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Some Recent Developments of the

Bartnik Mass

Pengzi Miao∗

Abstract

We report some recent developments of the Bartnik mass. In particular, we describe

an evolution formula of the Bartnik mass of a family of closed surfaces evolving in a

given manifold with nonnegative scalar curvature. We also discuss an upper bound

of the Bartnik mass when the surface is isometric to a round sphere but is allowed

to have arbitrary positive mean curvature.
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1 Scalar curvature and the ADM Mass

Let (M, g) be a Riemannian manifold. The scalar curvature R of (M, g), in any
coordinate chart, can be written as

R = ∂i(X
i) + Q(∂g, ∂g), (1.1)

where

X i = gilgjk(∂jglk − ∂lgjk), (1.2)

and Q(∂g, ∂g) denotes some quantity that is quadratic in the coordinate derivatives
of the metric coefficients. Though {X i} is not a geometric quantity, the presence of
the divergence term in (1.1) still leads to many interesting geometric consequences.
For instance, it explains why the Euler-Lagrange equation of the Einstein-Hilbert
functional

∫

M

R dV

is an equation of second order instead of fourth order.
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A Riemannian 3-manifold (M, g) is said to be asymptotically flat (with one
end) if there exists a compact set K ⊂ M such that M \ K is diffeomorphic to
R

3 \ B1(0) and, in the standard coordinates in R
3, the metric g satisfies

|gij − δij | = O(|x|−1), |∂gij | = O(|x|−2), |∂∂gij| = O(|x|−3), (1.3)

where ∂ denotes the usual partial derivative operator on R
3.

Given an asymptotically flat manifold (M, g), one can consider the formula
(1.1) in a coordinate chart that defines the asymptotically flatness of (M, g). One
is naturally led to the limit of the flux integral

lim
r→∞

∮

|x|=r

X · ν dσ, (1.4)

where ν is the Euclidean outward pointing unit normal to the coordinate sphere
{|x| = r} and dσ is the Euclidean surface measure. By (1.3), one has

lim
r→∞

∮

|x|=r

X · ν dσ = lim
r→∞

∮

|x|=r

∑

i,j

(∂jgij − ∂igjj)ν
i dσ. (1.5)

The total mass of (M, g) ([1]) is defined by

mADM (g) = lim
r→∞

1

16π

∮

|x|=r

∑

i,j

(∂jgij − ∂igjj)ν
i dσ. (1.6)

One sees immediately that mADM (g) is well defined if R ∈ L1(M). The fact
that mADM (g) is independent of the choices of the rectangular coordinates and of
exhaustion of M used to define the limit was shown in [2], [11].

The Positive Mass Theorem ([21], [23]) in its simplest form is

Theorem 1.1. Let (M, g) be a complete, asymptotically flat 3-manifold with non-
negative scalar curvature. The total mass of (M, g) satisfies

mADM (g) > 0,

and mADM (g) = 0 if and only if (M, g) is isometric to the Euclidean space
(R3, δij).

2 The Bartnik mass and static metrics

There have been many approaches ([20], [13], [9], [10], [3], [14], [8], [15], etc)
towards defining a quasi-local mass of a bounded region Ω in an asymptotically
flat 3-manifold (M, g). In [3], a variational definition was proposed by Bartnik.

Definition 2.1. Let PM denote the set of all asymptotically flat 3-manifolds
(M, g) with nonnegative scalar curvature such that (M, g) has no closed minimal
surfaces. Let (M, g) ∈ PM and Ω ⊂ (M, g) be a bounded, connected region with
connected boundary ∂Ω. Let PM(Ω) denote the set of (M̃, g̃) ∈ PM such that Ω
embeds isometrically into (M̃, g̃). The Bartnik mass is defined by

mB(Ω) = inf{mADM (g̃) | (M̃, g̃) ∈ PM(Ω)}. (2.1)
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The condition that (M, g) ∈ PM has no closed minimal surfaces is imposed
to exclude examples which hide Ω inside an arbitrarily small neck, which would
make mB(Ω) trivially zero. A modification of mB(Ω) was given in [14] to allow
PM to contain manifolds with outermost minimal surface boundary .

The first immediate consequence of (2.1) is the monotonicity of the Bartnik
mass: if Ω1 ⊂ Ω2, then mB(Ω1) 6 mB(Ω2). The non-negativity of mB(Ω) follows
directly from the Positive Mass Theorem. The strict positivity of mB(Ω) was
shown in [14] with a slightly weaker rigidity conclusion that if mB(Ω) = 0, then Ω
is locally flat. It was also shown in [14] that, if {Ωi}∞i=1 is an exhaustion sequence
of (M, g) ∈ PM, then limi→∞ mB(Ωi) = mADM (g).

Although in many respects the definition of mB(Ω) is quite satisfactory, it is
not constructive. Hence it is necessary to determine computational methods. The
following conjecture ([3], [14]) is the key to the computability of mB(Ω).

Static Extension Conjecture

The infimum mB(Ω) is realized by a unique, asymptotically flat 3-manifold
(MS , gS) with boundary ∂M such that ∂M is isometric to ∂Ω, gS is a static
metric in the interior of MS, and the mean curvature of ∂M agrees with the mean
curvature of ∂Ω under the boundary isometry.

A Riemannian metric g is called static if there is a (positive) function N

such that the warped Lorentzian metric

ḡ = −N2dt2 + g (2.2)

is a solution to the Vacuum Einstein Equation, i.e. Ric(ḡ) = 0. Equivalently, g is
static if the pair (g, N) satisfies the coupled system

{

NRic(g) = ∇2N

△N = 0,
(2.3)

where Ric(g) is the Ricci curvature of g, ∇2N and △N denote the Hessian and
Laplacian of N with respect to g. The function N is called the static potential of
g. For example, as the 4-dimensional Schwarzschild spacetime metric

ḡS
m = −

(

1 −
2m

r

)

dt2 +
1

1 − 2m
r

dr2 + r2dω2 (2.4)

(where dω2 is the round metric on the unit sphere S2 ⊂ R
3) satisfies Ric(ḡS

m) = 0,
the 3-dimensional spatial Schwarzschild metric

gS
m =

1

1 − 2m
r

dr2 + r2dω2 (2.5)

is static with the static potential given by N =
√

1 − 2m
r

.

The Riemannian Penrose inequality ([8], [14]) provides examples where the
static extension conjecture holds for the modified Bartnik mass [14]. Other evi-
dence supporting the conjecture comes from the result in [12] on scalar curvature
deformation and the critical point analysis for the total mass functional in [5], [7].
Partial result on the existence of a static metric extension for small perturbation
of Euclidean balls were given in [16].
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3 Evolution of the Bartnik mass

Let (M, g) ∈ PM and let {Σt} be a family of closed 2-surfaces evolving in (M3, g)
according to the equation

∂X

∂t
= ην, (3.1)

where ν is the outward pointing unit normal to Σt and η is the speed. For each t,
let Ωt be the region enclosed by Σt. Assume the static extension conjecture holds,
the Bartnik mass m(Ωt) is then determined only by the induced metric on Σt and
the mean curvature of Σt in Ωt. For this reason, one writes mB(Ωt) as mB(Σt).

Under the assumption that the static extension conjecture holds, the follow-
ing evolution formula of mB(Σt) is derived in [6].

Theorem 3.1. Assume the static extension conjecture holds, the Bartnik mass
mB(Σt) satisfies

d

dt
mB(Σt) =

1

16π

∮

Σt

NS
t (R + |ΠS

t − Πt|
2)η dµ, (3.2)

where dµ is the surface measure of the induced metric on Σt, R is the scalar
curvature of (M, g), NS

t is the static potential of the unique static extension of Σt,
Πt and ΠS

t denote the second fundamental form of Σt in (M, g) and in the static
extension.

Integrate (3.2) and apply the co-area formula, one has the following corollary.

Corollary 3.1. Assume the static extension conjecture holds. Suppose {Σt}
evolves with a positive speed. For any t2 > t1, the Bartnik mass of Σt2 and
Σt1 are related by

mB(Σt2) − mB(Σt1) =
1

16π

∫

Ω[t1,t2]

NS
t (R + |ΠS

t − Πt|
2) dVg , (3.3)

where Ω[t1,t2] is the region between Σt1 and Σt2 .

The interesting feature about (3.3) is that, although the integrand

G = NS
t (R + |ΠS

t − Πt|
2) (3.4)

defines a function on Ω[t1,t2] through the foliation {Σt}t16t6t2 , the integral

∫

Ω[t1,t2]

G dVg (3.5)

is foliation independent.

To derive (3.2), the following lemma derived in [7] plays a key role.
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Lemma 3.1. Let (M3, ĝ) be an asymptotically flat manifold with boundary Σ.
Consider the functional

H(g, N) = 16πmADM (g) −

∫

M

NR dVg (3.6)

defined for (g, N) ∈ G ×N , where G is the space of asymptotically flat metrics on
M and N is the set of functions on M that approaches 1 at the infinity of M .
Then, at (g, N) ∈ G×N , the linearization of H(·, ·) with respect to its first variable
is given by

DgH(g, N)(h) = −

∫

M

〈DR(g)∗(N) +
1

2
NRg, h〉 dVg

+

∮

Σ

{(∇νN)(trΣh) − N [〈h|Σ, Π〉 + 2DH(h)]} dµ,

(3.7)

where DR(g)∗ is the formal L2 dVg-adjoint of the linearization of the scalar cur-
vature map R at g, ν is the ∞-pointing unit normal to Σ in (M, g), ∇νN is the
directional derivative of N along ν, trΣh is the trace of h|Σ, which is the restric-
tion of h to Σ, Π denotes the second fundamental form of Σ in (M, g), defined by
Παβ = 〈∇∂α

ν, ∂β〉 and DH(h) is the linearization of the mean curvature H of Σ.

We explain how (3.2) is derived from (3.7). Assume the static extension
conjecture holds. For each Σt ∈ (M, g), there is a unique static extension (MS

t , gS
t )

with boundary ∂MS
t = Σt such that

mADM (gS
t ) = mB(Σt) (3.8)

and

gS
t |Σt

= g|Σt
, HS

t = Ht, (3.9)

where gS
t |Σt

, g|Σt
denote the induced metric on Σt in (MS

t , gS
t ), (M, g), and HS

t ,
Ht denote the mean curvature of Σt in (MS

t , gS
t ), (M, g).

Let NS
t be the static potential of (MS

t , gS
t ). As gS

t has zero scalar curvature,
one has

H(gS
t , NS

t ) = 16πmADM (gS
t ) = 16πmB(Σt). (3.10)

Therefore

16π
d

dt
mB(Σt) =

d

dt
H(gS

t , NS
t )

= DgH(gS
t , NS

t )(hS
t ), (3.11)

where the last equality holds because R(gS
t ) = 0, and

hS
t =

d

dt
gS

t (3.12)
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denotes the variation of the family of the static metrics {gS
t }. It follows from

(3.11), (3.7) and the fact DR(gS
t )∗(NS

t ) = 0 ([12]) that

16π
d

dt
mB(Σt) =

∮

Σt

(∇νNS
t )(trΣt

hS
t ) dµt

−

∮

Σt

NS
t [〈hS

t |Σt
, ΠS

t 〉 + 2DH(hS
t )] dµt, (3.13)

where ν is the ∞-pointing unit normal to Σt in (MS
t , gS

t ), ΠS
t is the second fun-

damental form of Σt in (MS
t , gS

t ), and dµt is the surface measure on Σt.
Applying the geometric boundary condition (3.9), one has

hS
t |Σt

=
d

dt
(g|Σt

) , DH(hS
t ) =

d

dt
Ht. (3.14)

On the other hand, the following formulas governing the evolution of g|Σt
and Ht

are well known
d

dt
(g|Σt

) = 2ηΠt, (3.15)

and
d

dt
Ht = −△Σt

η − (|Πt|
2 + Ric(n, n))η, (3.16)

where Πt is the second fundamental form of Σt in (M, g), n is the ∞-pointing unit
normal to Σt in (M, g) and Ric(n, n) is the Ricci curvature of (M, g) along n.

Plug (3.14), (3.15) and (3.16) into formula (3.13), one has

16π
d

dt
mB(Σt) =

∮

Σ

2ηHt(∇νNS
t ) − NS

t 2η〈Πt, Π
S
t 〉 dµt

+

∮

Σ

2NS
t [△Σt

η + (|Πt|
2 + Ric(n, n))η]dµt. (3.17)

Integrating by parts,

16π
d

dt
mB(Σt) =

∮

Σ

2η[△Σt
NS

t + Ht(∇νNS
t ) − NS

t 〈Π
S
t , Πt〉] dµt

+

∮

Σt

2η(|Πt|
2 + Ric(n, n))NS

t dµt. (3.18)

To proceed, one makes use of the following identity ([17])

△Σt
NS

t + HS
t (∇νNS

t ) + RicS
t (ν, ν)NS

t = 0, (3.19)

where RicS
t (ν, ν) is the Ricci curvature of (MS

t , gS
t ) along ν. Applying the mean

curvature matching condition HS
t = Ht, one has

△Σt
NS

t + Ht(∇νNS
t ) = −RicS

t (ν, ν)NS
t . (3.20)

Therefore, the right side of (3.18) is reduced to
∮

Σ

2ηNS
t

{

−RicS
t (ν, ν) − 〈ΠS

t , Πt〉 + |Πt|
2 + Ric(n, n)

}

dµ. (3.21)
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Finally, one applies the Gauss equation to Σt in (M, g) and in (MS
t , gS

t ) to get

2Kt = R − 2Ric(n, n) + H2
t − |Πt|

2 (3.22)

2Kt = 0 − 2RicS
t (ν, ν) + (HS

t )2 − |ΠS
t |

2, (3.23)

where Kt is the Gaussian curvature of Σt. After applying the mean curvature
matching condition HS

t = Ht again, one has

Ric(n, n) − RicS
t (ν, ν) =

1

2
(R + |ΠS

t |
2 − |Πt|

2). (3.24)

One concludes

16π
d

dt
mB(Σt)

=

∮

Σ

ηNS
t

{

−2〈ΠS
t , Πt〉 + 2|Πt|

2 + R + |ΠS
t |

2 − |Πt|
2
}

dµt

=

∮

Σ

NS
t (R + |ΠS

t − Πt|
2)η dµt. (3.25)

4 An upper bound of the Bartnik mass

In this section we discuss an upper bound of mB(Ω) under the assumption that
∂Ω is isometric to a round sphere.

In general, if ∂Ω has positive Gaussian curvature, one can isometrically embed
∂Ω into R

3 as a convex surface by the Weyl embedding theorem ([19]). The Brown-
York mass ([9]) of ∂Ω is then defined by

mBY (∂Ω) =
1

8π

∮

∂Ω

(H0 − H) dµ, (4.1)

where H , H0 is the mean curvature of ∂Ω in Ω, R
3 respectively. If Ω has nonneg-

ative scalar curvature, it was shown in [22] that mBY (∂Ω) > 0 and equality holds
if and only if Ω is isometric to a Euclidean domain. In fact, the method and result
in [22] directly implies that

mB(Ω) 6 mBY (∂Ω). (4.2)

In the special case when ∂Ω is isometric to a round sphere, one has a refined
estimate of mB(Ω) ([18]).

Theorem 4.1. Suppose ∂Ω is isometric to a round sphere and has positive mean
curvature H, then

mB(Ω) 6

√

|∂Ω|

16π

[

1 −
1

16π|∂Ω|

(
∮

Σ

Hdµ

)2
]

, (4.3)

where |∂Ω| is the area of ∂Ω.



338 Pengzi Miao

This bound is sharp when ∂Ω has constant mean curvature. A similar but

weaker estimate was given in [4] (Theorem 8 in Section 5) where 1
|∂Ω|

(∮

Σ
Hdµ

)2

is replaced by |∂Ω|min∂Ω H2.
The proof of (4.3) is a slight modification of the proof in [22]. The main

idea is as follows. Suppose ∂Ω is isometric to a round sphere of radius r0 in R
3.

Consider a 3-dimensional spatial Schwarzschild manifold

(MS
m, gS

m) = ([2m,∞) × S2,
1

1 − 2m
r

dr2 + r2dω2), (4.4)

where m is chosen in (−∞, 1
2r0). One identifies ∂Ω with the spherically symmetric

coordinate sphere {r = r0} in (MS
m, gS

m). Write the metric gS
m outside Σ as

gS
m = dρ2 + gρ, (4.5)

where ρ is the distance to Σ. Following [22], one considers a function u defined on
MS

m outside Σ such that the warped metric

gu = u2dρ2 + gρ (4.6)

has zero scalar curvature and the mean curvature of Σ with respect to gu agrees
with H , the mean curvature of Σ = ∂Ω in Ω. As (MS

m, gS
m) is static, one considers

its static potential function N , given by

N =

√

1 −
2m

r
. (4.7)

A key observation is that
∮

Σρ

N(HS − Hu) dµ (4.8)

is monotone decreasing as ρ → ∞ and

lim
ρ→∞

∮

Σρ

N(HS − Hu) dµ = 8π(mADM (gu) − m), (4.9)

where HS , Hu denote the mean curvature of the distance level set Σρ with respect
to gS

m, gu respectively. Note that when m = 0, the above is reduced to the original
monotonicity in [22]. Thus, at Σ one has

∮

Σ

N(HS − Hu) dµ > 8π(mADM (gu) − m). (4.10)

In particular, this implies

m +
1

8π

∮

Σ

N(HS − Hu) dµ > mADM (gu) > mB(Ω). (4.11)

Minimizing the left side of (4.11) over m ∈ (−∞, 1
2r0) gives the estimate (4.3).

The following conjecture is motivated by (4.11). If true, it would provide a
natural generalization of (4.2).
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Conjecture 4.1. Suppose ∂Ω can be isometrically embedded into (M, g), where
(M, g) is an asymptotically flat 3-manifold and g is a static metric. Then the
Bartnik mass mB(Ω) satisfies

mB(Ω) 6 mADM (g) +
1

8π

∮

∂Ω

N(HS − H) dµ, (4.12)

where N is the static potential of (M, g), HS and H are the mean curvature of ∂Ω
in (M, g) and Ω.
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