )a3(τ ) − a2

5(τ ),

b3(τ ) = a2
3(τ ) − a2

6(τ ).

One can check that

b1(τ ) = µ2 + k2 + A2 − B2,

and

b2(τ ) = µ2k2 + (A2 − B2)(µ2 + k2) + 2GH [C(µ + k + A) − BD] ,

b3(τ ) = µ2k2(A2 − B2) + G2 H2(C2 − D2) + 2µkGH(BD − AC),

where A, B, C, D, G, and H are given by (15). It is obvious that property (iv) is
satisfied.

Now assume that λ = iω, ω ∈ R, is a purely imaginary characteristic root of (18).
Separating real and imaginary parts, we can show that (ω, τ ) satisfies

−a1(τ )ω2 + a3(τ ) = − [−a4(τ )ω2 + a6(τ )
]

cos(ωτ ) − a5(τ )ω sin(ωτ ), (23)

−ω3 + a2(τ )ω = −a5(τ )ω cos(ωτ ) + [−a4(τ )ω2 + a6(τ )] sin(ωτ ). (24)
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One can check that, if (ω, τ ) is a solution of system (23)–(24), then so is (−ω, τ ).
Hence, if iω is a purely imaginary characteristic root of (18), its conjugate has the
same property. Consequently, we only look in the following for purely imaginary
roots of (18) with positive imaginary part.

Adding the squares of both sides of system (23)–(24), a necessary condition for
this system to have solutions (ω, τ ) is that

[−a1(τ )ω2 + a3(τ )]2 + [−ω3 + a2(τ )ω]2 = [−a4(τ )ω2 + a6(τ )]2 + a2
5ω

2,

that is

F(ω, τ ) = 0.

The polynomial function F can be written as

F(ω, τ ) = h(ω2, τ ),

where h is a third-degree polynomial, defined by

h(z, τ ) := z3 + b1(τ )z2 + b2(τ )z + b3(τ ). (25)

We set

�(τ ) = b2
1(τ ) − 3b2(τ ), (26)

and, when �(τ ) ≥ 0,

z0(τ ) = −b1(τ ) + √
�(τ )

3
. (27)

We then have the following lemma (details of the proof are given in Ruan and Wei
(2001), Lemma 2.1).

Lemma 5. Let τ ∈ [0, τmax) and �(τ ) and z0(τ ) be defined by (26) and (27), re-
spectively. Then h(·, τ ), defined in (25), has positive roots if and only if

b3(τ ) < 0 or b3(τ ) ≥ 0, �(τ ) ≥ 0, z0(τ ) > 0 and h(z0(τ ), τ ) < 0. (28)

Conditions �(τ ) ≥ 0, z0(τ ) > 0, and h(z0(τ ), τ ) < 0 cannot be easily checked.
However, we express them using the coefficients bi , i = 1, 2, 3, which can be useful.
Details of the easy but tedious computations are given in Appendix C.

Lemma 6. Let τ ≥ 0 be such that b3(τ ) ≥ 0. Then �(τ ) ≥ 0, z0(τ ) > 0, and
h(z0(τ ), τ ) < 0 if and only if
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(i) b2(τ ) < 0 or b1(τ ) < 0 ≤ b2(τ ) <
b2

1(τ )
3

, and

(i i) 2�(τ )z0(τ ) + b1(τ )b2(τ ) − 9b3(τ ) > 0.

From the previous lemma, condition (28) is equivalent to

b3(τ ) < 0 or b3(τ ) ≥ 0 and (i)-(ii) hold true. (29)

Let us show on an example that condition (29) is satisfied.
Note that b3 can be expressed as

b3(τ ) = µ2k2(A− B)(A+ B) + G2 H2(C − D)(C + D)
+ 2µkGH(B(D − C) + C(B − A)),

where A, B, C, D, G, and H are defined by (15). Since C − D < 0 and B − A≤
0, then b3(τ ) < 0 if A+ B ≤ 0 and B ≤ 0. Moreover, from the definition of B, it
follows that B ≤ 0 if A+ B ≤ 0. Consequently, a sufficient condition for b3(τ ) < 0
is A+ B ≤ 0.

Let us assume that g is a linear function given by g(Q) = GQ with G > 0,
β(Q, E) = β1(Q)β2(E) with β1(Q) = 1/(1 + Qn), n > 0, and β2 an increasing func-
tion satisfying β2(0) = 0. Then, for τ = 0,

A+ B = [4β1(Q∗) + 3β ′
1(Q∗)Q∗]β2(E∗).

Since E∗ > 0, β2(E∗) > 0 and A+ B ≤ 0 if and only if

4β1(Q∗) + 3β ′
1(Q∗)Q∗ = 4 + (4 − 3n)(Q∗)n

(1 + (Q∗)n)2
≤ 0,

that is

n >
4
3

and Q∗ ≥
(

4
3n − 4

)1/n

.

Let δ and G be such that

δ + G < β̃(1) = 1
2
β2

(
1
k

f
(

G
µ

))

,

where β̃ is defined by (10), and let n̄ > 4/3 be the unique solution of

3n̄
3n̄ − 4

+ ln
(

4
3n̄ − 4

)

= 0.
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Then, for n > n̄ ≈ 6.12,

β̃

((
4

3n − 4

)1/n
)

> β̃(1) > δ + G,

so Q∗ ≥ (4/(3n − 4))1/n and it follows that A+ B ≤ 0.
Consequently, b3(0) < 0 and, using the continuity of b3 with respect to τ , we

deduce that there exists τ̄ > 0 such that (29) is verified for τ ∈ [0, τ̄ ).
When the reintroduction rate β only depends on the growth factor concentration

E, condition (29) is also satisfied for τ close to zero. This is numerically obtained
in Section 4.

We set I := [0, τ̄ ) an interval in which (29) is satisfied, with 0 < τ̄ ≤ τmax. From
the above remarks, we can find functions β, g, and f , and parameter values such
that τ̄ exists. For τ ∈ I there exists at least ω = ω(τ ) > 0 such that F(ω(τ ), τ ) = 0.

Then, let θ(τ ) ∈ [0, 2π ] be defined for τ ∈ I by

cos(θ(τ )) = (a5 − a1a4) ω4 + (a1a6 + a3a4 − a2a5) ω2 − a3a6

a2
4ω

4 + (
a2

5 − 2a4a6
)
ω2 + a2

6

,

sin(θ(τ )) = a4ω
5 + (a1a5 − a2a4 − a6) ω3 + (a2a6 − a3a5) ω

a2
4ω

4 + (
a2

5 − 2a4a6
)
ω2 + a2

6

,

where ω = ω(τ ), and we deliberately omit the dependence of the ai on τ . Since
F(ω(τ ), τ ) = 0 for τ ∈ I, it follows that θ is well and uniquely defined for all τ ∈ I.

One can check, using (23)–(24), that iω∗ with ω∗ = ω(τ ∗) > 0 is a purely imagi-
nary characteristic root of (18) if and only if τ ∗ is a root of the function Sn, defined
by

Sn(τ ) = τ − θ(τ ) + 2nπ

ω(τ )
, τ ∈ I, with n ∈ N.

The following theorem is due to Beretta and Kuang (2002).

Theorem 7. Assume that the function Sn(τ ) has a positive root τ ∗ ∈ I for some
n ∈ N. Then a pair of simple purely imaginary roots ±iω(τ ∗) of (18) exists at τ = τ ∗

and

sign

{
dRe(λ)

dτ

∣
∣
∣
∣
λ=iω(τ ∗)

}

= sign
{

∂ F
∂ω

(ω(τ ∗), τ ∗)
}

sign
{

dSn(τ )
dτ

∣
∣
∣
∣
τ=τ ∗

}

. (30)

Since

∂ F
∂ω

(ω, τ ) = 2ω
∂h
∂z

(ω2, τ ),
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condition (30) is equivalent to

sign

{
dRe(λ)

dτ

∣
∣
∣
∣
λ=iω(τ ∗)

}

= sign
{

∂h
∂z

(ω2(τ ∗), τ ∗)
}

sign
{

dSn(τ )
dτ

∣
∣
∣
∣
τ=τ ∗

}

.

We can easily observe that Sn(0) < 0. Moreover, for all τ ∈ I, Sn(τ ) > Sn+1(τ ),
with n ∈ N. Therefore, if S0 has no root in I, then the Sn functions have no root in
I and, if the function Sn(τ ) has positive roots τ ∈ I for some n ∈ N, there exists at
least one root satisfying

dSn

dτ
(τ ) > 0.

Using Proposition 4, we can conclude the existence of a Hopf bifurcation as stated
in the next theorem.

Theorem 8. Assume that µ, k > 0, condition (11) is satisfied and (22) holds true.

(i) If the function S0(τ ) has no positive root in I, then the steady-state (Q∗, M∗, E∗)
is locally asymptotically stable for all τ ≥ 0.

(ii) If the function S0(τ ) has at least one positive root in I, then there exists τ ∗ ∈ I
such that the steady-state (Q∗, M∗, E∗) is locally asymptotically stable for 0 ≤
τ < τ ∗ and becomes unstable for τ ≥ τ ∗, with a Hopf bifurcation occurring
when τ = τ ∗, if and only if

∂h
∂z

(ω2(τ ∗), τ ∗) > 0.

The bifurcation diagram given in Fig. 2 describes the situation of Theorem 8
(ii). A Hopf bifurcation occurs for a certain value of τ (τ = 1.4 day), destabiliz-
ing the system. A stability switch that is not predicted by Theorem 8 occurs for
a larger value of the time delay (τ = 2.82 days). These results are detailed in the
next section, where we illustrate the results established in Theorem 8. We show,
in particular, that our model can exhibit long-period oscillations, compared to the
delay, that can be related to experimental observations in patients with periodic
chronic myelogenous leukemia.

4. Numerical illustrations: Long-period oscillations

Let us assume that the introduction of resting cells in the proliferating phase is
only triggered by the growth factor concentration E(t), that is β = β(E(t)). This
assumption is based on the hypothesis made by Bélair et al. (1995) for an erythro-
poiesis model. It describes, for example, the fact that the cell population may only
react to external stimuli and cannot be directly sensitive to its own size. We assume
that β is given by
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Fig. 2 Bifurcation diagram. With parameters given by Table 1, values of the steady states Q∗, M∗,
and E∗ are drawn for τ ∈ [0, τmax), with τmax = 2.99 days. The upper line is for M∗, the middle one
for Q∗, and the lower one for E∗ (the scale for E∗ is given on the right vertical axis). When τ =
2.99, E∗ ≈ 2346 but we have stopped the scale on the vertical axis at 25 to improve the illustration
clarity. When τ is close to zero, the steady states are stable, and a Hopf bifurcation occurs for
τ = 1.4 day. Then, the steady states become unstable. A stability switch (whose existence is not
established by Theorem 8) stabilizes the steady states for τ ≥ 2.82 days.

β(E) = β0
E

1 + E
, β0 > 0.

The functions g and f are defined by

g(Q) = GQ with G > 0,

and

f (M) = a
1 + KMr

, a, K > 0, r > 0.

This latter function often occurs in enzyme kinetics. It has been used by Mackey
(1978, 1979) to describe the rate of introduction in the proliferating phase and by
Bélair et al. (1995) to define the feedback from the blood to the growth factor
production.

With these choices for the functions β, g, and f , our model involves 10 parame-
ters, including the delay τ . Most of the values of these parameters can be found in
the literature. The values we used are listed in Table 1.
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According to Mackey (1978) and Pujo-Menjouet and Mackey (2004), the rate
of differentiation and death of hematopoietic stem cells is about 0.05 per day.
Considering that mortality of hematopoietic stem cells is very low, we choose
δ = 0.01 day−1 and G = 0.04 day−1, so δ + G = 0.05 day−1. The stem cells apop-
tosis rate γ is given by Mackey (1978) and Pujo-Menjouet and Mackey (2004). We
choose γ = 0.2 day−1.

In Bélair et al. (1995) and Mahaffy et al. (1998), the authors claim that the mor-
tality rate of mature blood cells µ ranges from 0.001 to 0.1 per day. In our simula-
tions, we use the value µ = 0.02 day−1 to fit the model with experimental data.

The coefficient β0 represents the maximum rate of introduction in the prolif-
erating phase and also the value of β ′(0). It strongly depends on the nature of
the growth factor. Using data about erythropoiesis Mackey (1997), we choose
β0 = 0.5 day−1, which is less than the maximal rate of introduction proposed by
Mackey (1978), but seems sufficiently large for erythropoiesis modelling.

The coefficients of the function f and the disappearance rate k are given by
Bélair et al. (1995) and Mahaffy et al. (1998), according to Erslev (1990, 1991). So
we use k = 2.8 day−1 and a = 6570, K = 0.0382 and r = 7.

With the above choices for the functions β, g, and f , we can explicitly compute
the steady-states of system (4), Q∗, M∗, and E∗. In particular, one can check that
condition (6) holds true. Condition (13) becomes

(δ + G)(a + k) < β0a and 0 ≤ τ <
1
γ

ln
(

2β0a
(δ + G)(a + k) + β0a

)

:= τmax.

We set

α(τ ) = 2e−γ τ − 1 for τ ∈ [0, τmax).

The function α is positive and decreasing on [0, τmax) and satisfies

(δ + G)(a + k)
aβ0

< α(τ ) ≤ 1 for τ ∈ [0, τmax).

The steady-states of (4) are then defined by

Q∗ = µ

G
1

K1/r

(
aβ0α(τ ) − (δ + G)(a + k)

k(δ + G)

)1/r

,

M∗ = G
µ

Q∗,

E∗ = δ + G
β0α(τ ) − (δ + G)

.

For τ ∈ [0, τmax), Q∗ and M∗ are decreasing with

0 < Q∗ ≤ µ

G
1

K1/r

(
aβ0 − (δ + G)(a + k)

k(δ + G)

)1/r
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and

0 < M∗ ≤ 1
K1/r

(
aβ0 − (δ + G)(a + k)

k(δ + G)

)1/r

,

and E∗ is increasing with

δ + G
β0 − (δ + G)

≤ E∗ <
a
k
.

For the parameters given in Table 1, the steady-states are drawn on the interval
[0, τmax) in Fig. 2. In this case, τmax = 2.99 days.

The coefficients A, B, C, and D, defined in (15), become

A = δ + G + β(E∗) > 0, C = β ′(E∗)Q∗ > 0,

B = 2e−γ τ β(E∗) > 0, D = 2e−γ τ β ′(E∗)Q∗ > 0,

and are all strictly positive. The coefficient G is constant and H is still given by
H = − f ′(M∗) > 0. One can also check that E∗ is the unique solution of

(
2e−γ τ − 1

)
β (E∗) = δ + G.

Thus,

A= B = (δ + G)
α(τ ) + 1

α(τ )
.

In particular, we deduce that

b1(τ ) = µ2 + k2 > 0,

b2(τ ) = µ2k2 + 2GH [C(µ + k + A) − AD] ,

b3(τ ) = GH(D − C) (2µkA− GH(C + D)) .

One can notice that b1 is now independent of the delay τ . Moreover, since b1 > 0,
the polynomial function h, defined in (25), has strictly positive roots if and only if
(see Lemma 5 and Lemma 6) b3(τ ) < 0 or b3(τ ) ≥ 0, b2(τ ) < 0 and

2�(τ )z0(τ ) + b1(τ )b2(τ ) − 9b3(τ ) > 0.

Using Maple 9, we compute the coefficients b2 and b3 for the values in Table 1.
Results are presented in Fig. 3. Since b3 < 0 on [0, 2.92) and b2 is always posi-
tive, h has positive roots if and only if τ ∈ I := [0, 2.92). In this case, h has exactly
one positive root for each τ ∗ ∈ [0, 2.92), denoted by z∗, and, since h(0, τ ) < 0, z∗

satisfies

∂h
∂z

(z∗, τ ∗) > 0.
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Fig. 3 Coefficients b2(τ ) (left) and b3(τ ) (right) are represented for τ ∈ [0, τmax) with τmax = 2.99.

The function S0 is drawn for τ ∈ I = [0, 2.92) in Fig. 4. One can see that there are
two critical values of the delay τ for which stability switches occur. In particularly,
from Theorem 8, a Hopf bifurcation occurs when τ is approximately equal to 1.4.
Thus, periodic solutions appear.

In Fig. 4, one can also check that S1 has no positive root on I. Therefore, there
exist only two critical values of the delay for which stability switches occur, τ = 1.4
and τ = 2.82 days.

Using dde23 Shampine and Thompson (2001), a MATLAB solver for delay dif-
ferential equation, we can compute the solutions of (4) for the above mentioned
values of the parameters. Illustrations are showed in Figs. 5–7.

Before the Hopf bifurcation occurs, solutions are stable and converge to the
equilibrium, although they oscillate transiently (see Fig. 5). When the bifurcation
occurs, periodic solutions appear with periods about 100 days (see Fig. 6). These
are very long periods compared to the delay τ (the cell cycle duration), which is
about 1.4 day.

When τ increases, longer periods oscillations exist. For τ = 2.82 days, a stability
switch occurs: the steady-state becomes asymptotically stable again and solutions
converge to the equilibrium (see Fig. 7).

5. Periodic hematological diseases

Periodic hematological diseases Haurie et al. (1998) represent one kind of diseases
affecting blood cells. They are characterized by significant oscillations in the num-
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Fig. 4 Graphs of the functions S0(τ ) and S1(τ ). Left: Graph of the function S0(τ ) for τ ∈ [0, τmax)
with parameters given by Table 1, and τmax ≈ 2.99. Two critical values of τ , for which stability
switches can occur, appear. Right: Graph of the function S1(τ ) for the same values; the function
has no positive root.
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Fig. 5 Solutions Q(t) (solid line), M(t) (dashed line) and E(t) (dotted line) of (4) are asymp-
totically stable and converge to the steady-state values. Damped oscillations can be observed.
Parameters values are given by Table 1, with τ = 0.5.

ber of circulating cells, with periods ranging from weeks (19–21 days for cyclical
neutropenia Haurie et al. (1998)) to months (30–100 days for chronic myelogenous
leukemia Haurie et al. (1998)) and amplitudes varying from normal to low levels
or normal to high levels, depending on cell types. Because of their dynamic char-
acter, periodic hematological diseases offer an opportunity to understand some of
the regulating processes involved in the production of blood cells.

Some periodic hematological diseases involve only one type of blood cells, for
example, red blood cells in periodic autoimmune hemolytic anemia Bélair et al.
(1995) or platelets in cyclical thrombocytopenia Santillan et al. (2000). In these
cases, periods of the oscillations are usually between two and four times the cell cy-
cle duration. However, other periodic hematological diseases, such as cyclical neu-
tropenia Haurie et al. (1998) or chronic myelogenous leukemia Fortin and Mackey
(1999), show oscillations in all of the circulating blood cells, i.e., white blood cells,
red blood cells, and platelets. These diseases involve oscillations with quite long
periods (on the order of weeks to months). A destabilization of the pluripotential
stem cell population induced by growth factors seems to be at the origin of these
diseases.

Recently, Pujo-Menjouet and Mackey (2004) and Pujo-Menjouet et al. (2005)
considered models for the regulation of stem cell dynamics, based on the model of
Mackey (1978, 1979), and noticed that long-period oscillations could be observed
in hematopoiesis models. These long-period oscillations were obtained without
taking into account the influence of growth factors on the regulation process, and
for values of the parameters that are not so consistent with experimental data.
Adimy et al. (2005b,c) analyzed a model of hematopoietic stem cells regulation
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Fig. 6 When τ = 1.4, a Hopf bifurcation occurs and periodic solutions appear, with the same
period for the three solutions Q(t) (solid line), M(t) (dashed line), and E(t) (dotted line) of (4).
Periods are about 100 days. Parameters values are given by Table 1.

with a nonconstant cell cycle duration and established the existence of long-period
oscillations (in the order of 70 days) when applying their model to the case of
chronic myelogenous leukemia Fortin and Mackey (1999). However, longer pe-
riods oscillations could not be obtained in their model without using nonrealistic
values of the parameters.

In this work, we have taken into account the role of growth factors on the
regulation of the hematopoietic stem cell population. We have been able to ob-
tain very long-period oscillations, in the order of 100 days, for very short cell cy-
cle durations (less than 2 days). This may be compared to oscillations observed
by Umemura et al. (1986) and Morley et al. (1967) with periods more than 80
and 100 days, respectively, for cases of chronic myelogenous leukemia. To our
knowledge, up to now all other mathematical models of hematopoiesis have not
been able to produce such long-period oscillations with reasonable data (espe-
cially for cell cycle durations and introduction rates). Our results indicate that
growth factors and, in particular the destabilization of the feedback loop from
blood to growth factors, may be considered as primarily responsible for such
oscillations.

Our model still needs some improvements, in particular to take into account
the influence of nonconstant cell cycle durations (see Adimy et al. (2005b,c)).
One can notice that by assuming that the cell cycle duration is constant, values
of τ for which a nontrivial steady-state exists are limited and cannot be too large.
This does not appear in a model with distributed delay, as studied by Adimy et
al. (2005b,c). Moreover, the long-period oscillations observed in Fig. 6 could de-
scribe other hematological diseases (cyclic pancytopenia, for example, for which
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Fig. 7 When τ = 2.9, the steady-state is asymptotically stable and solutions Q(t) (solid line),
M(t) (dashed line) and E(t) (dotted line) of (4) converge to the equilibrium. Parameter values are
given by Table 1.

oscillations with periods about 100 days have been reported by Birgens and Karl
(1993)). This phenomenon probably needs further analysis.

Appendix A: Bounded solutions of system (4)

Assume that limQ→∞ β(Q, E) = 0, for all E ≥ 0, and that δ + g′(0) > 0. Then the
solutions of system (4) are bounded.

We first concentrate on the solution E(t). Using a classical variation of constant
formula, we obtain, for t ≥ 0,

E(t) = e−kt E(0) + e−kt
∫ t

0
eks f (M(s)) ds.

Since the function f is decreasing and bounded, we have

E(t) ≤ e−kt E(0) + f (0)
k

(1 − e−kt ) ≤ max
{

E(0),
f (0)

k

}

.

Consequently, E(t) is bounded.
Now we focus on the solution Q(t). If Q is bounded then the mapping t �→

g(Q(t)) is bounded so we will obtain that M(t) is bounded using similar arguments
than for the above case.
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Let C > 0 be a bound of E and assume that limQ→∞ β(Q, E) = 0, for all E ≥ 0,
and that δ + g′(0) > 0. Then, since the mapping Q �→ β(Q, C) is decreasing, there
exists Q0 ≥ 0 such that

2e−γ τ β(Q, C) < δ + g′(0), for Q > Q0.

We then set

Q1 := 2e−γ τ β(0, C)Q0

δ + g′(0)
.

Let Q ≥ Q1 be fixed and let 0 ≤ y ≤ Q. If y ≤ Q0, then

2e−γ τ β(y, C)y ≤ 2e−γ τ β(0, C)Q0 = (δ + g′(0))Q1 ≤ (δ + g′(0))Q.

On the other hand, if y > Q0, then

2e−γ τ β(y, C)y < (δ + g′(0))y < (δ + g′(0))Q.

Thus,

2e−γ τ max
0≤y≤Q

β(y, C)y ≤ (δ + g′(0))Q, for Q ≥ Q1.

We assume now, by contradiction, that lim sup Q(t) = +∞. Then there exists t0 >

τ such that

Q(t) ≤ Q(t0), for t ∈ [t0 − τ, t0], and Q(t0) > Q1.

Since the function E �→ β(Q, E) is increasing, we deduce, from (1), that

Q′(t0) ≤ g′(0)Q(t0) − g(Q(t0)) − β(Q(t0), E(t0))Q(t0) < 0.

We obtain a contradiction so Q is bounded.

Appendix B: Local asymptotic stability of the trivial equilibrium:
Proof of proposition 3

Let us recall that the trivial steady-state of system (4) is locally asymptotically sta-
ble if all roots of Eq. (17) have negative real parts and that it is unstable if roots
with positive real parts exist.

Roots of (17) are λ = −µ < 0, λ = −k < 0, and the roots of

λ + A− Be−λτ = 0, (B.1)

with

A= δ + g′(0) + β(0, f (0)/k) > 0, and B = 2e−γ τ β(0, f (0)/k) > 0.
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Then we focus on the roots of (B.1).
We also recall that condition (11) is equivalent to B > A and condition (12) is

equivalent to A> B.
First notice that, when τ = 0, λ = B − A so λ > 0 if condition (11) holds and

λ < 0 if condition (12) holds.
Let τ > 0 be fixed. Setting ν = λτ , the characteristic Eq. (B.1) is equivalent to

(ν + Aτ )eν − Bτ = 0.

From Hayes (1950), we know that Re(ν) < 0 if and only if

Aτ > −1, Aτ − Bτ > 0, and Bτ < ζ sin(ζ ) − Aτ cos(ζ ),

where ζ is the unique solution of

ζ = −Aτ tan(ζ ), ζ ∈ (0, π).

Since A> 0 and τ > 0, condition Aτ > −1 is satisfied.
If we assume that condition (12) holds, then A> B so Aτ − Bτ > 0. By con-

tradiction, suppose that Bτ > ζ sin(ζ ) − Aτ cos(ζ ). Then, from the definition
of ζ ,

Bτ > − Aτ

cos(ζ )
.

Since A>B>0, it follows that

1 > − 1
cos(ζ )

.

Consequently, cos(ζ ) > 0 and ζ ∈ (0, π/2). We deduce that tan(ζ ) > 0 so

−Aτ tan(ζ ) < 0 < ζ.

This gives a contradiction. Therefore Bτ < ζ sin(ζ ) − Aτ cos(ζ ), and all roots of
(B.1) have negative real parts. The trivial steady-state is then locally asymptotically
stable for all τ > 0.

Assume now that condition (11) holds. Then A< B and Aτ − Bτ < 0. Conse-
quently, for all τ > 0, (B.1) has roots with nonnegative real parts and the trivial
steady-state is unstable.

Appendix C: Proof of lemma 6

Let τ be given such that b3(τ ) ≥ 0. We do not mention, in the following, the de-
pendence of the coefficients bi on τ .

We have
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� ≥ 0 if and only if b2
1 ≥ 3b2.

If b2 < 0, this result holds true. Otherwise, it is necessary that b2
1 ≥ 3b2. In this

latter case, if b1 < 0, then z0 > 0 and, if b1 ≥ 0, then z0 > 0 if and only if b2 < 0.
Therefore z0 > 0 if and only if

b2 < 0 or b1 < 0 ≤ b2 <
b2

1

3
. (C.1)

Under the assumption (C.1), h′, given by

h′(z) = 3z2 + 2b1z + b2,

has two roots,

z− = −1
3

(b1 + d) and z+ = −1
3

(b1 − d)

with z− < z+ and d =
√

b2
1 − 3b2 (in fact z+ = z0 > 0). A simple computation gives

h(z+) = 2
27

(
b3

1 − d3) − b1b2

3
+ b3.

Noticing that

b3
1 − d3 = (b1 − d)

(
2b2

1 − 3b2 + b1d
) = −3z+

(
b2

1 + b1d + d2),

we obtain

h(z+) < 0 ⇔ 2
3

z+
(
b2

1 + b1d + d2) + b1b2 − 3b3 > 0.

Moreover,

b2
1 + b1d + d2 = d2 + b1(b1 + d) = d2 − 3b1z−.

So

h(z+) < 0 ⇔ 2
3

d2z+ − 2b1z+z− + b1b2 − 3b3 > 0.

Since z+z− = b2/3, we eventually obtain

h(z+) < 0 ⇔ 2d2z+ + b1b2 − 9b3 > 0.

This ends the proof.
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