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Some Recent Developments of the
Bartnik Mass

Pengzi Miao*

Abstract

We report some recent developments of the Bartnik mass. In particular, we describe
an evolution formula of the Bartnik mass of a family of closed surfaces evolving in a
given manifold with nonnegative scalar curvature. We also discuss an upper bound
of the Bartnik mass when the surface is isometric to a round sphere but is allowed
to have arbitrary positive mean curvature.
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1 Scalar curvature and the ADM Mass

Let (M, g) be a Riemannian manifold. The scalar curvature R of (M, g), in any
coordinate chart, can be written as

R =09,(X") +Q(dg,09), (1.1)
where
X' = g"g™* (05916 — Dug;n), (1.2)

and Q(dg, dg) denotes some quantity that is quadratic in the coordinate derivatives
of the metric coefficients. Though {X*} is not a geometric quantity, the presence of
the divergence term in (1.1) still leads to many interesting geometric consequences.
For instance, it explains why the Euler-Lagrange equation of the Einstein-Hilbert

functional
/ R dV
M

is an equation of second order instead of fourth order.
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A Riemannian 3-manifold (M, g) is said to be asymptotically flat (with one
end) if there exists a compact set K C M such that M \ K is diffeomorphic to
R3\ B1(0) and, in the standard coordinates in R?, the metric g satisfies

l9i5 — 8i3] = Ol=[71), 18gi;| = O(|z|7%), 100gi;| = O(|| %),  (1.3)

where 0 denotes the usual partial derivative operator on R3.

Given an asymptotically flat manifold (M, g), one can consider the formula
(1.1) in a coordinate chart that defines the asymptotically flatness of (M, g). One
is naturally led to the limit of the flux integral

lim X v do, (1.4)

"= J|z|=r

where v is the Euclidean outward pointing unit normal to the coordinate sphere
{]z| = r} and do is the Euclidean surface measure. By (1.3), one has

lim X vdo= hmj{ > (0;9i; — Digs;)v* do. (1.5)
|z|=r

T — 00 ‘I‘:’I‘ T— 00 ’LJ

The total mass of (M, g) ([1]) is defined by

mapm(g) = lim ﬁl > (9i9i — Digjj)V' do. (1.6)

7—00 167‘(
4]

One sees immediately that mapas(g) is well defined if R € L*(M). The fact
that mapa(g) is independent of the choices of the rectangular coordinates and of
exhaustion of M used to define the limit was shown in [2], [11].

The Positive Mass Theorem ([21], [23]) in its simplest form is

Theorem 1.1. Let (M, g) be a complete, asymptotically flat 3-manifold with non-
negative scalar curvature. The total mass of (M, g) satisfies

mapm(g) =0,

and mapum(g) = 0 if and only if (M,g) is isometric to the Fuclidean space
(R3,6;5).

2 The Bartnik mass and static metrics

There have been many approaches ([20], [13], [9], [10], [3], [14], [8], [15], etc)
towards defining a quasi-local mass of a bounded region {2 in an asymptotically
flat 3-manifold (M, g). In [3], a variational definition was proposed by Bartnik.

Definition 2.1. Let PM denote the set of all asymptotically flat 3-manifolds
(M, g) with nonnegative scalar curvature such that (M,g) has no closed minimal
surfaces. Let (M,g) € PM and Q C (M, g) be a bounded, connected region with
connected boundary Q. Let PM(Q) denote the set of (M,§) € PM such that Q
embeds isometrically into (M,g) The Bartnik mass is defined by

mp(Q) = nf{mapu(g) | (M,g) € PM(Q)}. (2.1)
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The condition that (M, g) € PM has no closed minimal surfaces is imposed
to exclude examples which hide 2 inside an arbitrarily small neck, which would
make mp(Q) trivially zero. A modification of mp(€2) was given in [14] to allow
PM to contain manifolds with outermost minimal surface boundary .

The first immediate consequence of (2.1) is the monotonicity of the Bartnik
mass: if Q1 C Qo, then mp(Q1) < mp(Q2). The non-negativity of mp(Q) follows
directly from the Positive Mass Theorem. The strict positivity of mp(2) was
shown in [14] with a slightly weaker rigidity conclusion that if mpg(2) = 0, then Q
is locally flat. It was also shown in [14] that, if {§2;}32; is an exhaustion sequence
of (M, g) € PM, then lim; . mp(2;) = mapn(g).

Although in many respects the definition of mp () is quite satisfactory, it is
not constructive. Hence it is necessary to determine computational methods. The
following conjecture ([3], [14]) is the key to the computability of mp ().

Static Extension Conjecture

The infimum mp () is realized by a unique, asymptotically flat 3-manifold
(M*,g%) with boundary OM such that OM is isometric to O, g° is a static
metric in the interior of M®, and the mean curvature of M agrees with the mean
curvature of 082 under the boundary isometry.

A Riemannian metric g is called static if there is a (positive) function N
such that the warped Lorentzian metric

Gg=—-N2dt’ +¢ (2.2)
is a solution to the Vacuum Einstein Equation, i.e. Ric(g) = 0. Equivalently, ¢ is
static if the pair (g, V) satisfies the coupled system

{ NRic(g) = V2N

AN — o, (2.3)

where Ric(g) is the Ricci curvature of g, V2N and AN denote the Hessian and
Laplacian of N with respect to g. The function N is called the static potential of
g. For example, as the 4-dimensional Schwarzschild spacetime metric

2
gg_—<1——m)dt2+
r 1

(where dw? is the round metric on the unit sphere S? C R?) satisfies Ric(g,) = 0,
the 3-dimensional spatial Schwarzschild metric

dr? 4 r?dw? (2.4)

2m
kA

1
g5 = o dr? + r?dw? (2.5)

. . . . . . o 2
is static with the static potential given by N = /1 — ==,

The Riemannian Penrose inequality ([8], [14]) provides examples where the
static extension conjecture holds for the modified Bartnik mass [14]. Other evi-
dence supporting the conjecture comes from the result in [12] on scalar curvature
deformation and the critical point analysis for the total mass functional in [5], [7].
Partial result on the existence of a static metric extension for small perturbation
of Euclidean balls were given in [16].
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3 Evolution of the Bartnik mass

Let (M, g) € PM and let {3;} be a family of closed 2-surfaces evolving in (M3, g)
according to the equation

0X
= 1
o (3.1)

where v is the outward pointing unit normal to ¥; and 7 is the speed. For each ¢,
let §2; be the region enclosed by X;. Assume the static extension conjecture holds,
the Bartnik mass m ;) is then determined only by the induced metric on ¥; and
the mean curvature of ¥; in ;. For this reason, one writes mp(Q2:) as mp(3;).

Under the assumption that the static extension conjecture holds, the follow-
ing evolution formula of mp(3;) is derived in [6].

Theorem 3.1. Assume the static extension conjecture holds, the Bartnik mass
mp(Xt) satisfies

d _ 1 S S 2
G0 = 1o NG I 1 (32)

where dy is the surface measure of the induced metric on X, R is the scalar
curvature of (M, g), N7 is the static potential of the unique static extension of ¥y,
I; and 117 denote the second fundamental form of ¥y in (M, g) and in the static
extension.

Integrate (3.2) and apply the co-area formula, one has the following corollary.

Corollary 3.1. Assume the static extension conjecture holds. Suppose {¥:}
evolves with a positive speed. For any ta > ti, the Bartnik mass of ¥, and
3¢, are related by

1
ma(S) = ma(Sn) = 7= [ NRAIIE IR dv,  33)
Y

= Tom -
where Uy, 1,1 s the region between Xy, and Xy, .
The interesting feature about (3.3) is that, although the integrand
G = NP(R+ |7 — 11,)?) (3.4)

defines a function on Q, +,) through the foliation {¥;}, <1<t,, the integral

/ G dv, (3.5)
Q

t1,t2]

is foliation independent.
To derive (3.2), the following lemma derived in [7] plays a key role.
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Lemma 3.1. Let (M?3,§) be an asymptotically flat manifold with boundary .
Consider the functional

H(g,N) =16mmapr(g) — /M NR dV, (3.6)

defined for (g, N) € G x N, where G is the space of asymptotically flat metrics on
M and N is the set of functions on M that approaches 1 at the infinity of M.
Then, at (g, N) € Gx N, the linearization of H(-,-) with respect to its first variable
is given by

DyH(3. N)() == [ (DRlg)"(N)+ 5N Ro.h) dV,

+£K%NWWM—MW&m+ﬂmMmdM
(3.7)

where DR(g)* is the formal L? dV,-adjoint of the linearization of the scalar cur-
vature map R at g, v is the co-pointing unit normal to ¥ in (M, g), V,N is the
directional derivative of N along v, trsh is the trace of h|s, which is the restric-
tion of h to X, II denotes the second fundamental form of ¥ in (M, g), defined by
Mg = (Vo,v,03) and DH(h) is the linearization of the mean curvature H of X.

We explain how (3.2) is derived from (3.7). Assume the static extension
conjecture holds. For each ¥, € (M, g), there is a unique static extension (M;’, ;')
with boundary OM;> = ¥; such that

mapm(g)) = mp(St) (3.8)

and
gf|2t = g|2t7 Hzgg = Ht? (39)

where g7|s,, g|s, denote the induced metric on ¥, in (M}, g7), (M, g), and H,
H, denote the mean curvature of ¥, in (M}, g7), (M, g).

Let N} be the static potential of (M, g7). As g7 has zero scalar curvature,
one has

H(g? ,N2) = 16mmapar(gd) = 16mmp(3,). (3.10)
Therefore

d d
16”@”13(20 = aH(gfaNtS)
= DyH(gy, NP)(RY), (3.11)

where the last equality holds because R(gy) = 0, and

d
hY = ng (3.12)
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denotes the variation of the family of the static metrics {g’}. It follows from
(3.11), (3.7) and the fact DR(g7)*(N) = 0 ([12]) that

d
167T£m8(2t) Z% (VNS (trs, hy) dp
=

— ¢ NP[RP|s, 107) + 2DH (h{)] dpue, (3.13)
=

where v is the co-pointing unit normal to ¥ in (M}, g7), IIY is the second fun-
damental form of ¥y in (M7, g?), and du; is the surface measure on X;.
Applying the geometric boundary condition (3.9), one has

d d
hils, = T (gs,), DH(RY) = EHt' (3.14)

On the other hand, the following formulas governing the evolution of g|s, and H;
are well known

d
7 (l=.) = 2, (3.15)

and J
G He= =D — (I + Ric(n,n))n, (3.16)

where II; is the second fundamental form of ¥; in (M, g), n is the oo-pointing unit

normal to ¥; in (M, g) and Ric(n,n) is the Ricci curvature of (M, g) along n.
Plug (3.14), (3.15) and (3.16) into formula (3.13), one has

d
16#%7713(20 - j{ 20Hy(VyNP) = NP 20(IL, 117 dpse
b

+ 4 2N B+ (P + Ricln,m)aldi. (317)
b
Integrating by parts,

d
16W%m3(2t) - % 20[As, NP + Hi(V,N7) — N (17 1L,)] dpue
b

+ 7( (T2 + Ric(n, n))NS dus. (3.18)
PO
To proceed, one makes use of the following identity ([17])

As, N + HS (V,N?) + Ric} (v,v)N =0, (3.19)

where Ric; (v,v) is the Ricci curvature of (M, g7) along v. Applying the mean
curvature matching condition H; = Hy, one has

As, NP + H(V,Nf) = —Ric; (v,v)N?. (3.20)
Therefore, the right side of (3.18) is reduced to

f 2N {—Ric} (v,v) — (117, 11;) + [IL,|* + Ric(n,n)} dp. (3.21)
)
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Finally, one applies the Gauss equation to ¥; in (M, g) and in (M}, g7) to get
2K; = R — 2Ric(n,n) + H? — |TT;|? (3.22)

2K; = 0 — 2Ric; (v,v) + (H)* — [T %, (3.23)

where K is the Gaussian curvature of ;. After applying the mean curvature
matching condition H; = H; again, one has

1
Ric(n,n) — Ric? (v,v) = §(R + [P — |TL|%). (3.24)
One concludes
d
IGWEmB(Et)
:fan{—2<Hf,Ht>+2|Ht|2+R+ 77 = T} dp
b

- 74 NS (R + |1 — 102} dpe. (3.25)
>

4 An upper bound of the Bartnik mass

In this section we discuss an upper bound of mp(Q2) under the assumption that
0 is isometric to a round sphere.

In general, if 9€) has positive Gaussian curvature, one can isometrically embed
99 into R? as a convex surface by the Weyl embedding theorem ([19]). The Brown-
York mass ([9]) of 99 is then defined by

miy (09) = 5§ (Ho—H) dp (4.1)

™

where H, Hy is the mean curvature of 9§ in Q, R3 respectively. If Q has nonneg-
ative scalar curvature, it was shown in [22] that mpy (092) > 0 and equality holds
if and only if €2 is isometric to a Euclidean domain. In fact, the method and result
in [22] directly implies that

In the special case when 0f2 is isometric to a round sphere, one has a refined
estimate of mp(2) ([18]).

Theorem 4.1. Suppose 0X) is isometric to a round sphere and has positive mean
curvature H, then

09 1 2
ms() <\ o7 [1 167109 (]{Z Hd“) ] ’ (43)

where |09 is the area of OS2.




338 Pengzi Miao

This bound is sharp when 92 has constant mean curvature. A similar but
weaker estimate was given in [4] (Theorem 8 in Section 5) where ‘8—19‘ ($o H du)2
is replaced by |9 mingg H2.

The proof of (4.3) is a slight modification of the proof in [22]. The main
idea is as follows. Suppose 95 is isometric to a round sphere of radius ro in R3.
Consider a 3-dimensional spatial Schwarzschild manifold

s—dr? + r’dw?), (4.4)

T

(M3, 5) = ([2m.50) x 5, -

where m is chosen in (—o0, 47). One identifies 92 with the spherically symmetric
coordinate sphere {r = ro} in (M2, g>). Write the metric g outside ¥ as

g3 =dp* + g,, (4.5)

where p is the distance to ¥. Following [22], one considers a function u defined on
M} outside ¥ such that the warped metric

g* =v’dp” + g, (4.6)

has zero scalar curvature and the mean curvature of ¥ with respect to g* agrees
with H, the mean curvature of ¥ = 9Q in Q. As (M}, g5)) is static, one considers
its static potential function N, given by

2
N=4/1-22 (4.7)
r
A key observation is that
N(HS — H") du (4.8)
EP

is monotone decreasing as p — oo and

lim ¢ N(H® — H") du = 8r(mapn(g®) —m), (4.9)

—00
P =,

where H®, H* denote the mean curvature of the distance level set ¥ p With respect
to g5, g% respectively. Note that when m = 0, the above is reduced to the original
monotonicity in [22]. Thus, at ¥ one has

NI = 1) du> Semapu(s") = m). (4.10)
In particular, this implies
m—l——%N ) du = mapnm(g®) = mp(Q). (4.11)
Minimizing the left side of (4.11) over m € (—o0, 179) gives the estimate (4.3).

The following conjecture is motivated by (4.11). If true, it would provide a
natural generalization of (4.2).
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Conjecture 4.1. Suppose O can be isometrically embedded into (M, g), where
(M, g) is an asymptotically flat 3-manifold and g is a static metric. Then the
Bartnik mass mp () satisfies

1
mp(Q) < mapm(g) + o~ N(H® - H) dp, (4.12)
T Joo

where N is the static potential of (M, g), H® and H are the mean curvature of 95
in (M,g) and Q.
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