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Abstract. The k-Young lattice Y k is a weak subposet of the Young lattice containing partitions whose
first part is bounded by an integer k > 0. The Y k poset was introduced in connection with generalized
Schur functions and later shown to be isomorphic to the weak order on the quotient of the affine
symmetric group S̃k+1 by a maximal parabolic subgroup. We prove a number of properties for Y k

including that the covering relation is preserved when elements are translated by rectangular partitions
with hook-length k. We highlight the order ideal generated by an m × n rectangular shape. This order
ideal, Lk(m, n), reduces to L(m, n) for large k, and we prove it is isomorphic to the induced subposet
of L(m, n) whose vertex set is restricted to elements with no more than k−m+1 parts smaller than m.
We provide explicit formulas for the number of elements and the rank-generating function of Lk(m, n).

We conclude with unimodality conjectures involving q-binomial coefficients and discuss how implications
connect to recent work on sieved q-binomial coefficients.

1. Introduction

The Young lattice Y is the poset of integer partitions given by inclusion of diagrams. This poset
can be induced from the branching rules of the symmetric group, and certain order ideals of Y are in
themselves interesting posets. For example, the induced subposet of partitions whose Ferrers diagrams
fit inside an m × n rectangle satisfies many beautiful properties. These principal order ideals, denoted
L(m, n), are graded, self-dual, and strongly sperner lattices [8]. Further, it is known that the number of
elements pi(m, n) of rank i in L(m, n) are coefficients in the generalized Gaussian polynomial, and thus
form a unimodal sequence [6, 10]. That is,

∑

i≥0

pi(m, n) qi =

[

n + m
m

]

q

=
(1 − qn+1) · · · (1 − qm+n)

(1 − q) · · · (1 − qm)
. (1.1)

Letting q → 1, the total number of elements in this poset is given by

|L(m, n)| =

(

n + m

m

)

. (1.2)

A weak subposet Y k of the Young lattice was introduced in connection with functions that generalize
the Schur functions [2, 3]. This poset (hereafter called the k-Young lattice) is a lattice defined on the
set of partitions whose first part is no larger than fixed integer k ≥ 1. The order arises from a degree
preserving involution on the set of k-bounded partitions Pk that generalizes partition conjugation. The
involution sends one k-bounded partition λ to another, λωk , giving rise to a partial order on Pk as follows:
For λ and µ differing by one box,

Young order on partitions: λ <·µ when λ ⊆ µ (and equivalently λ′ ⊆ µ′).

k-order on k-bounded partitions: λ ≺·µ when λ ⊆ µ and λωk ⊆ µωk .

It happens that λωk = λ′ for large k implying that the k-order is the Young order in the limit k → ∞.

The k-Young lattice originated from a conjectured formula for multiplying k-Schur functions [2, 3]

that is analogous to the Pieri rule. In particular, the conjecture states that the k-Schur functions s
(k)
µ
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appearing in the expansion of the product s1s
(k)
λ are exactly those indexed by the successors of λ in the

k-Young lattice. That is,

s1s
(k)
λ =

∑

λ≺·µ

s(k)
µ .

In [5], it is shown that the k-Young lattice is in fact isomorphic to the weak order on the quotient of

the affine symmetric group S̃k+1 by a maximal parabolic subgroup and that the paths in Y k can be
enumerated by certain “k-tableaux”, or by reduced words for affine permutations.

Here we investigate general properties of the k-Young lattice. Most notably, we reveal that partitions
with rectangular shape and hook-length k, called k-rectangles, play a fundamental role in the structure
of this poset. We prove for any k-rectangle � and λ, µ ∈ Pk,

λ � µ if and only if (λ ∪ �) � (µ ∪ �) ,

leading to the stronger statement that:

λ ∪ � � µ ⇐⇒ µ = µ̄ ∪ � and λ � µ̄ ,

for some k-bounded partition µ̄. This is a central property needed to identify the k-Young lattice with
a cone in the permutahedron-tiling of the k-dimensional space [11]. The significance of k-rectangles also
plays an important role at the symmetric function level in that multiplying a Schur function indexed by
a k-rectangle � with a k-Schur function is trivial [4]. That is, for any k-bounded partition λ,

s� s
(k)
λ = s

(k)
�∪λ .

Following our study of the k-rectangles and other properties of the k-Young lattice, we discuss a family
of induced subposets of L(m, n) whose vertex set consists of the elements that fit inside an m×n rectangle
and have no more than k−m+1 parts strictly smaller than m. Surprisingly, we find that these subposets
are isomorphic to the principal order ideal of Y k generated by the shape m×n. As such, we denote these
order ideals by Lk(m, n) and note that they are graded, self-dual, distributive lattices of rank mn. We
provide explicit formulas for the number of vertices and the rank generating function:

∑

λ∈Lk(m,n)

q|λ| =

[

k + 1
m

]

q

+ qk+1 1 − qm(n−k+m−1)

1 − qm

[

k
m − 1

]

q

, (1.3)

for n ≥ k −m + 1, which implies that the coefficient of qi in the right hand side of this expression is the
number of partitions in Lk(m, n) with rank i. Further, letting q → 1,

∣

∣Lk(m, n)
∣

∣ =

(

k + 1

m

)

+ (n − k + m − 1)

(

k

m − 1

)

, (1.4)

for n ≥ k − m + 1.

Since the vertex set of Lk(m, n) is contained in that of Lk+1(m, n), these order ideals provide a natural
sequence of subposets of L(m, n). That is, L(m, n) can be constructed from the chain of partitions with no
more than one row smaller than m by successively adding sets of partitions with exactly j parts smaller
than m for j ≥ 2. This decomposition aids our investigation of questions pertaining to unimodality.
Prompted by the unimodality of L(m, n), we computed examples that suggest Lk(m, n) is unimodal in
certain cases. In particular when k 6= −1 mod p for all prime divisor p of m. When m is prime, we find
that the unimodality of Lk(m, n) relies on the conjecture:

If k 6= −1, 0 mod m, then the coefficients of the q powers in

(1 − qm(n−k+m))

(1 − qm)

[

k − 1
m − 2

]

q

(1.5)

form a unimodal sequence for all n ≥ k − m + 1.

We also generalize this conjecture to include the case when m is not prime (see Conjecture 48).

We conclude with a discussion of how our conjectures lead to results coinciding with recent work on
sieved binomial polynomials, eg. [1, 9, 12]. Namely, from the unimodality of the coefficients in Eq. (1.5),

we recover the identity: the sum of the coefficients of q`+∗m in

[

k − 1
m − 2

]

q

is equal to 1
m

(

k − 1
m − 2

)

if
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k 6= −1, 0 mod m for a prime m < k. Similarly, we use our more general conjecture to suggest a new
identity of this type and provide an independent proof (see Proposition 53).

2. Definitions

For definitions and general properties of posets see for example [7]. A partition λ = (λ1, . . . , λm) is a
non-increasing sequence of positive integers. We denote by |λ| the degree λ1 + · · ·+ λm of λ, and by `(λ)
its length m. Each partition λ has an associated Ferrers diagram with λi lattice squares in the ith row,
from the bottom to top. For example,

λ = (4, 2) = . (2.1)

A partition λ is k-bounded if λ1 ≤ k and the set of all k-bounded partitions is denoted Pk. For partitions
λ and µ, the weakly decreasing rearrangement of their parts is denoted λ∪µ, while λ+µ is the partition
obtained by summing their respective parts. Any lattice square in the Ferrers diagram is called a cell,
where the cell (i, j) is in the ith row and jth column in the diagram. We say that µ ⊆ λ when µi ≤ λi

for all i.

When µ ⊆ λ, the skew shape λ/µ is identified with its diagram {(i, j) : µi < j ≤ λi}. For example,

λ/µ = (5, 5, 4, 1)/(4, 2) =
s

. (2.2)

Lattice squares that do not lie inside a diagram will simply be called squares. We shall say that any
s ∈ µ lies below the diagram of λ/µ. The degree of a skew-shape is the number of cells in its diagram.
Associated to λ/µ, the hook of any (i, j) ∈ λ is defined by the cells of λ/µ that lie in the L formed with
(i, j) as its corner. This definition is well-defined for all squares in λ including those below λ/µ. For
example, the framed cells in (2.2) denote the hook of square s = (1, 3). We then let hs(λ/µ) denote the
hook-length of any s ∈ λ, i.e. the number of cells in the hook of s. For example, h(1,3)(5, 5, 4, 1)/(4, 2) = 3
and h(3,2)(5, 5, 4, 1)/(4, 2) = 3 or cell (3,2) has a 3-hook. We also say that the hook of a cell (or a square)
is k-bounded if it is not larger than k.

A removable corner is a cell (i, j) ∈ λ/µ such that (i + 1, j), (i, j + 1) 6∈ λ/µ, and an addable

corner is a square (i, j) 6∈ λ/µ such that (i − 1, j), (i, j − 1) ∈ λ/µ. We shall include (1, λ1) ∈ λ/µ as a
removable corner, and (`(λ) + 1, 1) as an addable corner. The k-residue of any cell (or square) (i, j) in
a skew-shape λ/µ is j − i mod k. That is, the integer in this cell (or square) when λ/µ is periodically
labeled with 0, 1, . . . , k − 1, where zeros fill the main diagonal. For example, cell (1, 5) has 5-residue 4:

1

2 3

3 4 0 1

4 0 1 2 3

0 1 2 3 4 0 1

.

Remark 1. No two removable corners of any partition fitting inside the shape
(

mk−m+1
)

have the same
k + 1-residue for any 1 ≤ m ≤ k.

3. Involution on k-bounded partitions

Usual partition conjugation defined by the column reading of diagrams does not send the set of k-
bounded partitions to itself. Thus our study of Pk begins with the need for a degree-preserving involution
on this set that extends the notion of conjugation. Such an involution on Pk was defined in [2] using
a certain subset of skew-diagrams. We shall follow the notation of [5], where these skew diagrams are
defined by:

Definition 2. The k-skew diagram of a k-bounded partition λ is the skew diagram, denoted λ/k,
satisfying the conditions:

(i) row i of λ/k has length λi

(ii) no cell in λ/k has a hook-length exceeding k

(iii) every square below the diagram of λ/k has hook-length exceeding k
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Example 3. Given λ = (4, 3, 2, 2, 1, 1) and k = 4,

λ = =⇒ λ/4 =

It was shown in [5] that λ/k is the unique skew diagram obtained recursively by:

For any λ = (λ1, . . . , λ`) ∈ Pk, λ/k can be obtained by adding to the bottom of
(λ2, . . . , λ`) /k, a row of λ1 cells whose first (i.e. leftmost) cell s occurs in the left-
most column where hs ≤ k. That is, row λ1 lies as far to the left as possible without
violating Condition (ii) of λ/k, or without creating a non-skew diagram.

As a matter of curiosity, with the skew diagram λ/k = γ/ρ, it is shown in [5] that a bijection between
k-bounded partitions and k + 1-cores arises by taking λ → γ.

Since the columns of a k-skew diagram form a partition [5], and the transpose of a k-skew diagram
clearly satisfies Conditions (ii) and (iii), an involution on Pk arises from the column reading of λ/k:

Definition 4. For any k-bounded partition λ, the k-conjugate of λ is the partition given by the columns
of λ/k and denoted λωk . Equivalently, λωk is the unique k-bounded partition such that (λ/k)′ = λωk/k.

Corollary 5. For a k-bounded partition λ, we have (λωk )ωk = λ.

Example 6. With λ as in Example 3, the columns of λ/4 give λω4 = (3, 2, 2, 1, 1, 1, 1, 1, 1).

Given a partition λ, the nature of its k-conjugate is not revealed explicitly by Definition 4. However,
the k-conjugate can be given explicitly in certain cases. For example,

Remark 7. If h(1,1)(λ) ≤ k, all hooks of λ are k-bounded and thus λ/k = λ. In this case, λωk = λ′.

We can also give a formula for the k-conjugate of a partition with rectangular shape.

Proposition 8. (mn)ωk =
(

(k − m + 1)a, bm
)

where b = n mod k − m + 1 and a = mb n
k−m+1c.

Proof. Building the k-skew diagram recursively from the partition (mn) reveals that the top k − m + 1
rows are stacked in the shape of the rectangle � = (mk−m+1). However, the k−m+2-nd row (of size m)
cannot lie below any column of � without creating a k + 1-hook since all the columns of � have height
k − m + 1. Thus, it lies strictly to the right of �. By iteration, (mn)/k is comprised of a sequence of
block diagonal rectangles � followed by a rectangular block of size (mn mod k−m+1). For example,

(37) = −→ (37)/4 = . (3.1)

The columns of such a skew-shape are thus as indicated. �

The rectangular blocks occurring in the k-skew diagram of (mn) have the form (mk−m+1) for 1 ≤ m ≤
k. We have found that such rectangles, called k-rectangles, play an important role in our study. For
starters, we show that k-conjugation can be distributed over the union of any partition and a k-rectangle.
To prove this result, we first need to find the k-conjugate of another shape:

Proposition 9. If � = (`k−`+1) and µ ⊆ (` − 1)k−`, then

(�, µ)/k = (� + µ, µ)/µ implying (�, µ)ωk = (�′, µ′) . (3.2)
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Figure 1. (� + µ, µ)/µ, with µ depicted by the partition in horizontal stripes

Proof. Given µ ⊆ (` − 1)k−` ⊆ �, D = (� + µ, µ)/µ is a skew diagram with general shape depicted in
Figure 1. If D meets Conditions (ii) and (iii) for a k-skew diagram then (�, µ)/k = (� + µ, µ)/µ since
the rows of D are given by the partition (�, µ) and thus (�, µ)ωk = (�′, µ′) since the columns of D are
(�′, µ′). Any square below D has k−`+1 cells above it and ` to the right implying it has hook k+1 > k.
On the other hand, any cell in D has hook-length strictly smaller than this since the columns and rows
of D are weakly decreasing. Therefore D = (�, µ)/k. �

Theorem 10. (λ ∪ �)ωk = λωk ∪ �
ωk for any k-bounded partition λ and k-rectangle �.

Proof. Let i be such that λi < ` and λi−1 ≥ `, and let µ denote the non-skew partition determined by the
cells strictly above the bottom row of (`, λi, . . . , λ`(λ))/

k (Figure 2). The squares in regions (a) and (3) in

���
���
���

���
���
���

	�	�	
	�	�	
	�	�	
	�	�	


�
�


�
�


�
�


�
�


������
a

3

Figure 2. (`, λi, . . . , λ`(λ))/
k with µ depicted by the partition in horizontal stripes

the picture have hooks exceeding k by definition of k-skews. Now consider Figure 3 where the diagram on
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Figure 3. Comparison of λ/k and D

the left is λ/k and in the diagram D on the right, region (b) is of shape µ. Since the rows of D are λ∪�,
if we prove that D is a k-skew diagram, then D = (λ∪�)/k. This will then imply (λ∪�)ωk = λωk ∪�

ωk

since the columns of D are just the columns of λ/k and �.

The hooks in regions (a) and (c) of D are the same as they are in λ/k, and thus exceed k. Similarly,
the hooks to the right and above (a) and (c) are k-bounded in D. The squares in region (3) lie “below”
the k-skew diagram (`, λi, . . . , )/

k and thus exceed k, as do all squares in regions 1 and d since they can
only increase given that the rows of D form a partition. The cells of region (2) also exceed k since there
are k − ` + 1 cells above them and at least ` to their right.

Finally, the subdiagram of D including region (b) and all cells above and to the right of this region is
the diagram of (� + µ, µ)/µ. Since µ1 < ` and `(µ) ≤ k − ` by definition, Proposition 9 implies that this
subdiagram is (�, µ)/k and thus meets the conditions of a k-skew. Therefore, D is a k-skew diagram and
the theorem follows. �

Ideas to understand the nature of a k-skew diagram containing a k-rectangle that were used in Theo-
rem 10 may be applied to prove the following technical proposition to be used later.
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Proposition 11. For some 1 ≤ ` ≤ k, if ν is a partition containing exactly k − ` + 1 rows of length `,
where the lowest occurs in some row r, then there are addable corners in row r and k − ` + 1 + r of ν/k

with the same k + 1-residue.

Proof. Let � = (`k−`+1) and ν = λ∪� for some partition λ with no parts of size `. We can construct the
diagram of ν/k as in the previous proof. That is, let i be such that λi < ` and λi−1 > `, and let µ denote
the non-skew partition determined by the cells strictly above the bottom row of (`, λi, . . . , λ`(λ))/

k. We

appeal to Figure 3, where the diagram of (λ ∪ �)/k is on the right.

Note that if r denotes the lowest row in ν/k of length `, then row r − 1 (if it exists) is strictly longer
than row r since λi−1 > `. Therefore an addable corner x occurs in row r with some k + 1-residue j.
Furthermore, since row k − ` + 1 + r corresponds to row λi−1 (the first row of µ) and λi−1 < `, there is
also an addable corner x̄ in this row. Thus, it remains to show that x̄ has k + 1-residue j. Let s denote
the first cell in row r. If x̄ lies in the column of s, then the hook length of cell s is k − ` + ` = k, and
thus x̄ also has k + 1-residue j. We shall now see that x̄ does in fact lie in the column containing s. If x̄
lies in a column to the right of s, then since x̄ is an addable corner, the hook-length of s is larger than
k (a contradiction). And if x̄ lies in a column to the left of s, then the square in the row of x and the
column of x̄ has hook-length equal to at most k − ` + ` = k 6> k. �

4. k-Young lattices

Recall that the Young Lattice Y is the poset of all partitions ordered by inclusion of diagrams, or
equivalently λ ≤ µ when λ ⊆ µ. Since λ ⊆ µ ⇐⇒ λ′ ⊆ µ′, it is equivalent to view the Young order as
λ ≤ µ when λ ⊆ µ and λ′ ⊆ µ′. This interpretation for the Young order refines naturally to an order on
k-bounded partitions by using the the k-conjugate on Pk.

Definition 12. The order � on partitions in Pk is defined by the transitive closure of the relation

µ ≺·λ when λ ⊆ µ and λωk ⊆ µωk and |µ| − |λ| = 1 . (4.1)

0

1

2 11

21 111

22 211 1111

221 2111 11111

222 2211 21111 111111

Figure 4. Hasse diagram of the k-Young lattice in the case k = 2.

We denote this poset on Pk by Y k, and observe that it is a weak subposet of the Young lattice (recall
this means that if λ � µ in Y k, then λ � µ in Y ). Furthermore, Y k reduces to the Young lattice when
k → ∞ since [5]:

Property 13. λ � µ reduces to λ ≤ µ when λ and µ are partitions with h(1,1)(λ) ≤ k and h(1,1)(µ) ≤ k.

While this poset on k-bounded partitions originally arose in connection to a rule for multiplying
generalized Schur functions [2], it has been shown in [5] that this poset turns out to be isomorphic to the
weak order on the quotient of the affine symmetric group by a maximal parabolic subgroup. Consequently,
Y k is a lattice [11, 13] and we thus call it the k-Young lattice.

Although the ordering � is defined by the covering relation ≺· , it follows from the definition that
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Property 14. If λ � µ, then λ ⊆ µ and λωk ⊆ µωk .

It is important to note that the converse of this statement does not hold. For example, with k = 3,
λ = (2, 2), and µ = (3, 2, 1, 1, 1, 1): λωk = λ and µωk = µ satisfy λ ⊆ µ and λωk ⊆ µωk , but λ 6� µ (see
Theorem 20 and note that λ contains the 3-rectangle (2, 2) while µ does not).

Since the set of µ such that µ ⊆ λ and |µ| = |λ| − 1 consists of all partitions obtained by removing a
corner box from λ, the set of elements covered by λ with respect to � is a subset of these partitions. The
corners that can be removed from λ to give partitions covered by λ are determined as follows:

Theorem 15. [5] The order � can be characterized by the covering relation

λ ≺·µ ⇐⇒ µ = λ + er , (4.2)

where r is any row of µ/k with a removable corner whose k+1-residue does not occur in a higher removable
corner, or equivalently for r a row in λ/k with an addable corner whose k + 1-residue does not occur in
a higher addable corner.

Example 16. With k = 4 and λ = (4, 2, 1, 1),

λ/4 =

1

2

3 4

4 0 1

0 1 2 3 4 0 1

, (4.3)

and thus the partitions that are covered by λ are (4, 1, 1, 1), and (4, 2, 1), while those that cover it are
(4, 2, 1, 1, 1) and (4, 2, 2, 1).

Since the conditions of Theorem 15 are always satisfied when choosing the removable corner in the top
row of µ we have the corollary:

Corollary 17. If µ = (µ1, . . . , µ`) is a k-bounded partition, then λ � µ for λ = (µ1, . . . , µ` − 1).

The conditions of Theorem 15 imply that µ = λ + er. Therefore:

Property 18. Any row of µ/k containing a removable corner whose k + 1-residue does not occur in a
higher removable corner, corresponds to a row of µ with a removable corner.

As discussed in the introduction, the k-rectangles play a fundamental role in the study of k-Young
lattices. Since k-conjugate distributes over the union of k-rectangles with a partition, and the k-Young
lattice relies on k-conjugates, we are able to show that the order is preserved under union with a k-
rectangle.

Proposition 19. For any k-rectangle �, λ � µ if and only if (λ ∪ �) � (µ ∪ �).

Proof. It suffices to consider the case that λ ≺·µ. Given λ ⊆ µ and λωk ⊆ µωk with |µ| − |λ| = 1, clearly
(λ ∪ �) ⊆ (µ ∪ �) with |µ ∪ �| − |λ ∪ �| = 1. Theorem 10 then implies that (λ ∪ �)ωk = (λωk ∪ �

ωk) ⊆
(µωk ∪ �

ωk) = (µ ∪ �)ωk . That is, (λ ∪ �) ≺· (µ ∪ �). �

In fact, we have a stronger result that amounts to saying the k-rectangles � play a trivial role when
moving up in the k-Young lattice. That is, the partitions dominating λ ∪ � can be obtained by adding
the parts of � to the partitions that dominate λ. The (increasing) covering relations around λ and λ∪�

are isomorphic, and thus these relations are preserved under translation by a k-rectangle.

Theorem 20. For λ, µ ∈ Pk and a k-rectangle �,

λ ∪ � � µ ⇐⇒ µ = µ̄ ∪ � and λ � µ̄ ,

for some k-bounded partition µ̄.

Proof. Let the k-rectangle be � = (`k−`+1). (⇐=) follows from Proposition 19. For (=⇒), it suffices to
consider λ ∪ � ≺·µ. Theorem 15 implies that µ = (λ ∪ �) + er for some row r with an addable corner o
whose k + 1-residue does not occur in any higher addable corner of (λ ∪ �)/k. Assume by contradiction
that (λ ∪ �) + er 6= µ̄ ∪ � for any k-bounded partition µ̄. The only scenario where the number of rows
of length ` is reduced by adding a box is if λ ∪ � has exactly k − ` + 1 rows of length ` and row r is
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the lowest row of length `. Thus, by Proposition 11, there is an addable corner in row k − ` + 1 + r of
(λ ∪ �)/k with the same k + 1-residue as o. However, row k − ` + 1 + r is higher than row r and by
contradiction, µ = µ̄ ∪ � for some µ̄. Finally, given λ ∪ � � µ̄ ∪ �, the previous proposition implies
λ � µ̄. �

Remark 21. Consider λ, µ ∈ Pk and a k-rectangle �. Notice that in general,

λ ≺·µ ∪ � 6⇐⇒ λ = λ̄ ∪ � and λ̄ ≺·µ .

For example, with k = 3: the 3-rectangle (2, 1) ≺·(2, 2) while (2, 1) 6⊇ (2, 2). However,

� ⊆ µ and λ ≺·µ ∪ � ⇐⇒ λ = λ̄ ∪ � and λ̄ ≺·µ

follows from Proposition 19. In this case, what occurs above and below µ is replicated at µ∪�. Interpreting
the poset as a cone in a tiling of k-space by permutahedrons [11], this implies that a vertex µ lying at
least a distance |�| from the boundary of the cone can not be distinguished from µ ∪ �, and thus the
k-rectangles are the vectors of translation invariance in the tiling.

5. Principal order ideal

Let Yλ denote the principal order ideal generated by λ in the Young lattice. When λ is a rectangle, the
order ideal is denoted L(m, n) and is the induced poset of partitions with at most n parts and largest part
at most m. This order ideal is a graded, self-dual, and distributive lattice. Further, the rank-generating
function of L(m, n), the Gausssian polynomial, is known to be unimodal. The next several sections
concern the study of properties for order ideals in the k-Young lattice that are analogous to those held
by L(m, n).

Let Y k
λ denote the principal order ideal generated by λ in the poset Y k. That is,

Y k
λ = {µ : µ � λ} .

As k → ∞, the poset Y k
λ reduces to Yλ. More precisely,

Property 22. If λ is a partition with h(1,1)(λ) ≤ k, then Y k
λ = Yλ.

Proof. Since µ � λ implies that µ ⊆ λ, we have that h(1,1)(µ) ≤ h(1,1)(λ) ≤ k. Thus, for all µ, ν ∈ Y k
λ we

have µ � ν ⇐⇒ µ ≤ ν by Property 13, that is, Y k
λ = Yλ. �

Proposition 23. Y k
λ is graded of rank |λ|.

Proof. If λ(1), λ(2), . . . λ(n) is a saturated chain in Y k
λ then |λ(i)| = |λ(i+1)| − 1 from the definition of

the order �. Corollaries 17 implies that a maximal chain in Y k
λ must begin with the empty partition.

Therefore, since by definition of Y k
λ all maximal chains start with λ, we have our claim. �

We are interested in proving properties of Y k
λ when λ is a rectangular partition, denoted by:

Definition 24. The principal order ideal of Y k generated by the partition mn will be denoted

Lk(m, n) = {µ : µ � (mn)} . (5.1)

Note that m ≤ k since Y k contains only elements of Pk. Further,

Remark 25. From Property 22, Lk(m, n) = L(m, n), for n ≤ k−m+1. Therefore, all cases are covered
when considering n ≥ k − m + 1. That is, all Lk(m, n) distinct from L(m, n), plus the non distinct case
Ln+m−1(m, n) = L(m, n).

We shall prove that Lk(m, n) is a graded, self-dual, and distributive lattice. Further, we shall conjecture
that its rank-generating function is unimodal in certain cases. To start, following from Proposition 23,

Corollary 26. Lk(m, n) is graded of rank mn.

It will develop that for each k, the principal order ideal generated by (mn) in Y k is isomorphic to an
induced subposet of the principal order ideal generated by (mn) in the Young Lattice. From this, we can
then derive a number of properties for the posets Lk(m, n). To this end, we first explicitly determine the
vertices of the order ideal.
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Theorem 27. The set of partitions in Lk(m, n) are those that fit inside an m×n rectangle and have no
more than k − m + 1 rows shorter than m.

Proof. We first show that any λ ∈ Lk(m, n) can have at most k − m + 1 rows of length shorter than m.
Suppose the contrary, and note that the top k − m + 2 rows of λ/k form a partition since the rows are
all shorter than m and thus no hook exceeds k. Therefore, the first column of λ/k has height at least
k−m + 2 and λωk has a row of length at least k−m + 2 by definition of k-conjugate. However, the rows
of (mn)ωk do not exceed k −m + 1 by Proposition 8 and thus λωk 6⊆ (mn)ωk . Therefore λ 6∈ Lk(m, n) by
Property 14.

On the other hand, to prove that any λ = (ma, µ) ⊆ mn with µ ⊆ (mk−m+1) lies in Lk(m, n), it suffices
to prove λ ∈ Lk(m, `(λ)) since m`(λ) � mn – i.e. using Corollary 17 m times, we obtain mn−1 � mn,
and by iteration m`(λ) � mn. To this end, note that the top `(µ) ≤ k − m + 1 rows of (m`(λ))/k fit
inside the shape (mk−m+1) implying every diagonal has a distinct k +1-residue by Remark 1. Therefore,
Theorem 15 implies removable corners can be successively removed from the top `(µ) rows in (m`(λ)) to
obtain partitions λ(1), . . . , λ(i) where λ ≺·λ(1) ≺· · · · ≺·λ(i) ≺· (m`(λ)). �

The theorem reveals that when n ≥ k − m + 1, the elements of Lk(m, n) are of the form (ma, µ) for
µ ⊆ (mk−m+1) and a ≤ n − (k − m + 1). By Remark 25, we have thus identified all the vertices.

Corollary 28. For n ≥ k − m + 1 and m ≤ k, the set of partitions in Lk(m, n) is the disjoint union

{

µ ⊆ (mk−m+1)
}

n−(k−m+1)
⋃

i=1

{(

mi, µ1 + 1, . . . , µk−m+1 + 1
)

: µ ⊆ (m − 1)k−m+1
}

.

It also follows from Theorem 27 that the vertices of Lm(m, n) are simply the partitions with at most
one row smaller than m.

Corollary 29. The set of partitions in Lm(m, n) is

Lm(m, n) =
{

(mj , i) : 0 ≤ i ≤ m and 0 ≤ j ≤ n − 1
}

. (5.2)

6. Further properties of k-Young lattice ideals

Equipped with a simple characterization of the vertex set of Lk(m, n), we can now investigate a
connection between the k-Young lattice and the Young lattice. As it turns out, the principal order ideal
generated by (mn) in Y k is isomorphic to the induced subposet of L(m, n) containing only the subset of
partitions with no more than k − m + 1 rows smaller than m. Consequently, it is easy to grasp which
elements are covered by λ in Lk(m, n) and to deduce that the posets are self-dual and distributive.

Proposition 30. Let λ, µ ∈ Lk(m, n). Then µ ≺·λ if and only if µ <·λ.

Proof. First consider λ ∈ Lk(m, n) where λ ⊆ (mk−m+1). Since h(1,1)(λ) ≤ k, µ � λ reduces to µ ≤ λ

by Property 13. Any other element of Lk(m, n) has the form λ = (mb, ν) for some ν ∈ Pm with
`(ν) = k − m + 1 by Corollary 28. Given λ of this form, since µ ≺·λ and µ < ·λ both require that
µ = λ − er where r is a row of λ with a removable corner, we need only consider b ≤ r ≤ b + `(ν).
Further, (λ − er) 6∈ Lk(m, n) if r = b (the partition would have more than k − m + 1 rows shorter than
m). Thus it suffices to show that for b < r ≤ b + `(ν), there is a removable corner in row r of λ if and
only if (λ− er) ≺·λ – equivalently by Theorem 15 – if and only if there is a removable corner in row r of
λ/k whose k + 1-residue does not occur in any higher removable corner.

When row r of λ/k has a removable corner that is the highest of a given k + 1-residue, there is a
removable corner in row r of λ by Property 18. On the other hand, if there is a removable corner in row
b < r ≤ b + `(ν) of λ then there is also a removable corner in this row of λ/k since the top `(ν) rows of
(mb, ν)/k coincide with the diagram of ν given that `(ν) = k −m + 1. Furthermore, ν ⊆ (mk−m+1) also
implies that there cannot be another removable corner above the one in row r of the same k + 1-residue
because the diagonals in (mk−m+1) all have distinct k + 1-residue. �
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Theorem 31. Lk(m, n) is isomorphic to the induced subposet of L(m, n) with vertices restricted to the
partitions in Lk(m, n). Equivalently, for λ, µ ∈ Lk(m, n),

µ � λ ⇐⇒ µ ⊆ λ . (6.1)

Proof. Let λ, µ ∈ Lk(m, n). From Property 14, µ � λ =⇒ µ ⊆ λ. It thus remains to show that there
exists a chain from µ to λ in Lk(m, n) when µ ⊆ λ. Equivalently by the previous proposition, it suffices
to show that we can reach µ by successively adding boxes to λ in such a way that no intermediate step
gives a partition with more than k −m + 1 rows of length less than m. This is achieved as follows: given
µ ⊆ λ in Lk(m, n), consider the chain of partitions µ = µ0 ⊆ µ1 ⊆ · · · ⊆ µj = λ where µi+1 is obtained
by adding one box to the first row in µi that is strictly less than the corresponding row in λ. Since the
chain starts from µ = (ma, ν) where `(ν) ≤ k−m+1, the number of rows of length less than m does not
exceed k − m + 1 in any µi by construction. �

We can now derive a number of properties for the order ideals Lk(m, n) based on the identification with
induced subposets of L(m, n) under inclusion of diagrams. First, given the explicit description Eq. (5.2)
for the vertices in Lm(m, n) we have

Proposition 32. The order ideal Lm(m, n) is isomorphic to the saturated chain of partitions:

∅ ⊆ (1) ⊆ · · · ⊆ (m) ⊆ (m, 1) ⊆ · · · ⊆ (mj , i) ⊆ · · · ⊆ (mn−1, m − 1) ⊆ (mn) .

Proposition 33. For k ≥ m, Lk(m, n) is an induced subposet of Lk+1(m, n).

Proof. From Theorem 27, the elements of Lk(m, n) (or Lk+1(m, n)) are partitions contained in (mn) with
at most k −m + 1 (resp. k −m + 2) rows that are smaller than m. Therefore, by Theorem 31, it suffices
to note that under inclusion of diagrams, the poset of partitions that fit inside an m × n rectangle with
no more than k − m + 1 parts smaller than m is an induced subposet of the poset of partitions that fit
inside an m × n rectangle with no more than k − m + 2 parts smaller than m. �

Proposition 34. Let λ, µ ∈ Lk(m, n).

(i) λ ∧ µ is the partition determined by the intersection of the cells in the diagrams in λ and µ.

(ii) λ ∨ µ is the partition whose diagram is determined by the union of the cells in λ and µ.

Proof. Since the meet and join of elements in L(m, n) is given by the intersection and union of diagrams
respectively, and Lk(m, n) is isomorphic to an induced subposet of L(m, n) by Theorem 31, it suffices
to show that Lk(m, n) is closed under the intersection and the union of diagrams. Equivalently, by
Theorem 27, we must prove that the intersection and union of such partitions do not have more than
k − m + 1 rows with length less than m. Let λ = (ma, λ̄) with `(λ̄) ≤ k − m + 1 and µ = (mb, µ̄) with
`(µ̄) ≤ k − m + 1 and assume a ≥ b without loss of generality. As such, the diagram of λ intersected
with µ has at least b rows of length m, and at most `(µ̄) rows with length less than m. Therefore, there
are no more than k − m + 1 rows of length smaller than m. Similarly, the union has at least a rows of
length m, and at most max

{

`(λ̄), `(µ̄)− (a− b)
}

rows less than m. Again, no more than k −m + 1 rows
of length smaller than m. �

Now given that the meet and join of Lk(m, n) coincide with those of L(m, n). Therefore, since Lk(m, n)
is an induced subposet of the lattice L(m, n), we have1

Corollary 35. For each k ≥ m, Lk(m, n) is a lattice.

Furthermore, since L(m, n) is a distributive lattice, the relations

λ ∨ (µ ∧ ν) = (λ ∨ µ) ∧ (λ ∨ ν) , λ ∧ (µ ∨ ν) = (λ ∧ µ) ∨ (λ ∧ ν) , (6.2)

must hold. Therefore, these relations hold in the induced subposets Lk(m, n) and we find

Corollary 36. For each k ≥ m, Lk(m, n) is distributive.

1Note that the corollary also follows immediately from the fact that Y k is a lattice.
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In addition to having that each of the Lk(m, n) are distributive lattices, we can also prove that they
are symmetric.

Theorem 37. For any k ≥ m, Lk(m, n) is self-dual.

Proof. Let L̄k(m, n) denote the dual of Lk(m, n) and consider the mapping φ(λ) = λc where λc is the
partition determined by rotating the complement of λ in (mn) by 180o. Since λ ∈ Lk(m, n) implies that
λ = (ma, µ) for some a ≤ n− (k −m + 1) and µ ⊆ (mk−m+1) by Corollary 28, λc = (mn−(k−m+1)−a, µc)
for some µc ⊆ (mk−m+1) satisfying |λ| + |λc| = mn. Therefore φ : Lk(m, n) → L̄k(m, n) and it suffices
to show that φ is an order-preserving bijection. Equivalently, that µ � λ in Lk(m, n) ⇐⇒ φ(λ) � φ(µ)
in L̄k(m, n). By Theorem 31 and the definition of L̄k(m, n), this is equivalent to µ ⊆ λ ⇐⇒ λc ⊆ µc for
elements λ, µ ∈ Lk(m, n), which is true. �

Corollary 38. Lk(m, n) is rank-symmetric.

7. Rank-generating function

The explicit description of the partitions in the posets Lk(m, n) can also be used to determine the
rank-generating functions. Recall that the number of elements of rank i in L(m, n) is the coefficient of
qi in the Gaussian polynomial:

mn
∑

i=0

pi(m, n) qi =

[

m + n
m

]

q

. (7.1)

Similarly, we can determine the rank-generating functions for Lk(m, n).

Theorem 39. For n ≥ k − m + 1 and m ≤ k, the number of elements of degree i in Lk(m, n) is the
coefficient of qi in

mn
∑

i=0

pk
i (m, n) qi :=

[

k + 1
m

]

q

+ qk+1 1 − qm(n−k+m−1)

1 − qm

[

k
m − 1

]

q

. (7.2)

Proof. Recall that Corollary 28 provides an interpretation for the vertices of Lk(m, n) as a disjoint union
of sets whose elements can be understood in terms of certain L(a, b):

{

µ ⊆ (mk−m+1)
}

n−(k−m+1)
⋃

i=1

{(

mi, µ1 + 1, . . . , µk−m+1 + 1
)

: µ ⊆ (m − 1)k−m+1
}

.

Identity (7.1) then gives that the number of elements of rank i in Lk(m, n) is the coefficient of qi in

[

k + 1
m

]

q

+

n−(k−m+1)
∑

i=1

qm(i)+k−m+1

[

k
m − 1

]

q

. (7.3)

�

Letting q → 1 in Eq. (7.3) then gives the number of vertices:

Corollary 40. For n ≥ k − m + 1 and m ≤ k, the number of vertices in Lk(m, n) is

mn
∑

i=0

pk
i (m, n) =

(

k + 1
m

)

+ (n − k + m − 1)

(

k
m − 1

)

. (7.4)

In the next section, we will see that the study of the order ideals Lk(m, n) is simplified by a close
examination of certain subsets of the vertices that are determined by k.

Definition 41. For n ≥ k − m + 1 and k > m, let Γk(m, n) denote the set of all partitions in Lk(m, n)
that are not in Lk−1(m, n).

We conclude the section with a discussion of the sets Γk(m, n), starting with an explicit description of
the elements.
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Proposition 42. The elements of Γk(m, n) are partitions that fit inside an m × n rectangle and have
exactly k − m + 1 rows with length smaller than m. Equivalently,

Γk(m, n) =
{

(ma, µ1 + 1, . . . , µk−m+1 + 1) : 0 ≤ a ≤ n − (k − m + 1) , µ ⊆ (m − 2)k−m+1
}

(7.5)

Proof. Theorem 28 indicates that the vertices of Lk(m, n) are partitions with no more than k − m + 1
rows of length smaller than m while those of Lk−1(m, n) are partitions with no more than k −m rows of
length smaller than m. The result thus follows. �

Since the vertices of Lm(m, n) are given in Eq. (5.2) to be the partitions with no more than one row
of length smaller than m, the set of vertices for Lk(m, n) can be obtained by adding the elements of
Γi(m, n) for i = m + 1, . . . , k to this set of partitions. That is,

Proposition 43. For n ≥ k − m + 1 and k > m, the vertices of Lk(m, n) are the disjoint unions:

Lk(m, n) = Lm(m, n) ∪k
j=m+1 Γj(m, n) . (7.6)

Given this decomposition for the set of vertices in Lk(m, n), we note that there are no edges between
partitions in Γj(m, n) and partitions in Γj−i(m, n) for any i > 1 since adding or deleting a box to a
partition with exactly a rows smaller than length m never gives rise to a partition with more than a + 1
rows smaller than m. Now, Lm+1(m, n) can be constructed by connecting elements of Γm+1(m, n) to
the appropriate vertices in the saturated chain Lm(m, n) of Proposition 32. Lm+2(m, n) can then be
constructed by connecting only elements of Γm+1(m, n) to the appropriate elements of Γm+2(m, n). In
this manner, the poset Lk(m, n) can be constructed from the saturated chain Lm(m, n). In particular,
L(m, n) = Lm+n−1(m, n) can be obtained using this process (see Figure 5 for an example). In summary,

Remark 44. The poset Lk(m, n) can be obtained from Lk−1(m, n) by adding edges from λ ∈ Γk−1(m, n)
to all partitions in Γk(m, n) that contain or are contained in λ.

We now obtain the rank-generating function for Γk(m, n) from Proposition 42 by using the Gaussian
polynomial for partitions inside an (k − m + 1) × (m − 2) rectangle.

Proposition 45. For n ≥ k − m + 1 and k > m, the rank-generating function for Γk(m, n) is

∑

i≥0

uk
i (m, n) qi :=

∑

λ∈Γk(m,n)

q|λ| = qk−m+1 (1 − qm(n−k+m))

(1 − qm)

[

k − 1
m − 2

]

q

. (7.7)

In this equation, uk
i (m, n) is defined to be the number of elements of degree i in Γk(m, n).

It turns out that the sequence of coefficients in this expression is rank-symmetric.

Proposition 46. uk
i (m, n) = uk

mn−i(m, n) for all i = 0, . . . , bmn
2 c. That is, the vector of coefficients

~uk = (uk
0(m, n), . . . , uk

mn(m, n)) is symmetric about the middle (i.e. mn/2).

Proof. By Eq. (7.7), uk
i (m, n) is the coefficient of qi in a product of three rank-symmetric polynomials:

qk−m+1, (1−qm(n−k+m))
(1−qm) , and

[

k − 1
m − 2

]

q

. Therefore, since the term of lowest degree in the expansion of

these three polynomials has degree k −m + 1 and the highest degree term has degree k −m + 1 + m(n−
k + m − 1) + (m − 2)(k − m + 1) = mn − k + m − 1, the polynomial must be rank-symmetric about
(

k − m + 1 + (mn − k + m − 1)
)

/2 = mn/2. �

8. Unimodality and sieved sums

Recall that a poset P of rank d is unimodal if

p0 ≤ p1 ≤ · · · ≤ pi ≥ pi+1 ≥ · · · ≥ pd for some 0 ≤ i ≤ d ,

where pi is the number of elements with rank i in P . We shall say the rank-generating function for
P is unimodal when the vector (p0, . . . , pd), with pi the coefficient of qi, forms a unimodal sequence.
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Figure 5. Decomposing L5(3, 3) into L3(3, 3) ∪ Γ4(3, 3) ∪ Γ5(3, 3)

For example, the Gaussian polynomial (7.1) is unimodal because it is known [6, 10] that the coefficients
(p0, . . . , pmn) form a unimodal sequence. Equivalently, L(m, n) is a unimodal poset – one of the deeper
properties of this order ideal.

In this section, we address the question of unimodality for the posets Lk(m, n), illustrating the role of
k in our study. As such, by Eq. (7.2), the order ideal Lk(m, n) will be unimodal when

mn
∑

i=0

pk
i (m, n) qi =

[

k + 1
m

]

q

+ qk+1 1 − qm(n+m−k−1)

1 − qm

[

k
m − 1

]

q

(8.1)

is unimodal. Our work in the preceding section pays off here by enabling us to rewrite this expression as
a sum of rank-symmetric components.

Proposition 47. The number of elements in Lk(m, n) is given by the coefficient of qi in

mn
∑

i=0

pk
i (m, n) qi =

mn
∑

i=0

(

1 +

k
∑

r=m+1

ur
i (m, n)

)

qi , (8.2)

where ur
i (m, n) is defined in Eq. (7.7).

Proof. Proposition 43 decomposes the set of vertices of Lk(m, n) into Lm(m, n)∪k
i=m+1Γi(m, n), implying

that the coefficients pk
i (m, n) occur in the expression:

mn
∑

i=0

pk
i (m, n) qi =

∑

λ∈Lm(m,n)

q|λ| +

k
∑

r=m+1

∑

λ∈Γr(m,n)

q|λ| . (8.3)
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The result then follows since Lm(m, n) is just a saturated chain by Proposition 32, and the elements in
Γr(m, n) are given in Proposition 45 by ur

i (m, n). �

Since ur
i (m, n) = ur

mn−i(m, n) by Proposition 46, (8.2) reveals ~p k(m, n) = (pk
0(m, n), . . . , pk

mn(m, n))

is a sum of sequences symmetric about the middle. Thus, the question of unimodality of Lk(m, n)
reduces to a study of the sequences ~u r(m, n). We have experimentally discovered that certain sums of
these sequences are unimodal under conditions on m expressed in Conjecture 48, and more generally in
Conjecture 51. This given, we can deduce that ~p k(m, n) is unimodal in these cases and can be written
as a sum of rank-unimodal sequences (see Remark 52). To this end, we start with the special case when
m is prime.

Conjecture 48. If n ≥ k − m + 1 and k 6= −1, 0 mod m for a prime number m < k, then
mn
∑

i=0

uk
i (m, n) qi = qk−m+1 (1 − qm(n−k+m))

(1 − qm)

[

k − 1
m − 2

]

q

(8.4)

is unimodal. Further, when n > k − m + 1 and k = −1 mod m,
mn
∑

i=0

(

uk
i (m, n) + uk+1

i (m, n)
)

qi

= qk−m+1 (1 − qm(n−k+m))

(1 − qm)

[

k − 1
m − 2

]

q

+ qk−m+2 (1 − qm(n−k+m−1))

(1 − qm)

[

k
m − 2

]

q

(8.5)

is unimodal.

There are two consequences of this conjecture; the first relating to the unimodality of Lk(m, n).

Consequence of Conjecture 48. If n > k − m + 1 and k 6= −1 mod m for a prime m < k, then the
order ideal Lk(m, n) is unimodal. Equivalently,

mn
∑

i=0

pk
i (m, n) qi =

[

k + 1
m

]

q

+ qk+1 1 − qm(n+m−k−1)

1 − qm

[

k
m − 1

]

q

(8.6)

is unimodal under these conditions.

Proof following from Conjecture 48. By Eq. (8.2), it suffices to show that
∑k

j=m+1 ~uj(m, n) is unimodal.

For all m < j < n + m − 1, the sequences ~uj(m, n) are rank-symmetric about mn/2 by Proposition 46.
Therefore, if ~uj(m, n) is unimodal for j 6= −1, 0 mod m and ~uj(m, n) + ~uj+1(m, n) is unimodal when

j = −1 mod m, then
∑k

j=m+1 ~uj(m, n) is unimodal unless k = −1 mod m. That is, except in the case

that ~uj+1(m, n) cannot be added to restore unimodality. �

Interestingly, a second consequence of Conjecture 48 relates to sieved q-binomial coefficients (see for
example, [1, 9, 12]). In this result, “the sum of the coefficients of q`+∗m” in an expression refers to the
sum of coefficients of qi for every i = ` mod m.

Proposition 49. If k 6= −1, 0 mod m for a prime m < k, then for any 0 ≤ ` ≤ m − 1, the sum of the

coefficients of q`+∗m in

[

k − 1
m − 2

]

q

is

(

k − 1
m − 2

)

/m. Equivalently,

∑

j≥0

p`+jm(m − 2, k − m + 1) =
1

m

(

k − 1
m − 2

)

, for fixed ` = 0, . . . , m − 1 . (8.7)

We shall demonstrate how this proposition follows from Conjecture 48 to give evidence supporting the
conditions under which we believe unimodality to hold. However, the result is implied from the main
result in [12] (and more recently from [9]) as follows:

Proof. Condition 3 of the main result in [12] says that the sum of the coefficients of q`+∗m in

[

n
t

]

q

is

(

n
t

)

/m for all ` iff for all d > 1 that divide m, we have t mod d > n mod d. Since only d = m divides
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m when m is prime, letting n = k − 1 and t = m − 2, we note that m − 2 mod m > k − 1 mod m is
equivalent to the condition k 6= −1, 0 mod m. �

Proof following from Conjecture 48. For k 6= −1, 0 mod m for m prime, Conjecture 48 implies

(1 − qm(n−k+m))

(1 − qm)

[

k − 1
m − 2

]

q

is unimodal. Letting n → ∞ in this expression then produces an increasing (unimodal and symmetric
about infinity) sequence (vk

0 (m), vk
1 (m), . . .), where

∑

i

vk
i (m) qi = (1 + qm + q2m + · · · )

[

k − 1
m − 2

]

q

. (8.8)

Using the definition of pi(m, n) in Eq. (7.1), the coefficient of qi in this expression satisfy

vk
i (m) = pi(m − 2, k − m + 1) + pi−m(m − 2, k − m + 1) + pi−2m(m − 2, k − m + 1) + · · · .

This sequence thus meets the conditions in the following proposition with ~a = ~p(m− 2, k−m+1), where

the claim follows from Eq. (8.9) since
∑

i pi(m − 2, k − m + 1) =

(

k − 1
m − 2

)

. �

Proposition 50. Let vi =
∑

t≥0 ai−tm for some ~a = (a0, . . . , aD) and aj = 0 when j < 0 or j > D. If

the infinite sequence ~v = (v0, v1, . . . , ) is weakly increasing, then

(i) vi = vD−m+1 for i ≥ D − m + 1.

(ii) For any ` = 0, . . . , m − 1,

∑

j≥0

a`+jm =
1

m

D
∑

j=0

aj . (8.9)

Proof. (i) Since i + m > D when i ≥ D − m + 1, we have ai+m = 0. The definition of vi+m implies
vi+m = ai+m+vi and thus vi+m = vi when i ≥ D−m+1. To show vi = vD−m+1 for all i ≥ D−m+1, note
that vD−m+1 ≤ vD−m+2 ≤ · · · ≤ vD+1 since ~v is increasing. However, vD−m+1 = vD+1 by the preceding
argument, implying vD−m+1 = vD−m+2 · · · = vD+1. By iteration, vi = vD−m+1 for all i ≥ D − m + 1.

(ii) Since ai = 0 for i < 0, we have for all 1 ≤ ` ≤ m that

vD−`+1 = aD−`+1 + aD−`+1−m + · · · + aD−`+1−b(D−`+1)/mcm . (8.10)

That is, vD−`+1 =
∑

n an for n = D − ` + 1 mod m. The sum vD−m+1 + · · · + vD−1 + vD is thus
the sum of all entries of ~a. However, (i) implies that vD−m+1 = · · · = vD−1 = vD and therefore,

m · vD−`+1 =
∑D

j=0 aj , for ` = 1, . . . , m. From Eq. (8.10), vD−`+1 is the sum of entries in ~a indexed by
D− ` + 1 modulo m, thus implying the claim since as ` runs over 1 to m, D− ` + 1 runs over all possible
values modulo m. �

In summary, when m is prime, proving unimodality of the posets Lk(m, n) reduces to proving the
unimodality of ~u r(m, n) + ~u r+1(m, n). As such, to extend this idea for m not prime, we study the
unimodality of more general sums of ~u r(m, n).

Conjecture 51. Consider integers a and b such that m ≤ a < b ≤ n + m − 1. If a, b 6= −1 mod p for
every prime divisor p of m, then

mn
∑

i=0





b
∑

j=a+1

uj
i (m, n)



 qi =

b
∑

j=a+1

qj−m+1 (1 − qm(n−j+m))

(1 − qm)

[

j − 1
m − 2

]

q

(8.11)

is unimodal.

We recover Conjecture 48 by taking m prime and letting a = k − 1 and b = k to get the unimodality
of ~uk(m, n). Further, a = k − 1 and b = k + 1 implies the unimodality of ~uk(m, n) + ~uk+1(m, n). As with
the case of m prime, we can extract two consequences of Conjecture 51.
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Consequence of Conjecture 51. Let k > m. If k 6= −1 mod p for every prime divisor p of m, then
Lk(m, n) is unimodal for all n > k − m + 1. Equivalently,

[

k + 1
m

]

q

+ qk+1 1 − qm(n+m−k−1)

1 − qm

[

k
m − 1

]

q

(8.12)

is unimodal under these conditions.

Proof following from Conjecture 51. Given k 6= −1 mod p for all prime divisors p of m and noting that
m 6= −1 mod p, we meet the conditions of Conjecture 51 with a = m and b = k. Therefore, ~p k(m, n) is
unimodal using the decomposition given in Proposition 47. �

Remark 52. Following trivially from Proposition 47, we can obtain an alternative decomposition for
~p k(m, n) in terms of sums of ~u r(m, n): for nonnegative integers k1 < k2 < · · · < k` = k, when each
kj 6= −1 mod p for all prime divisors p of m ≤ k,

mn
∑

i=0

pk
i (m, n) qi =

mn
∑

i=0



1 +

k1
∑

r=m+1

ur
i (m, n) +

k2
∑

r=k1+1

ur
i (m, n) + · · · +

k`
∑

r=k`−1+1

ur
i (m, n)



 qi . (8.13)

Thus, by Conjecture 51, the order ideals Lk(m, n) can be decomposed in terms of ` + 1 unimodal pieces
rank-symmetric about the same point mn/2.

Our second consequence is a more general result on sieved q-binomial coefficients. We state this
consequence as a proposition since we will provide a proof that is independent of our conjecture.

Proposition 53. If m ≤ a < b are non-negative integers where a, b 6= −1 mod p for every prime divisor

p of m, then the sum of the coefficients of q`+∗m in
∑b

j=a+1 qj−(a+1)

[

j − 1
m − 2

]

q

is 1
m

∑b
j=a+1

(

j − 1
m − 2

)

,

for any 0 ≤ ` ≤ m − 1.

Note that even when m is prime, this is more general than Proposition 49. For example, the case that
k = −1 mod m is included when a = k − 1 and b = k + 1. Before proving this result, we shall show how
it follows from Conjecture 51 to support the validity of our conjecture.

Proof following from Conjecture 51. Letting n → ∞ in Eq. (8.11), (and multiplying by qm−a−2 for

convenience), the coefficients (va,b
0 (m), va,b

1 (m), . . . ) defined by

∑

i≥0

va,b
i (m) qi = (1 + qm + q2m + · · · )

b
∑

j=a+1

qj−(a+1)

[

j − 1
m − 2

]

q

(8.14)

form an increasing sequence given Conjecture 51. Thus, defining

∑

i≥0

pa,b
i (m) qi =

b
∑

j=a+1

qj−(a+1)

[

j − 1
m − 2

]

q

, (8.15)

we have

va,b
i (m) = pa,b

i (m) + pa,b
i−m(m) + pa,b

i−2m(m) + · · · . (8.16)

The proposition thus follows from Proposition 50 with ~a = (pa,b
0 (m), pa,b

1 (m), . . .), since
∑

i pa,b
i (m) =

∑b
j=a+1

(

j − 1
m − 2

)

. �

Proof. From
∑

ω:ωm=1

ωr =

{

m if m|r

0 otherwise
, (8.17)

we have that the sum of coefficients of q`+∗m in any polynomial P (q) is

1

m

∑

ω:ωm=1

ω−`P (ω) . (8.18)
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Thus, to prove the sum of the coefficients of q`+∗m in
∑b

j=a+1 qj−(a+1)

[

j − 1
m − 2

]

q

is
∑b

j=a+1

(

j − 1
m − 2

)

/m,

it suffices to prove

1

m

b
∑

j=a+1

∑

ω:ωm=1

ω−(`−j+a+1)

[

j − 1
m − 2

]

ω

=
1

m

b
∑

j=a+1

(

j − 1
m − 2

)

. (8.19)

Or equivalently, since the right hand side equals the ω = 1 term in the left hand side,

1

m

b
∑

j=a+1

∑

ωm=1
ω 6=1

ω−(`−j+a+1)

[

j − 1
m − 2

]

ω

= 0 . (8.20)

To this end, we shall demonstrate that for all ω such that ωm = 1 and ω 6= 1,

b
∑

j=a+1

ωj

[

j − 1
m − 2

]

ω

= 0 (8.21)

by proving this identity holds when ω is a primitive dth root of unity, for all d|m not equal to 1.

If j 6= −1, 0 mod d, then

[

j − 1
m − 2

]

ω

= 0 since the numerator of

[

j − 1
m − 2

]

ω

has one more zero than its

denominator, given that i mod d = 0 for some j − d + 2 ≤ i ≤ j − 1. On the other hand, when j = −1
mod d (see Lemma 1(3) of [9])

[

j − 1
m − 2

]

ω

=

(

n − 1
m/d − 1

)

, (8.22)

for n = (j + 1)/d. Thus, using
[

j
m − 2

]

ω

=
1 − ωj

1 − ωj−m+2

[

j − 1
m − 2

]

ω

,

we also have
[

j
m − 2

]

ω

=
1 − ω−1

1 − ω

(

n − 1
m/d − 1

)

. (8.23)

However, the conditions a, b 6= −1 mod p for every prime divisor p of m imply that a, b 6= −1 mod d for
any d|m. Therefore, the cases a + 1 = 0 mod d, and b = −1 mod d cannot be limits in the sum (8.21)
implying that if a term of the form j = −1 mod d occurs in the sum then so does j + 1 = 0 mod d.
Therefore, since these pairs of terms satisfy

ωj

[

j − 1
m − 2

]

ω

+ ωj+1

[

j
m − 2

]

ω

= ω−1

(

n − 1
m/d − 1

)

+
1 − ω−1

1 − ω

(

n − 1
m/d − 1

)

= 0 ,

the proposition holds. �
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Instituto de Matemática y F́ısica, Universidad de Talca, Casilla 747, Talca, Chile

E-mail address: lapointe@inst-mat.utalca.cl

Department of Mathematics, University of Miami, Coral Gables, FL 33124

E-mail address: morsej@math.miami.edu


