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ABSTRACT: Knop and Sahi introduced a family of non-homogeneous and non-

symmetric polynomials, Gα(x; q, t), indexed by compositions. An explicit formula

for the bivariate Knop-Sahi polynomials reveals a connection between these poly-

nomials and q-special functions. In particular, relations among the q-ultraspherical

polynomials of Askey and Ismail, the two variable symmetric and non-symmetric

Macdonald polynomials, and the bivariate Knop-Sahi polynomials are explicitly de-

termined using the theory of basic hypergeometric series.

RÉSUMÉ: Knop et Sahi ont introduit une famille de polynômes non-homogènes

et non-symétriques, Gα(x; q, t), indexés par des compositions. L’obtention d’une

formule explicite pour les polynômes de Knop-Sahi en deux variables révèle une

connexion entre ces polynômes et les q-fonctions spéciales. En particulier, des re-

lations entre les polynômes q-ultrasphériques de Askey et Ismail, les polynômes en

deux variables de Macdonald non-symétriques et symétriques, et les polynômes en

deux variables de Knop-Sahi sont déterminées en utilisant la théorie des fonctions

hypergéométriques.
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1. Introduction

Important developments in the theory of symmetric functions rely on the use of the

Macdonald polynomial basis, {Pλ(x1, x2, . . . , xn; q, t)}λ. This basis for the symmetric function

space specializes to several fundamental bases including the Schur, Hall-Littlewood, Zonal,

and Jack. The Macdonald polynomials are eigenfunctions of a family of commuting difference

operators with significance in many-body physics as they appear in the wave function of

a system of relativistic particles on a circle [11]. It has also been conjectured that these

polynomials occur naturally in representation theory of the symmetric group [3].

Difficulty encountered in the study of the Macdonald basis stems in part from the

absence of explicit formulas for these polynomials in terms of a familiar basis. A major

breakthrough in the study of Macdonald polynomials occurred when Knop [5],[6] and Sahi



[12] simultaneously discovered a family of non-symmetric, non-homogeneous polynomials,

Gα(x1, x2, . . . , xn; q, t), whose top homogeneous components yield the non-symmetric version

of the Macdonald polynomials, Eα(x1, x2, . . . , xn; q, t) [2],[7]. These non-symmetric polyno-

mials are then related to the Macdonald polynomials, Pλ(x1, x2, . . . , xn; q, t), by a Hecke

algebra symmetrization [7].

The Knop-Sahi polynomials were originally characterized by elementary vanishing

properties which enabled the verification of nontrivial properties of the Macdonald poly-

nomials. The characterization also gave recursive relations allowing the polynomials to be

constructed rather simply. Particular n-variable Knop-Sahi polynomials have been deter-

mined explicitly as well as the complete solution for the bivariate case [9],[10]. The two

variable formula for the Knop-Sahi polynomials can be used to recover the bivariate Macdon-

ald polynomials Pλ and to yield explicit expansions for the two variable case of the Macdonald

polynomials Eα. We will establish the relation of the Knop-Sahi polynomials in two vari-

ables with the Askey-Ismail [1] q-ultraspherical polynomials and the bivariate symmetric and

non-symmetric Macdonald polynomials.

The following notation will be of use in the presentation of our results; a partition,

λ = (λ1, λ2, . . . , λn), denotes a weakly increasing sequence of non-negative integers, while a

composition is any vector α = (α1, α2, . . . , αn) with non-negative integral components.

2. Monomial expansion for Knop-Sahi polynomials

A precise relation among q-special functions and the bivariate Knop-Sahi polynomials

requires that we first determine an explicit monomial expansion for these polynomials. As

mentioned, the Knop-Sahi polynomials are indexed by compositions, α. An explicit formula

for the two variable Knop-Sahi polynomials in the case α = (n, 0) is stated in [9] as follows:

G(n,0)(x, y; q, t) =
(−1)nq(

n+1

2 )

(t; q)n+1

∑

0≤j+k≤n

(t; q)n−k(t; q)n+1−j(x; q)k(y; q)j

t−(k+j)q−j(k+1)(q; q)k(q; q)j(q; q)n−k−j
(1)

where

(a; q)N = (1 − a)(1− aq) · · · (1 − aqN−1) . (2)

This explicit expression for G(n,0)(x, y; q, t) can be algebraically manipulated into a monomial

expansion for the two variable Knop-Sahi polynomials using the theory of basic hypergeo-

metric series.

THEOREM 1.

G(n,0)(x, y; q, t) =
∑

0≤a+b≤n

(−t)a+bq1/2((a+b)2−a+b)(t2; q)n+1(t; q)a+1(t; q)b

(t2; q)a+b+1(q; q)n−a−b(q; q)a(q; q)b
xayb (3)



Proof The task of manipulating expression (1) into (3) begins by denoting the right

hand side of (1) by Kn, and using the q-binomial expansion to convert the q-shifted factorial

basis into monomials.

Kn =
∑

0≤j+k≤n

tk+jqj(k+1)(t; q)n−k (t; q)n+1−j

(q; q)k (q; q)j (q; q)n−k−j

k
∑

a=0

(q−k; q)a (x qk)a

(q; q)a

j
∑

b=0

(q−j ; q)b (y qj)b

(q; q)b
(4)

Two properties of q-shifted factorials,

(a; q)n−k =
(a; q)n

(q1−n/a; q)k

(

− q

a

)k

q(
k

2)−nk (5)

and

(a; q)n+k = (a; q)n (aqn; q)k , (6)

with the change of variables, k ↔ k + a and j ↔ j + b, are necessary to transform expression

(4) into the following form:

Kn =
∑

0≤j+k+a+b≤n

0≤k & 0≤j

0≤a & 0≤b

(

q(
a

2)+(b

2)+b+ab+j+k (t; q)n−a (t; q)n+1−b

(−t)−a−b (q; q)n−a−b (q; q)a (q; q)b (q; q)j

× (q−n+a+b; q)j(q
j−n+a+b; q)k xa yb

(qb−n/t; q)j(q; q)k(q1−n+a/t; q)k

)

.

(7)

We may remove the restriction j + k + a + b ≤ n since the term (q−n+a+b+j ; q)k will vanish

if k > n − a − b − j.

Adhering to the notation of [4], where

2φ1(a, b; c; q, z) =
∞
∑

i=0

(a; q)i(b; q)i

(c; q)i(q; q)i
zi ,

we use a particular case of the summation identity [4, (1.5.3), App.(II.6)]

2φ1(a, q−N ; c; q, q) =
(c/a; q)N

(c; q)N
aN . (8)

The sum over k in expression (7) is eliminated by application of the case a → 0, i.e.,

2φ1(0, q−N ; c; q, q) =
(−1)N cN q(

N

2 )

(c; q)N
, (9)



with N = n − a − b − j and c = q1−n+a/t.

Kn =
∑

0≤a & 0≤b

0≤j

(

t2a+2b−n+j q−(n

2)+a(n+b−1)+b(b+j)+(j+1

2 ) (t; q)n−a

(qb−n/t; q)j (q1−n+a/t; q)n−a−j−b

× (t; q)n+1−b (q−n+a+b; q)j xa yb

(−1)n−j (q; q)n−a−b(q; q)a (q; q)b (q; q)j

)

.

(10)

Transformation of this expression using another property of q-shifted factorials,

(aq−n; q)n−k =
(q/a; q)n

(q/a; q)k

(

a

q

)n−k

q(
k

2)−(n

2) , (11)

allows further that the sum over j be eliminated by applying summation identity (8) again.

We finally obtain an expression that is easily seen to be the right hand side of expression (3),

Kn =
∑

0≤a

0≤b

(−t)a+bq(a2+2ab+b2+b−a)/2 (t2; q)n+1(t; q)a (t; q)b

(q; q)n−a−b(q; q)a (q; q)b (t2; q)a+b+1
xa yb , (12)

completing the proof of Theorem 1.

3. Knop-Sahi polynomials related to q-special functions

The monomial expansion of the Knop-Sahi polynomials enables us to give their rela-

tion to the q-ultraspherical polynomials and the non-symmetric and symmetric Macdonald

polynomials. Askey and Ismail introduced in [1] a generalization of ultraspherical polyno-

mials called q-ultraspherical polynomials. The explicit representation of these polynomials

is

Cn(cos θ;β|q) =
n
∑

k=0

(β; q)k (β; q)n−k

(q; q)k (q; q)n−k
ei(n−2k)θ . (13)

Macdonald gives [8] an explicit formula for the polynomials Pλ when λ is a one part partition.

Pn(x, y; q, t) =
(q; q)n

(t; q)n

n
∑

k=0

(t; q)k (t; q)n−k

(q; q)k (q; q)n−k
xn−k yk (14)

A preliminary result relating the Macdonald polynomials to the q-ultraspherical polynomials

will be relevant in our efforts to provide their correlation with the bivariate Knop-Sahi poly-

nomials. It seems that this result could be a known result, but for lack of a reference, we will

include a sentence for verification.



THEOREM 2. Defining v1 and v2 to be

v1 = xy , v2 =
x + y

2
√

xy
, (15)

we have

Pn(x, y; q, t) =
(q; q)n

(t; q)n
(v1)

n/2 Cn(v2; t | q) . (16)

Proof The decomposition of these Macdonald polynomials in terms of the q-ultraspherical

polynomials is facilitated by a change of variables made in the q-ultraspherical polynomials,

as defined in (13);

Cn

(

1 + tan θ

2
√

tan θ
;β|q

)

=

n
∑

k=0

(β; q)k (β; q)n−k

(q; q)k (q; q)n−k
(tan θ)

n/2−k
(17)

(this expression can be verified by simple manipulation and the q-binomial formula). The

substitution of tan θ = x/y and β = t in equation (17) then gives that the right hand side of

(16) is exactly the Macdonald polynomial as given in (14).

The Knop-Sahi polynomials in two variables may be expressed as a difference of

symmetric Macdonald polynomials indexed by one part partitions. The basic identity is

stated as follows:

THEOREM 3. If cn,r denotes the coefficient,

cn,r =
(−t)r q(

r

2) (t2; q)n+1

(t2; q)r+1 (q; q)n−r
, (18)

we have

G(n,0)(x, y; q, t) =
n
∑

r=0

(t; q)r

(q; q)r
cn,r (Pr(x, qy; q, t) − t qrPr(x, y; q, t)) . (19)

Proof The proof of this relation requires that we use the monomial expansion for the

bivariate Knop-Sahi polynomials given by Theorem 1. Such an expansion allows us to express

G(n,0)(x, y; q, t) as a sum of homogeneous components in the following manner;

G(n,0)(x, y; q, t) =

n
∑

r=0

(

r
∑

l=0

(−t)r q(
r

2)+l (t2; q)n+1(t; q)r+1−l (t; q)l

(t2; q)r+1 (q; q)n−r(q; q)r−l (q; q)l
xr−l yl

)

. (20)



We then obtain the following identity as a result of factoring out the (r + 1− l)th term from

(t; q)r+1−l:

G(n,0)(x, y; q, t) =
n
∑

r=0

(

r
∑

l=0

(−t)r q(
r

2)+l (t2; q)n+1 (t; q)r−l (t; q)l

(t2; q)r+1 (q; q)n−r(q; q)r−l (q; q)l
(1 − t qr−l) xr−l yl

)

=
n
∑

r=0

(−t)r q(
r

2) (t2; q)n+1

(t2; q)r+1 (q; q)n−r

×
(

r
∑

l=0

(t; q)r−l(t; q)l

(q; q)r−l(q; q)l
xr−l(qy)l − tqr−l

r
∑

l=0

(t; q)r−l(t; q)l

(q; q)r−l(q; q)l
xr−lyl

)

.

(21)

A difference of the Macdonald polynomials as given in (14) appears in the right hand side

of this expression. I.e., we now have that the two variable Knop-Sahi polynomials can be

expressed in terms of symmetric Macdonald polynomials as

G(n,0)(x, y; q, t) =
n
∑

r=0

(−t)r q(
r

2) (t2; q)n+1 (t; q)r

(t2; q)r+1 (q; q)n−r (q; q)r

(

Pr(x, qy; q, t) − t qr−lPr(x, y; q, t)
)

, (22)

precisely as stated in Theorem 3.

We may now provide the final relations among the the bivariate Knop-Sahi polyno-

mials, the non-symmetric Macdonald polynomials, and the q-ultraspherical polynomials.

THEOREM 4. With cn,r as defined in (18), we have

G(n,0)(x, y; q, t) =
n
∑

r=0

cn,r

(

(u1)
r/2 Cr (u2; t|q) − t qr (v1)

r/2 Cr (v2; t|q)
)

(23)

where u1 = qxy , u2 =
x + qy

2
√

qxy
. (24)

and v1 = xy , v2 =
x + y

2
√

xy
. (25)

A similar expansion for the non-symmetric Macdonald polynomials is revealed simultane-

ously since these polynomials are merely the top homogeneous components of the Knop-Sahi

polynomials; i.e., the formula for the non-symmetric Macdonald polynomials in terms of

q-ultraspherical polynomials is obtained simply by letting r = n in Theorem 4.

COROLLARY 1. With u1, u2 as defined in (24) and v1, v2 as in (25), we have

E(n,0)(x, y; q, t) = (−t)n q(
n

2)
(

(u1)
n/2 Cn (u2; t|q) − t qn (v1)

n/2 Cn (v2; t|q)
)

. (26)



Proof of Theorem 4 The determination of the relationship between the bivariate Knop-

Sahi polynomials and the q-ultraspherical polynomials can be achieved by using Theorem 3;

G(n,0)(x, y; q, t) =
n
∑

r=0

(t; q)r

(q; q)r
cn,r (Pr(x, qy; q, t) − t qrPr(x, y; q, t)) , (27)

and substituting the Macdonald polynomials as defined by Theorem 2 into the right hand

side of this expression.
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