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This thesis is comprised of an introduction, three chapters, and a brief appendix

of figures. The introduction develops the theory of root systems and finite groups

generated by reflections. For brevity and readability we occasionally argue by fiat,

providing references for omitted proofs and further compensating with ample exam-

ples. We establish conventions for ordering and coordinatizing root and weight vectors

for the classical types and conclude with two central theorems from Waldspurger and

Meinrenken.

Chapter 1 introduces a combinatorial algorithm for studying the Waldspurger and

Meinrenken theorems in the type A setting where the underlying reflection group is

the symmetric group, Sn. Our algorithm associates π ∈ Sn with an (n − 1) × (n − 1)

matrix denoted WT(π). We characterize the column, row, and diagonal vectors of

WT(π) in terms of certain lattice paths. Because componentwise order on WT(Sn)

is isomorphic to Bruhat order, we extend the domain of WT to the set of alternating

sign matrices to obtain a new combinatorial model of the classical ASM lattice.

Chapter 2 uses the map WT and folding techniques to study Waldspurger and

Meinrenken’s theorems in types B and C. In particular, we characterize the set of

join-irreducible elements of the Dedekind-MacNeille completion of Bruhat order.

Chapter 3 uses symmetries from Meinrenken’s theorem to compare three notions

of dimension for permutations, the most novel of which relates to SIF permutations.

We conclude by considering a dual graph structure on n-cycles, study its degree

sequence and presenting a number of conjectures relating to its recursive structure.
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Introduction

Reflective symmetries abound in the world around us. A pretty face, a still body

of water, and many architectural designs demonstrate that reflection is somehow

fundamental to our human experience. In geometry the consideration of reflective

symmetries predates the abstract notion of group.

Today, groups generated by reflections are central objects found at the intersec-

tion of Lie theory, physics, geometry, algebra, and combinatorics and many central

theorems in mathematics are built upon the Coxeter diagram classification in Figure

1. Unfortunately, the literature surrounding this intersection quickly becomes remi-

niscent of the parable of the blind men and the elephant; notations are never quite

as standard as one might hope, and the number of definitions can be overwhelming.

This introduction aims to give a succinct overview, providing only necessary defi-

nitions and motivating examples, and ending with a list of abbreviations and symbols.

All but the last section may be regarded as classical, and the familiar reader is invited

to skip to Section 0.7 or 0.8. We conclude the introduction with an organizational

summary beginning on page 32.

0.1 Finite Real Reflection Groups and Coxeter Groups

For our purposes, a reflection is an element of the orthogonal group, On(R) whose

action on Rn sends some non-zero vector α to its negative and fixes α⊥, the hyperplane

orthogonal to α, pointwise. IfW is a finite group with a generating set of involutions,

1
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Π, and a faithful representation ρ ∶W ↪ GL(Rn) such that ρ(α) is a reflection for all

α ∈ Π, then, we call the pair (W,ρ) a finite real reflection group.

The formal study of finite real reflection groups was motivated by Lie theory and

developed throughout the nineteenth century — notably in the works of Möbius,

Jordan, Schläfli, Killing, Cartan, and Weyl. In 1934, Coxeter studied a larger class of

groups (later called “Coxeter groups” by Tits [43]) given by presentations of the form

⟨r1, r2, . . . , rn ∣ (rirj)mij = 1⟩

where mij ∈ {1,2, . . . ,∞} and mij = mji and mij = 1⇔ i = j. Coxeter showed that if

such a group is finite, then it can be faithfully represented as a group generated by

real reflections, i.e., that finite Coxeter groups and finite real reflection groups are the

same class. This equivalence allowed him to completely classify such groups [14] in

1935, using Coxeter diagrams. A Coxeter diagram is simple edge labeled graph that

encodes a Coxeter group in the following way:

• Vertices are the generators, ri for i ∈ {1,2, . . . , n}.

• There is no edge between vertex ri and rj, iff mi,j = 2.

• There is an unlabeled edge between vertex ri and rj iff mi,j = 3.

• An edge between vertex ri and rj has label mi,j, meaning that (rirj)mi,j = 1.

(While a priori the order of element rirj must divide mi,j, one can show that

the order of rirj actually equals mi,j.)

Given two finite reflection groups (W1, ρ1), and (W2, ρ2) one can always cook up

a third by taking the direct product of the groups and the orthogonal direct sum of

the representations, (W1 ×W2, ρ1 ⊕ ρ2). We say that a finite reflection group (W,ρ)

is reducible if (W,ρ) ≅ (W1 ×W2, ρ1 ⊕ ρ2) up to orthogonal change of basis for some

non-trivial groupsW1 andW2. W is irreducible if it is not reducible. W is irreducible
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Figure 1: A subscript in the notation indicates the rank of the reflection group,
which is the dimension of the representation. (In is an exception. As the group is the
symmetries of a regular n-gon, and is always rank 2.)

if and only if its Coxeter diagram is connected, and so it is sufficient to classify the

irreducibles.

It is worth noting that while the term “Coxeter group” is quite standard, it can be

ambiguous if the generating set S is not specified. For example, the dihedral group

of order twelve has two realizations as a Coxeter group:

⟨a, b, c ∶ a2 = b2 = c2 = (ab)3 = (ac)2 = (bc)2 = 1⟩,

⟨r, t ∶ r2 = t2 = (rt)6 = 1⟩.

The first is the reducible Coxeter group A1×A2 of rank 3. The second is the irreducible

Coxeter group G2 of rank 2. To be precise, one must specify a Coxeter system

(W,S) giving both the group, and the generating set of reflections.

0.2 Geometric Realization of Coxeter Groups

Recall that finite real reflection groups came with three pieces of information: a

group W , a generating set of involutions S, and finally, a faithful representation ρ
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such that for all s ∈ S, ρ(s) is a reflection. A Coxeter system (W,S), in contrast, has

no representation, and consequently, no geometry. One may attempt to fix this by

constructing a linear representation called the geometric realization (as defined in

Section 5.3 of Humphreys [19]):

Let V be a vector space over R spanned by the abstract symbols {αs ∶ s ∈ S} and

define a symmetric bilinear form B on V pairwise on the basis:

B(αs, αt) ∶= − cos
π

m(s, t) .

The motivating idea is that this form will, under sufficiently nice conditions, encode

the dihedral angles between generating hyperplanes. Next, for each s ∈ S, define the

“reflection” across the “hyperplane” corresponding to involution s by

ρs(λ) ∶= λ − 2B(αs, λ)αs.

The geometric realization is the linear map ρ ∶W ↪ GL(V ) defined on the gener-

ators by s↦ ρs. This representation preserves B, the bilinear form B(ρ(αs), ρ(αt)) =

B(αs, αt) and in so doing satisfies the relations from the group presentation.

We call the elements {ρs s ∈ S} simple reflections. The geometric realization of

the Coxeter system (W,S), is well defined for any Coxeter system (with the conven-

tion that B(αs, αt) = −1 if m(s, t) =∞) but while the realization is always faithful, B

will not, in general, be positive definite, and the “reflections” need not be orthogonal.

Theorem 0.1. (Section 6.4 in Humphreys [19]) The form B is positive definite if

and only if W is finite.

In this case, it turns out that the geometric realization also essential, meaning

that no nontrivial subspace of V is fixed pointwise byW i.e. the trivial representation

is not a factor.
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If B is positive definite, then (V,B) is an inner product space, so for a finite

Coxeter group W we may identify the inner product space (V,B) with Rn where n

is the rank of (W,S). Because the inner product is invariant under the group action,

the geometric realization is orthogonal and the generating “reflections” are actually

Euclidean reflections. It then turns out that the dihedral angle between the fixed

hyperplanes of the simple reflections ρs and ρt is π/m(s, t) for all s, t ∈ S.

For any finite Coxeter system (W,S) then, there is a naturally associated hyper-

plane arrangement A, called the Coxeter arrangement, consisting of the simple

reflections and their conjugates. Hyperplane arrangements are of general interest

(see Stanley’s introduction to the subject [36]) with the most basic question being

the enumeration of regions, i.e. connected components of V ∖ ( ⋃
HinA

H). For Coxeter

arrangements, regions are also called chambers and one has the following (see Hall

[18] chapter 8 for details):

Proposition 0.2. The group W acts freely and transitively on the chambers. Thus,

the order of W is equal to the number of chambers.

Proposition 0.3. Fix a chamber CΩ. Then for all v ∈ V , the W -orbit of v contains

exactly one point in the closure CΩ of CΩ.

The finite irreducible Coxeter groups fall into two overlapping classes: groups of

symmetries of regular polytopes, and groups which stabilize a lattice in Rn (called

Weyl groups). This second class is closely related to the classification of semisimple

Lie algebras and may be endowed with the additional structure of a “crystallographic

root system” (see Section 0.3). The irreducible real finite reflection groups are exactly

those with Coxeter diagrams given in Figure 1.

Throughout this thesis, we will always start with type An, where the finite real

reflection group is the symmetric group on n + 1 letters Sn+1 generated by adjacent

transpositions S = {ri = (i, i+ 1)} along with the reflection representation defined

as follows:
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Figure 2: The Weyl group for A2 is a finite real reflection group of rank 2, but
its defining representation is of rank 3, generated by the hyperplanes x − y = 0 and
y − z = 0. Restriction to the hyperplane (1,1,1)⊥ yields the reflection representation.

Geometrically, Sn+1 acts on Rn+1 by permuting coordinates and the generating

adjacent transpositions (i, i + 1) are represented by generating reflections across the

hyperplanes (ei − ei+1)⊥. This representation is sometimes called the defining rep-

resentation of Sn+1. The defining representation is not essential since the one-

dimensional subspace generated by the vector of all ones is acted upon trivially. We

obtain the reflection representation from the defining representation by restricting to

the hyperplane where the coordinates sum to zero (the black hexagon in Figure 2)

which we denote Rn+1
0 . The reflection representation is isomorphic to the geometric

realization of the Coxeter system (An, S).

0.3 Root Systems

Reflections correspond geometrically to hyperplanes– objects of codimension one. It

is often more convenient to work with objects of dimension one, such as the vectors

normal to the reflecting hyperplanes. This inspires the axiomatic definition of a root

system.

A finite set Φ of vectors (which we will call roots) in a real vector space V with

inner product (⋅, ⋅) forms a root system if it satisfies the following conditions:
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1. The roots span V :

RΦ = V.

2. The only scalar multiples of a root α ∈ Φ that belong to Φ are α itself and −α:

∀α ∈ Φ, Rα = {±α}.

3. For every root α ∈ Φ , the set Φ is closed under reflection through the hyperplane

perpendicular to α:

∀α,β ∈ Φ, tα(β) ∶= β − 2
(α,β)
(α,α)α ∈ Φ.

The root system is called crystallographic if a fourth condition is met:

4. (Integrality) If α and β are roots in Φ , then the projection of β onto the line

through α is an integer or half-integer multiple of α. Equivalently:

∀α,β ∈ Φ, 2
(α,β)
(α,α) ∈ Z.

The group generated by the tα we will call W (Φ). It is a finite real reflection group

(finiteness follows from the fact that it injects into the group of permutations of Φ).

In fact, every finite real reflection group arises from a root system in this way. On

the other hand, given a Coxeter system (W,S), assuming B(αs, αs) = 1 for all α ∈ Φ,

and following the notation conventions from Section 0.2, one can show that

Φ(W ) ∶= {w(αs) ∶ w ∈W,s ∈ S}
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is a root system. One may verify thatW (Φ(W )) ≅W and if we define isomorphism of

root systems up to orthogonal transformations and length of roots, then Φ(W (Φ)) ≅

Φ.

Because root systems are highly symmetric, it helps to make some arbitrary choices

to establish a frame of reference. If Φ is a root system in the real vector space V , any

generic hyperplane will partition Φ into two sets,

Φ = Φ+ ⊔Φ−

which we call a positive system and negative system respectively. The entire

root system is contained in the cone generated by Φ+, which consists of a positive

cone C = { ∑
α∈Φ+

cαα ∶ cα ∈ R≥0} and a negative cone −C = { ∑
α∈Φ−

cαα ∶ cα ∈ R≥0} . Let

Π denote the set of roots generating the extremal rays of the positive cone. Every

root α ∈ Φ may be expressed as a linear combination (over R in general, Z if the

root system is crystallographic) of elements of Π with either all coefficients positive

(if α is in the positive cone) or all coefficients negative (if α is in the negative cone).

It is less obvious (but true) that Π is a vector space basis for V . We say that Π

is a simple system because it possesses these two properties. In general, simple

systems and positive systems determine each other uniquely (Section 1.3 of [19]).

The simple vectors α of Φ have a natural interpretation in terms of the Coxeter

group W (Φ) because their associated reflections tα form a Coxeter generating set for

W . Moreover, given a Coxeter system (W,S) there exists some hyperplane for which

the roots {αs ∶ s ∈ S} are a simple system for Φ(W ). We will conflate these notions

by always picking such a hyperplane as our “generic” one, thus identifying Π and

{αs ∶ s ∈ S}, the set of simple roots.
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Figure 3: The G2 root system with a choice of α and β simple roots. The positive
cone is in green, and the negative cone is in red.

0.4 The Crystallographic Restriction: Coroots and

Weights

A subgroup G ⊂ GL(V ) is said to be crystallographic if it stabilizes a lattice

(discrete additive subgroup) L in V . That is, gL ⊂ L for all g ∈ G. In Figure 1, notice

that H3, H4, and most of the dihedral groups are not crystallographic. The following

theorem explains why:

Theorem 0.4. (Section 2.8 of Humphreys [19]) If (W,S) is a Coxeter group whose

geometric realization is crystallographic, then for all α,β ∈ S, the integer m(α,β)

must be either 2,3,4, or 6.

Proof. If α ≠ β we know that ραρβ ≠ 1 acts on the plane spanned by α and β as a

rotation through the angle θ ∶= 2π/m(α,β), while fixing the orthogonal complement

pointwise. Thus its trace, relative to a compatible choice of basis for V , is (n − 2) +

2 cos θ where n = dim(V ). On the other hand, the matrix of ραρβ with respect to the

basis of simple roots, is an integral matrix so it has an integral trace. Thus, cos θ must

be a half-integer, while 0 < θ ≤ π. The only possibilities are cos θ = −1,−1/2,0,1/2,

corresponding to the cases m(α,β) = 2,3,4,6.
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Crystallographic information may be conveniently encoded via the n × n Cartan

matrix: CΦ ∶= [aij] where

aij ∶=
2(αi, αj)
(αi, αi)

.

In the previous section we mentioned the classification of root systems up to orthog-

onal transformation and length of roots; ignoring crystallographic structure. The

crystallographic restriction on the root system Φ is equivalent to W (Φ) being a crys-

tallographic group. In this setting, the integer span of the roots ZΠ = ZΦ ⊂ V is

discrete and it is called the root lattice, ΛΦ.

Proposition 0.5. (corollary of proposition 8.6 in Hall [18]) Crystallographic root

systems can have at most two distinct lengths for roots, which are naturally called

long roots and short roots.

If one replaces α ∈ Φ with α∨ ∶= 2
(α,α) α the resulting set of vectors is again a root

system, called the dual root system of Φ. We say that the roots of the dual system

Φ∨ are coroots of Φ. The root systems for types A, D, F4 and E only have one length

of root and are self dual (sometimes called simply laced). G2 has two root lengths,

but happens to be isomorphic to its dual via 30○ rotation (see Figure 3). B2 and C2

are duals which also happen to be isomorphic via 45○ rotation and scaling by a factor

of two. For larger n, root systems Bn and Cn are dual and not isomorphic (see Figure

4).

It turns out that there will always be a unique highest root; that is a positive

root whose inner product with the positive normal vector to the generic hyperplane

used to partition Φ = Φ+⊔Φ− is as large as possible. We call this highest root αmax

and we will need it later.

The crystallographic restriction gives rise to a second notion of duality for roots:

vectors called weights. Historically weights predate roots, and are defined in Lie

theoretic terms as a sort of generalized eigenvalue. We will give an equivalent com-
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Figure 4: The regular hypercube and regular cross polytope have the same group of
symmetries, but they give rise to non-isomorphic crystallographic root systems in all
dimensions greater than two.

binatorial definition here, but refer the reader to Bourbaki [10] or Hall [18] for Lie

theoretic definitions and exposition. Define the set of weights

ΛΩ ∶= {ω ∈ V ∶ 2(α,ω)
(α,α) ∈ Z ∀α ∈ Φ} .

Because the inner product is a continuous and bilinear function, ΛΩ is discrete and

forms an additive subgroup, and is accordingly called the weight lattice. The crys-

tallographic restriction further implies that the weight lattice includes the root lattice

as a sublattice (see Figure 5). The order of the group ΛΩ/ΛΦ is called the index of

connection. (In the general theory, this determines the number of nonisomorphic

Lie groups possessing the same Lie algebra structure).
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Given a roots system Φ with positive simple roots {α1, . . . , αn} = Π, We define

fundamental weights ωj such that

2(αi, ωj)
(αi, αi)

= δi,j

for all i, j ∈ [n]. Because the simple roots {αi} form a basis for the vector space V ,

so do the fundamental weights {ωj} =∶ Ω.

Proposition 0.6. Fundamental weights are, in fact, weights, and they generate the

weight lattice.

ZΩ = ΛΩ.

Proposition 0.7. The columns of the Cartan matrix give the coordinates of the

simple roots in the basis of the fundamental weights. Moreover, the determinant of

the Cartan matrix is the index of connection.

For example, the root system G2 has Cartan matrix [ 2 −3−1 2 ] meaning that α1 =

2ω1 − 1ω2 and α2 = −3ω1 + 2ω2 as one can verify in Figure 5. Notice that intrinsic to

the definition of the Cartan matrix, is an ordering of the simple roots, α1, α2, . . . , αn.

Unfortunately, in general, there is no canonical choice for such an ordering. There

are, however, standard conventions for types A, B, C, and D. As noted in Section 0.3,

for type A, one may identify the vector space V with the codimension one subspace

of Rn+1
0 ⊂ Rn+1 on which the standard basis coordinates sum to zero, and naturally

choose ΠA = {αi = ei − ei+1 ∶ 1 ≤ i ≤ n}. With respect to this ordering, the Cartan

matrix, is

CA(i, j) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2 i = j

−1 i = j ± 1

0 otherwise

.
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For types B, C, and D, the vector space V is identified with Rn and the simple

roots are coordinatized as:

ΠB = {αi = ei − ei+1 ∶ 1 ≤ i ≤ n − 1} ∪ {αn = en} (1)

ΠC = {αi = ei − ei+1 ∶ 1 ≤ i ≤ n − 1} ∪ {αn = 2en} (2)

ΠD = {αi = ei − ei+1 ∶ 1 ≤ i ≤ n − 1} ∪ {αn = en−1 + en} (3)

giving Cartan matrices:

CB(i, j) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0

CAn−1
⋮

0

−1

0 . . .0 − 2 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

CC(i, j) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0

CAn−1
⋮

0

−2

0 . . .0 − 1 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

CD(i, j) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⋮

CAn−1
0

−1

0

. . .0 − 1 0 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Taking determinants, we find the index of connection is n + 1 for type An, is 2 for

both Bn and Cn, and is 4 for type Dn.

0.5 Affine Reflection Groups

We will now transition our attention to a class of infinite groups generated by affine

reflections (across hyperplanes not necessarily containing the origin) in Euclidean

space. We will see that these groups are intimately connected to finite Weyl groups

and the crystallographic structure introduced in Section 0.4. We follow Chapter 4 of

Humphreys [19].

Define an affine hyperplane in real vector space V by

Hα,k ∶= {λ ∈ V ∶ (λ,α) = k}.
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Figure 5: The superimposed root lattices and weight lattices for A2, B2, C2 and G2

with index of connection 3, 2, 2, 1 respectively. The darker points are roots, and the
fundamental alcoves are shaded blue.
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Notice that Hα,k =H−α,−k and that Hα,0 = α⊥. The hyperplane Hα,k may be obtained

by translating Hα by k
(α,α)α = k

2α
∨ (where α∨ is the coroot corresponding to α).

Translations in a vector space V are normalized by the general linear group,

GL(V ). Algebraically, this amounts to nothing more than the fact that for any

A ∈ GL(V ) and x,λ ∈ V one has A(A−1x+λ) = x+Aλ.We may then define the affine

group Aff(V ) as the semidirect product of GL(V ) and the group of translations by

elements of V .

Define the affine reflection across Hα,k by

sα,k(λ) ∶= λ − ((λ,α) − k)α∨.

Geometrically, sα,k fixes Hα,k pointwise and sends the zero vector to kα⊥. Hα,k agrees

with the original definition of (linear) reflection when k = 0. One can always write an

affine reflection as a linear reflection followed by a translation: sα,k(λ) = sα(λ) + kα∨

Given a crystallographic root system Φ, define an arrangement of hyperplanes

H ∶= {Hα,k ∶ α ∈ Φ, k ∈ Z}.

This arrangement H is acted upon naturally by both the Weyl group, W = W (Φ),

and the coroot lattice, ΛΦ∨ . For all w ∈W , one may verify:

wHα,k =Hwα,k and wsα,kw
−1 = swα,k.

For any coroot λ and x ∈ V :

Hα,k + λ =Hα,k+(λ,α) and λ + sα,k(x − λ) = sα,k+(λ,α)(x).
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Given a crystallographic root system Φ, define the affine Weyl group Wa =

Wa(Φ) to be the subgroup of aff(V ) generated by all affine reflection sα,k where

α ∈ Φ, k ∈ Z.

Proposition 0.8. Wa is the semidirect product of W and the translation group cor-

responding to the coroot lattice ΛΦ∨.

Proof. The W action on V takes coroots to coroots, and thus normalizes ΛΦ∨ . Since,

moreover, ΛΦ∨ andW intersect trivially, their semidirect product L⋊W is well defined

and we need only check equality of L ×W and Wa as sets. Because sα,k(x) = sα(x) +

kα∨, the generators of Wa are all in L ⋊W and thus Wa ⊂ L ×W . On the other

hand, translation by a coroot can be expressed as a composition of affine reflections:

x + kα∨ = sα,k(sα,0(x)) so L ⊂Wa. Since W ⊂Wa as well, we have L ×W ⊂Wa.

To study finite Weyl groups geometrically, we observed a free transitive action of

the group on the regions, or chambers of the complement of the corresponding Coxeter

arrangement. A similar strategy works for affine Weyl groups. The complement of the

affine Coxeter arrangement, V 0 ∶= V ∖( ⋃
H∈H

H) is a collection of connected components

called alcoves (these are the triangular regions in Figure 5). Each alcove is defined

by a (finite) set of inequalities of the form kα < (λ,α) < kα + 1, for α ∈ Φ+, kα ∈ Z and,

as such, is an open set. Define the fundamental alcove to the be particular alcove

A ∶= {λ ∈ V ∶ 0 < (λ,α) < 1 ∀α ∈ Φ+} .

It is a general fact that αmax − α is a sum of simple roots for all α ∈ Φ+. This

allows one to remove superfluous inequalities and obtain a simpler description of the

fundamental alcove:

Proposition 0.9.

A = {λ ∈ V ∶ (ai, λ) > 0 ∀αi ∈ Π and (αmax, λ) < 1} .
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Proposition 0.10. Because the simple roots are a simple system one may express

αmax = ∑
αi∈Π

niαi for some ni unique integers. The fundamental alcove is a simplex

and is the interior of the convex hull of the zero vector and vertices vi, each a scalars

of fundamental weight ωi with coefficient ci =
2

ni(αi, αi)
. That is:

Ā = Conv ({ 2

ni(αi, αi)
ωi ∶ 1 ≤ i ≤ n} ∪ {0}) .

Proof. Recall that, by definition, the fundamental weights satisfy
2(ωi, αj)
(αi, αi)

= 0 for

i ≠ j, and (αi, ωi) =
(αi, αi)

2
.

(αmax, ciωi) = 1

ci(∑njαj, ωi) = 1

cini(αi, ωi) = 1

cini(αi, ωi) = 1

cini
(αi, αi)

2
= 1

ci =
2

ni(αi, αi)
.

The numbers ni are sometimes called the marks [41].

For type A, every root α has (α,α) = 2 and αmax = ∑
αi∈Π

αi so ci = 1 for all i, and

the fundamental alcove is simply the interior of the convex hull of the zero vector and

the fundamental weights.

For type B (with respect to a suitable choice for the generic hyperplane defining

positive and negative roots) one has αmax = e1 + e2 = α1 + 2(α2 +α3 + ⋅ ⋅ ⋅ +αn) and the
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non-zero vertices of the fundamental alcove are:

( 2

1 × 2
ω1,

2

2 × 2
ω2,

2

2 × 2
ω2, . . . ,

2

2 × 2
ωn−1,

2

2 × 1
ωn) = (ω1,

ω2

2
,
ω3

2
, . . . ,

ωn−1

2
, ωn) .

In particular, for B2, αmax = 1α1 + 2α2 and (α1, α1) = 2 and (α2, α2) = 1 and the

non-zero vertices of the alcove (as shown in Figure 5) are exactly the fundamental

weights:

v1 =
2

1 × 2
ω1 = ω1

v2 =
2

2 × 1
ω2 = ω2.

For type C,(again with respect to a suitable choice for the generic hyperplane

defining positive and negative roots) αmax = 2e1 = 2(α1 + α2 + ⋅ ⋅ ⋅ + αn−1) + αn and the

non-zero vertices of the fundamental alcove are:

( 2

2 × 2
ω1,

2

2 × 2
ω2,

2

2 × 2
ω2, . . . ,

2

2 × 2
ωn−1,

2

1 × 4
ωn) = (ω1

2
,
ω2

2
,
ω3

2
, . . . ,

ωn−1

2
,
ωn
2

) .

In particular, for C2, αmax = 2α1 + 1α2 and (α1, α1) = 2 and (α2, α2) = 4. Thus,

v1 =
2

2 × 2
ω1 =

ω1

2

v2 =
2

1 × 4
ω2 =

ω2

2
.

For G2, αmax = 3α1 + 2α2. It is common to coordinatize such that α1 = (1,−1,0)

α2 = (−1,2,−1) and so (α1, α1) = 2 and (α2, α2) = 6. Thus,

v1 =
2

3 × 2
ω1 =

1

3
ω1

v2 =
2

2 × 6
ω2 =

1

6
ω2.
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0.6 Partial Orders on Coxeter Groups

We have seen that finite Coxeter systems not only have an algebraic description in

terms of the group presentation, but also a geometric description as a finite group

generated by reflections with an associated root system. There is a third combinatorial

description in terms of “reduced words”: Let (W,S) be a Coxeter system with finite

generating set S. Every element of W may be expressible (non-uniquely) as a word

in the letters from S. Consider the word length function ` ∶ W → Z with respect to

S, which sends each element w ∈ W to the length of a shortest word describing it.

If `S(w) = r and w = si1si2⋯sir , we call si1si2⋯sir a reduced word for w. Reduced

words are generally not unique, but they satisfy two important properties:

THE EXCHANGE PROPERTY: Let w = s1s2⋯sr be a reduced word and consider

s ∈ S. If `S(sw) < `S(w) then sw = s1⋯ŝi⋯sr for some 1 ≤ i ≤ r.

THE DELETION PROPERTY: If w = s1s2⋯sr and `s(w) < r, then we have w =

s1⋯ŝi⋯ŝj⋯sr for some 1 ≤ i < j ≤ r.

Theorem 0.11. (Chapter 1 of Björner and Brenti [9]) If W is a group with a gen-

erating set S of involutions, the following are equivalent:

• (W,S) is a Coxeter system.

• (W,S) satisfies the exchange property.

• (W,S) satisfies the deletion property.

There are several natural partial orders on the set of elements in a Coxeter system.

We call “≤” an order relation or a partial order on a set P if it is reflexive (x ≤ x

for all x ∈ P ), transitive (x ≤ y and y ≤ z implies x ≤ z for all x, y, z ∈ P ), and

antisymmetric (x ≤ y and y ≤ x implies x = y). A set along with a partial order

is called a poset. A poset P is further said to be graded if there exists a rank
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function rk ∶ P → Z with the property that for all x ≤ y in P , every maximal chain

x = z0 < z1 < ⋅ ⋅ ⋅ < zk = y is the same length k = rk(y) − rk(x).

Definition 1. The right (respectively left) weak order on Coxeter system (W,S)

is defined for all ν,µ ∈W by

ν ≤ µ⇐⇒ `S(ν) = `S(µ) + `S(ν−1µ)

(ν ≤ µ⇐⇒ `S(ν) = `S(µ) + `S(µν−1))

It is elementary to show that these are order relations. The right and left weak

orders are generally not the same partial order, but inversion induces a poset isomor-

phism between the two. It is therefore not uncommon to talk abstractly about “the

weak order” on (W,S). The weak order is graded with rank function `S.

The right (left) weak order may be thought of in terms of prefixes (suffixes) of

reduced words: ν ≤ µ if and only if there exists a reduced word of ν which is a prefix

(suffix) of a reduced word for µ. Note that here inversion equates to reading a word

backwards and switches prefix and suffix. We say that s ∈ S is a left descent of

an element w if `(sw) < `(w). Similarly, if `(ws) < `(w) we say that s is a right

descent of w.

It follows from the exchange property (see Björner and Brenti chapter 3 [9]) that

the weak order is, in general, a meet-semilattice: there exist a greatest lower bound

for any pair of elements ν,µ ∈W called their meet and denoted ν ∧µ. If W is finite,

then the weak order has a maximum element, often called “the longest element” and

denoted ω0. It then follows from general lattice theory (see proposition 3.3.1 of EC1

[37]) that the weak order for a finite Coxeter system is a lattice: a poset with both

a meet an a join (a least upper bound for every pair of elements ν,µ ∈ W denoted

ν ∨ µ.) Finite lattices will always have a unique smallest element, denoted 0̂ and a

unique largest element, denoted 1̂. It is perhaps unfortunate that “lattice” refers to
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Figure 6: The graph of the Permutohedron of type A3 is also the Hasse diagram
of the weak order on the Weyl group of A3 (i.e. the symmetric group S4). The
Permutohedron of type B3 is shown on the right.

both a type of poset, and a discrete additive subgroup of Euclidean space, but let us

address any ambiguity as it may arise.

We say an element y covers an element x in poset P if x < y and there does

not exist x ≨ z ≨ y. We say that x is covered by y and write x ⋖ y. (Note that

left (respectively right) descents equate to covers in the left (respectively right) weak

order.) For locally finite posets (ones with finite intervals), one often considers the

Hasse diagram: a directed graph with vertex set the elements of P and an edge

from x to y if and only if x ⋖ y. Hasse diagrams are typically drawn so that all edges

are directed up. Forgetting orientation, the Hasse diagram of a the weak order for

a Coxeter system of rank n will be an n-regular graph; the Cayley graph of W with

respect to generating set S.

The weak order for a finite Coxeter system (W,S) also has a nice geometric

interpretation in terms of the Coxeter arrangement. Recall that the connected

components of V ∖(∪H∈AH), called chambers, are acted upon freely and transitively

by W . Each hyperplane in A has a positive side corresponding to the direction of
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Figure 7: The hasse diagrams of the weak order and the (strong) Bruhat order for
the Weyl group of A2.

its positive root, and the intersection of all of the positive half-spaces we called the

fundamental chamber.

Picking a generic point p in the fundamental chamber, its W -orbit will have one

point in each chamber and give a natural bijection between chambers and elements

of W . The convex hull of these points is called the permutohedron of type W , and

its 1-skeleton is isomorphic to the Hasse diagram of the weak order (see Figure 6).

We refer the reader to Fomin and Reading [16] and Björner and Brenti [9] for more

on the weak order, permutohedra, and related combinatorics.

A second partial order on Coxeter systems (W,S) is the strong order or Bruhat

order. We say ν ≼ µ if there is a reduced word (again, in letters from S) for ν which

appears as any subword of µ (not necessarily a prefix or suffix). Since prefixes and

suffixes are both subwords, Bruhat order refines both the right and left weak orders,

and removes their inherent “sidedness”. (See Figure 7.) Bruhat order is (generally)

not a lattice or meet-semilattice, but we will see in Section 0.7 that (at least in types

A and B) it can be completed to one in a somewhat natural way. Bruhat order arises

as the inclusion order of closures of Bruhat cells from the corresponding semisimple

Lie group.
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0.7 Dedekind-MacNeille Completion of Bruhat Or-

der and Alternating Sign Matrices

Given a lattice L, one may consider the greatest lower bound or least upper bound of

any finite set of elements, extending the binary meet and join operators ∧,∨ ∶ L×L→ L

to the maps ∧,∨ ∶ L × ⋅ ⋅ ⋅ ×L´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n times

→ L. It is straightforward to verify that x1 ∧ x2 ∧ ⋅ ⋅ ⋅ ∧ xn

and x1 ∨ x2 ∨ ⋅ ⋅ ⋅ ∨ xn are well-defined regardless or reordering or parenthesization.

In general, however, the meet and join operators need not extend to arbitrary

(infinite) subsets of L. Take, for example, the rational numbers Q with their usual

total order. The element 3 ∨ 3.1 ∨ 3.14 ∨ 3.141 ∨ . . . is not well defined because the

π ∉ Q. If the meet and join operators do extend to all subsets of a lattice L, we say

that L is a complete lattice.

Definition 2. (MacNeille 1937 [24]) The Dedekind-MacNeille completion of a

poset P is the smallest complete lattice L containing P as a subposet.

The motivating example is that the Dedekind-MacNeille completion of Q is R. On

the other extreme, the Dedekind-MacNeille completion of any locally-finite lattice L

is merely L itself. In general, the completion may be constructed explicitly using

a generalization of the Dedekind cuts used to construct the real numbers from the

rationals. We refer the reader to [8] for more details on general constructions. We

will need one particular property later:

Proposition 0.12. (Siegfried & Schröder, Proposition 5.3.7, p. 121 [35]) A poset P

is join-dense and meet-dense in its Dedekind–MacNeille completion; that is, every

element of the completion is a join of some set of elements of P , and is also the meet

of some set of elements in P . The Dedekind–MacNeille completion is characterized

among lattice completions of P by this property.
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The only posets we have considered which are not a finite lattices, are Bruhat

orders. One may wonder how many element are in their Dedekind-MacNeille comple-

tions, and if the elements have natural combinatorial descriptions. For types A and

B, Lascoux and Schützenburger showed that the Bruhat orders “exhibits clivage 1”

and that a poset exhibits clivage if and only if its Dedekind-MacNeille completion is

a “distributive lattice”.

A distributive lattice is a lattice where for all x, y, z ∈ L

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z).

One can show that this property is equivalent to

x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z).

Stanley calls distributive lattices “the most important class of lattices from the

combinatorial point of view,” and gives a great overview in EC1 Sections 3.4 and

3.5 [38]. The fundamental theorem of finite distributive lattices (sometimes called

Birkhoff’s representation theorem) is particularly appealing:

Theorem 0.13. Let L be a finite lattice. Then L is distributive if and only if there

is a unique (up to isomorphism) poset P for which L ≅ J(P ).

We say that, in a lattice L, an element 0̂ ≠ x ∈ L is join-irreducible if x cannot

be expressed as the join of two other elements. In a finite lattice, it turns out that

an element is join-irreducible if and only if it covers exactly one element. Further, if

L is a distributive lattice, then the poset P from theorem 0.7 is merely the subposet

of the join-irreducibles.
1A finite poset is said to exhibit “clivage” [23] or be “dissective” [34] if every join-irreducible

element generates a principal order filter whose complement is a principal order ideal.
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In the left (respectively right) weak order, the join-irreducibles are exactly the

elements with a unique left (respectively right) descent. Such elements are called left

(respectively right) grassmannian elements. Recall that Bruhat order refines both

the left and right weak orders so for an element to be join-irreducible in the MacNeille

completion of Bruhat order, it is necessary that it have at most one left descent and

at most one right descent. On the other hand, it must have at least one left descent

and at least one right descent to not be the identity (0̂ in the poset). We call elements

with exactly one left descent and one right descent bigrassmannian elements.

In the type A setting (the symmetric group Sn with generating set the adjacent

transpositions, si = (i, i+1) for 1 ≤ i ≤ n−1) the number of descents of the permutation

π can be recovered from its oneline notation. If the ith entry in the oneline notation

is greater than the i+1st entry, then i is a left descent of π. If the letter i+1 appears

to the left of the letter i, then i is a right descent of π.

Given a triple (a, b, c) with 0 ≤ a < b < c ≤ n one may construct a bigrassmannian

permutation in oneline notation by writing

1 2 . . . a − 1 c c + 1 . . . n − 1naa + 1 . . . b − 1 b

This map is a bijection and therefore demonstrates that there are (n+1
3
) bigrass-

mannian permutations in Sn.

Lascoux and Schützenburger showed that, for type A, the bigrassmannian per-

mutations are exactly the join-irreducibles in the Dedekind-MacNeille completion of

Bruhat order. They also gave a beautiful combinatorial description of all of the

elements in terms of alternating sign matrices and monotone triangles:

Definition 3. Alternating Sign Matrices or ASMs, are square matrices with entries

0, 1, or −1 whose rows and columns sum to 1 and whose non-zero entries in each row

and column alternate in sign.



26

ASMs were first considered by Mills, Robbins, and Rumsey [26] as a natural gen-

eralization of permutation matrices. As motivation, they showed that using Dodgeson

condensation to compute determinants amounts to summing over ASMs instead of

permutations. A conjectural product formula was given in their seminal paper, but

enumerating ASMs remained an open problem for many years. Their formula was

first proved by Zeilberger in 1995 [45], and later Kuperberg found a different proof

[21] using the Yang Baxter equation and methods from statistical physics.

Theorem 0.14. (Zeilberger 1996 [45]) There number of n × n ASMs is

ASM(n) =
n−1

∏
k=0

(3k + 1)!
(n + k)! = 1!4!7!⋯(3n − 2)!

n!(n + 1)!⋯(2n − 1)! .

At the time of the Mills, Robbins, Rumsey paper, this product formula was al-

ready known to enumerate two other classes of combinatorial objects: descending

plane partitions (DPPs) and totally symmetric self complementary plane partitions

(TSSCPPs). In an attempt to establish a bijection with these other objects, Mills,

Robbins, and Rumsey transformed their alternating sign matrices into certain trian-

gular arrays [11]:

Definition 4. A monotone triangle (or strict Gelfand pattern or a gog triangle)

is a number triangle with n rows, the kth row containing exactly k entries between

1 and n. There is strict increase across rows and weak increase diagonally or down

columns.

The Mills, Robbins, Rumsey bijection from ASMs to monotone triangles is as

follows: Let the kth row of the triangle equal the positions of 1’s in the sum of the

first k rows of an alternating sign matrix. (see Figure 8). In particular, the identity
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⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 0 0 0
0 1 −1 1 0 0
0 0 0 0 1 0
0 0 1 0 −1 1
1 0 0 0 0 0
0 0 0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

↔

3
2 4
2 4 5
2 3 4 6
1 2 3 4 6
1 2 3 4 5 6

↔

2
1 2
1 2 2
1 1 1 2
0 0 0 0 1

Figure 8: An ASM with its corresponding monotone triangle and reduced monotone
triangle

matrix will always correspond to the monotone triangle

1

1 2

⋮ ⋮ ⋱

1 2 ⋯ n

.

Because this is the 0̂ in the lattice of monotone triangles and the partial order is

componentwise comparison, we may consider reduced monotone triangles by sub-

tracting this triangle from all of the others (again, see Figure 8).

Unfortunately, to this day, there are no explicit bijections between ASMs and

TSSCPPs or DPPs. There are, however some partial results [39] and determinantal

formulas proving that many statistics on these objects are equinumerous [6]. Despite

all this, the definition of monotone triangles was not in vain.

Theorem 0.15. (Lascoux and Schützenberger, 1996 [23]) The Dedekind-MacNeille

completion of Bruhat order on permutations is isomorphic to the lattice of monotone

triangles ordered componentwise.

Lascoux and Schützenberger further showed that the join-irreducible elements are

exactly the bigrassmannian permutations [23] We mentioned earlier, using a bijection

with triples 0 ≤ a < b < c ≤ n, that the number of bigrassmannian permutation in Sn
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is the tetrahedral number, (n3) which is counted by the coefficients of

1

(1 − z)4
= 1 + 4z + 10z2 + 20z3 + 35z4 + . . . .

One can also show that bigrassmannian permutations correspond to the reduced

monotone triangles determined by fixing a single entry and making everything else as

small as possible (so as to still be a monotone triangle). There are n − 1 ways to fix

the entry in the top row, n− 2 was to fix either of the entries in the second row, n− 3

ways to fix any of the three entries in the third row, etc. for a total which verifies the

tetrahedral count:

1(n − 1) + 2(n − 2) + 3(n − 3) + ⋅ ⋅ ⋅ + (n − 1)1 = (n − 1)n(n + 1)
6

.

One may also associate each n × n ASM M with its (n − 1) × (n − 1) North-East

corner-sum matrix:

NE(M)i,j ∶=∑
a≤i
b>j

Ma,b for 1 ≤ i, j ≤ n − 1.

One can show that the component-wise partial order on these corner sum matrices is

the same as the order on monotone triangles. For more on alternating sign matrices,

monotone triangles, corner-sum matrices, and their history we refer to [12].

Lascoux and Schützenberger also studied the Dedekind-MacNeille completion of

type B Bruhat order, showing that there are n(2n2+1)
3 or octahedral many join-

irreducibles in its Dedekind-MacNeille completion. All of them are (necessarilly)

bigrassmannian, but there are (n
4
) bigrassmannians which are not join-irreducibles.

We give an explicit description of the join-irreducibles and discuss various subtleties

in Chapter 2.
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Geck and Kim [17] showed that type D Bruhat order does not exhibit clivage and

that consequently, its Dedekind-MacNeille completion is not a distributive lattice.

We leave this case, along with the exceptional types, untouched.

0.8 The Waldspurger and Meinrenken Theorems

The main contribution of this thesis is to make combinatorially explicit for types A

B and C the contents of the following theorems of Waldspurger and Meinrenken from

the early 2000s:

Theorem 0.16. (Waldspurger [44])

Let W be a finite group generated by reflections in a Euclidean vector space V .

Let CΩ ⊂ V be an open dominant chamber, and C ⊂ V the closed cone over the positive

roots of Φ(W ). Associate with each group element w the relatively open cone Cw ∶=

(id −w)CΩ. Then the cones Cw are all disjoint and their union covers C. That is,

C = ⊔
w∈W

Cw.

Along with Waldspurger’s original proof, there are two elegant alternative proofs

in Meinrenken [25] and Bibikov and Zhgoon [7]. All are quite topological in nature,

and as we will not be reusing any of the machinery from these proofs, we omit them.

Meinrenken’s paper also contains a natural analogue of Waldspurger’s result for affine

Weyl groups:

Theorem 0.17. (Meinrenken [25])

Let the affine Weyl group for a crystallographic Coxeter system be denoted Wa

and recall that Wa = ΛΦ∨ ⋊W where the coroot lattice ΛΦ∨ acts by translations. Let A

denote the open fundamental alcove, with 0 ∈ Ā. Define relatively open and possibly

degenerate simplices Aw = (id − w)A for w ∈ Wa. Then the Aw are all disjoint, and
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Figure 9: The chambers of the Coxeter arrangement for A2 are on the left, and
the corresponding Waldspurger decomposition is on the right. In the Waldspurger
decomposition, three of the chambers collapse to rays, and the fundamental chamber
collapses to a point at the origin.

their union is all of V . That is,

V = ⊔
w∈Wa

Aw.

We will define the Meinrenken tile M ∶= ⊔
w∈W

Aw, restricting to the finite Weyl

as a subgroup the affine Weyl group. This restriction is convenient since the coroot

lattice action merely translates the Meinrenken tile:

V = ⊔
v∈ΛΦ∨

M + v.

Even in low dimensions the Meinrenken tile need not be convex (see Figure 10).
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Figure 10: The subfigures on the left show a classical fundamental domain for the
action of the coroot lattice in Ã2 (on top) and G̃2 (on bottom). On the right are
the corresponding Meinrenken tiles. The Meinrenken tile for Ã2 consists of a vertex
at the origin, three open line segments, and two triangles. The Meinrenken tile for
G̃2 consists of a vertex at the origin, six open line segments, and five triangles. (See
chapter 2 for types B and C pictures)
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The remainder of this thesis is organized as follows:

We begin Chapter 1 with a combinatorial algorithm, assigning to each permutation

π ∈ Sn, its Waldspurger transform, an (n − 1) × (n − 1) matrix denoted WT(π).

We show that columns of WT(π) are vectors in root coordinates which describe the

vertices of the cone Cw = Cπ from Waldspurger’s theorem and the simplex Aw = Aπ

from Meinrenken’s theorem.

In Section 1.2 we classify the row and column vectors of Waldspurger matrices,

showing that they satisfy certain unimodality conductions. We call such vectors “UM

vectors” and we give explicit bijections between UM vectors and unimodal Motzkin

paths, abelian ideals in the Lie algebra, sln, tableau with bounded hook lengths, and

coroots in a certain polytope studied by Panyushev, Peterson, and Kostant [32].

In Section 1.3 we prove that componentwise comparison of Waldspurger matri-

ces is isomorphic to Bruhat order on permutations. Summing all of the entries of

a Waldspurger matrix gives the rank of the corresponding permutation in the lat-

tice of monotone triangles. Inspired by this, we extend the Waldspurger transform

to alternating sign matrices and exhibit a lattice isomorphism between ASM Wald-

spurger matrices and monotone triangles. We observe that an ASM Waldspurger

matrix is minimal with respect to a single fixed entry, if and only if it is WT(π) for

π a bigrassmannian permutation, just as in the case of monotone triangles.

In Section 1.4 we show that the rank function for this lattice admits a geometric

interpretation and that its Hasse diagram embeds naturally inside of the Meinrenken

tile. Section 1.5 concludes the chapter with an investigation of the diagonal vectors

of Waldspurger matrices. We show that they are in natural bijection with Motzkin

paths, and that they partition the ASM lattice into disjoint intervals, each containing

a unique involution whose cycle decomposition gives a non-crossing pairing.

In Chapter 2, we turn to types B and C. We define a generalized Waldspurger

transform WTΦ for any crystalographic root system Φ. If Φ is of rank n and w ∈
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W (Φ) then we say WTΦ(w) is an n × n type Φ Waldspurger matrix. We define

Waldspurger order to be the componentwise order on Waldspurger matrices. While

in type A, Waldspurger order is the same as Bruhat order, this fails for type B

when n > 3. In order to describe WTB and WTC combinatorially, we introduce

CS2n ⊂ S2n, the subgroup of “centrally symmetric” permutations, i.e. permutations

whose permutation matrices are invariant under 180○ rotation.

In Section 2.1 we recall the classical fact that CS2n is isomorphic to the type

Bn Weyl group and show that moreover, componentwise order on WT(CS2n) is

isomorphic to type Bn Bruhat order. The geometric realization of the Bn Weyl

group as the group ±Sn of n × n signed permutations is obtainable from the

CS2n representation via a “folding” isomorphism, and we extend this folding map to

WT(CS2n).

Hoping to recover the Dedekind-MacNeille completion of type B Bruhat order,

Section 2.2 looks at the Waldspurger transform of centrally symmetric alternating sign

matrices, WT(HTASM2n). We prove that this set is a distributive lattice with the

same octahedral number of join-irreducibles as the Dedekind-MacNeille completion of

type B Bruhat order (hereafter called BASMn). Despite this, we show that the two

posets are not isomorphic. Proposition 0.7 implies that BASMn may be viewed as a

subposet of WT(HTASM2n). In this setting, we compare their underlying posets of

join-irreducibles (which we call P1 and P2 respectively) noting that they share all but

tetrahedral many elements. This culminates in Theorem 2.2 where we characterize

the elements of P2, the “type B base” of Lascoux and Schützenberger.

Section 2.3 returns to the transforms WTB and WTC . We show that folding

elements of WT(CS2n) vertically gives type Cn Waldspurger matrices, and that

folding horizontally gives type Bn Waldspurger matrices. Section 2.4 looks at the

small examples of B2 and C2 and Section 2.5 characterizes the row and column vectors

of type B and C Waldspurger matrices. Section 2.6 explains why folding causes
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Waldspurger order to disagree with Bruhat order for types B and C, and Section 2.7

closes the chapter with some open problems.

There are several symmetries of the type A Meinrenken tile which are observable in

Figure 10 and Figure 1.3. Chapter 3 formally characterizes these symmetries, showing

in Section 3.1 that they hold in all dimensions. The Meinrenken tile is topologically

“half open” in the sense that the coroot lattice action induces a bijection between

∂M ∩M and M ∩ (V ∖M).

Section 3.2 is largely enumerative and compares three different notions of dimen-

sion associated (via Meinrenken’s theorem) with a permutation:

• the linear dimension ∶= dimAπ

• the affine dimension ∶= dim(Aπ ∪ ∂M) = dim(∆π)

• the combinatorial dimension CD(π) ∶= #{distinct non-zero columns of WT(π)}.

Linear dimension is well understood and is determined entirely by the permutation’s

cycle structure. Affine dimension is similar to linear dimension, but there is a dou-

bling effect coming from the “half-openness” of the Meinrenken tile. We show that

permutations of maximum combinatorial dimension are exactly the SIF permutations,

that is, the π ∈Sn which stabilize no interval other than [n] = {1,2, . . . , n}. We pose

the more general enumeration of permutations via their combinatorial dimension as

an open problem, Question 9.

Inspired by a theorem of Bibikov and Zhgoon, Section 3.3 defines a dual graph on

the set of maximum dimensional cones Cw from Waldspurger’s theorem. For type A,

we have Cπ of maximum dimension iff π is an n-cycle, so we may identify vertices with

n-cycles. Edges in this graph come in two distinct flavors; sisi+1 for i ∈ [n−1] (products

of two noncommuting adjacent transpositions) and sisj for 1 ≤ i < i+1 < j ≤ n (product

of two commuting adjacent transpositions). Considering only the first flavor of edges

gives a regular graph, while considering only the second flavor gives an irregular graph
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whose degree sequence we study. The irregular graph is highly disconnected and we

conjecture that its number of connected components is given by the nth Pell number

(see page 117). We conclude the thesis with analogous conjectures for types B and

D.
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Chapter 1

Type A

Recall that for type An−1 the Weyl group is the symmetric group on n elements,

Sn. The group acts naturally on Rn by permuting coordinates, but fixes the one

dimensional subspace spanned by the vector of all ones. Since permutation matrices

are orthogonal matrices, this action stabilizes the subspace on which the standard

basis vectors sum to zero Rn
0 ⊂ Rn. Each chambers, or connected components of

Rn
0/ ⋃

1≤i<j≤n
(ei − ej)⊥, is a simplicial cone. In Section 0.4 we showed that one such

chamber is CΩ = {
n−1

∑
i=1

aiωi ∣ ai ∈ R>0} ⊂ Rn
0 where the wi were the fundamental

weights defined by the equations (wi, ej − ej+1)δi,j. We called CΩ the weight cone, or

fundamental chamber. Because the Sn action on the chambers is free and transitive,

each chamber is π(CΩ) for a unique π ∈Sn and chambers are naturally identified with

permutations.

The setup for Waldspurger’s theorem also associates each permutation π with a

cone Cπ = (id−π)CΩ. Unlike the cone π(CΩ), however, the cone Cπ may be degenerate

(see Figure 9.) Waldspurger’s theorem states that the Cπ are all disjoint, and their

union is equal to C, the closed cone over the positive roots:

C = ⊔
π∈Sn

Cπ.

38
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Figure 1.1: The polytope polar to the type A3 permutohedron has 24 facets, each
corresponding to a permutation of 4. It will tile R3 when translation by (co)root
vectors.

Inside the open simplicial cone CΩ, is an open simplex (i.e. the fundamental

alcove):

A = {
n−1

∑
i=1

aiωi ∣ ai ∈ R≥0 ∑ai < 1} .

Hence, π(A) ⊂ π(CΩ) for each π ∈Sn and the simplices π(A) are all disjoint.

The closure of the union of the π(A) is a polytope which is polar or dual to the

type A permutohedron (see Figure 1.1). Polytopes and their duals will not play a

significant role in this thesis, so we refer the reader to Ziegler’s book [46] for exact

definitions and methods for constructing polars. What is important for our purposes

is that the dual permutohedron is a fundamental domain for the translating action

of the coroot lattice (which in type A is the same as the root lattice.) Among other

things, this implies that A is a fundamental domain for the action of the affine

symmetric group 1, the finite symmetric group semidirect product with the coroot

lattice S̃n ≅Sn ⋊Zn−1.
1There are several combinatorial ways of working with the affine symmetric group [5] which may

be interesting to consider in the context of Meinrenken’s theorem. In this thesis we always work
with the finite symmetric group, and only consider translation via coroots when necessary.
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The setup for Meinrenken’s theorem associates each affine permutation π with

the simplex Aπ ∶= (id − π)A. Unlike the simplices π(A), the simplices Aπ may be

degenerate (see Figure 10.) Meinrenken’s theorem states that the Aπ are all disjoint

and that their union is the entire vector space Rn
0 . That is,

⊔
π∈S̃n

Aπ = Rn
0 .

The study of the classical cones π(CΩ) and simplices π(A) has intimate connections

with the combinatorics of permutations. One may wonder about the combinatorial

significance of the geometry of the cones Cπ and simplices Aπ. In the next section we

give both a combinatorial description by considering what we call the Waldspurger

transform WT(π) of the permutation π. WT(π) is an (n − 1) × (n − 1) matrix

constructed from the n×n permutation matrix via a transformation diagram such

as the one in Figure 1.2.

1.1 Waldspurger Transform of Permutations

Definition 5. Let π ∈ Sn be expressed as an n × n permutation matrix. (For aes-

thetics, our examples put the entries of π on a grid, leave off the zeros, and use stars

instead of ones.) Define the (n−1)×(n−1) Waldspurger matrix WT(π) by filling

in the spaces between the entries of the permutation matrix π as follows:

If an entry is on or above the main diagonal, count the number of stars above and

to the right, and put that count in the space. If the entry is on or below the main

diagonal, count the number of stars below and to the left and put that count in the
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1 1 1 1 0

1 2 2 1 0

1 2 3 2 1

0 1 2 2 1

0 0 1 1 1

Figure 1.2: The transformation diagram for the permutation 456213 ∈ S6. The
columns vectors give root coordinates for six points over which C456213 is a cone.
A456213 is the convex hull of these vectors and zero.

space. Stated more tersely,

WT(π) ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
a≤i
b>j

πa,b i ≤ j

∑
a>i
b≤j

πa,b i ≥ j
.

Note that entries on the diagonal are still well-defined. As an example, the trans-

formation diagram for the permutation 456213 ∈S6 is given in Figure 1.2.

Theorem 1.1. Let c1, c2, . . . , cn−1 be the columns of the matrix WT(π). Expressing

ωi, the ith fundamental weight, and the permutation matrix π in root coordinates, for

all i ∈ [n − 1], one has the following equality:

ci = (id − π)ωi.

Geometrically, this tells us that the columns of WT(π) are vectors in simple

root coordinates which describe the Waldspurger and Meinrenken theorems via the
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following correspondence:

Cπ = {
n−1

∑
i=1

aici ∣ ai ∈ R≥0} (1.1)

Aπ = {
n−1

∑
i=1

aici ∣ ai ∈ R≥0 and ∑ai ≤ 1} (1.2)

Recall that Meinrenken tile is defined to be the set M ∶= ⊔
π∈Sn

Aπ and that it tiles

all of space under the translation by elements of the (co)root lattice. It will, at times,

be convenient for us to study the topological boundary of M. This boundary, it turns

out, is also built out of simplices described in terms of Waldspurger matrices:

∆π ∶= {
n−1

∑
i=1

aici ∣ ai ∈ R≥0 and ∑ai = 1} . (1.3)

The proof of Theorem 1.1 follows immediately from the following lemma by multiply-

ing both sides of the equation by C−1, the inverse of the Cartan matrix and looking

at the columns.

Lemma 1. Let P be the (n−1)×(n−1) matrix for the permutation π ∈ Sn expressed

in root coordinates. Let C be the (n−1)×(n−1) Cartan matrix, I the (n−1)×(n−1)

identity matrix, and WT(π) be the (n− 1)× (n− 1) Waldspurger matrix for π. Then

(I −P) =WT(π)C.
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100 001

010

121

111

110 011

000

Figure 1.3: Waldspurger’s theorem decomposes the A3 root cone (on the left) into
a point at the origin, 6 one-dimensional cones (dotted rays), 11 two-dimensional
cones, and 6 three-dimensional cones. Points are labeled in root coordinates. The A3

Meinrenken tile is shown on the right constructed with Zometools. (The two yellow
edges and one blue edge coming out from the origin are the fundamental weights.)

Proof. For notational brevity, let D ∶=WT(π). We use the fact that C = ATA where

A is the n × (n − 1) matrix

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 0 . . . 0

−1 1 0 . . . 0

0 −1 1 . . . 0

⋮ ⋮ ⋮ ⋱ ⋮

0 0 0 . . . 1

0 0 0 . . . −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

to rewrite the conclusion :

P = I −DATA
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We may then multiply both sides by A on the left to obtain

AP = A −ADATA.

Because A is the change of basis matrix between standard euclidean coordinates and

simple root coordinates on Rn
0 , we have AP = πA. Making this substitution and

canceling the A’s on the right we obtain:

π = I −ADAT

This is what we will verify.

Multiplying A and D, we see that (AD)i,j = Di,j −Di−1,j with the understanding

D0,k ∶= 0 for all k. One more multiplication gives us that

(ADAT )i,j =Di,j −Di−1,j −Di,j−1 +Di−1,j−1

once again, with the understanding that if either i = 0 or j = 0 then Di,j ∶= 0

Case 1. If i = j then

(ADAT )i,j =Di,j −Di−1,j −Di,j−1 +Di−1,j−1

=∑
a≤i
b>j

πa,b − ∑
a≤i−1
b>j

πa,b − ∑
a>i
b≤j−1

πa,b + ∑
a>i−1
b≤j−1

πa,b

=∑
k≠j
πi,k

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 πi,j = 1

1 πi,j = 0
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To understand the second-to-last inequality, observe that we are summing over the

following terms of permutation matrices:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⋱ ⋮ ⋮ ⋮ ⋰

. . . πi−1,j−1 πi−1,j πi−1,j+1 . . .

. . . πi,j−1 πi,j πi,j+1 . . .

. . . πi+1,j−1 πi+1,j πi+1,j+1 . . .

⋰ ⋮ ⋮ ⋮ ⋱

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

-

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⋱ ⋮ ⋮ ⋮ ⋰

. . . πi−1,j−1 πi−1,j πi−1,j+1 . . .

. . . πi,j−1 πi,j πi,j+1 . . .

. . . πi+1,j−1 πi+1,j πi+1,j+1 . . .

⋰ ⋮ ⋮ ⋮ ⋱

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

-

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⋱ ⋮ ⋮ ⋮ ⋰

. . . πi−1,j−1 πi−1,j πi−1,j+1 . . .

. . . πi,j−1 πi,j πi,j+1 . . .

. . . πi+1,j−1 πi+1,j πi+1,j+1 . . .

⋰ ⋮ ⋮ ⋮ ⋱

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⋱ ⋮ ⋮ ⋮ ⋰

. . . πi−1,j−1 πi−1,j πi−1,j+1 . . .

. . . πi,j−1 πi,j πi,j+1 . . .

. . . πi+1,j−1 πi+1,j πi+1,j+1 . . .

⋰ ⋮ ⋮ ⋮ ⋱

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Thus, (I −ADAT )i,j = πi,j for this case.

Case 2. If i < j then

(ADAT )i,j =Di,j −Di−1,j −Di,j−1 +Di−1,j−1

=∑
a≤i
b>j

πa,b − ∑
a≤i−1
b>j

πa,b − ∑
a≤i
b>j−1

πa,b + ∑
a≤i−1
b>j−1

πa,b

= −πi,j

This last equality is, again, easier to understand visually:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⋱ ⋮ ⋮ ⋮ ⋰

. . . πi−1,j−1 πi−1,j πi−1,j+1 . . .

. . . πi,j−1 πi,j πi,j+1 . . .

. . . πi+1,j−1 πi+1,j πi+1,j+1 . . .

⋰ ⋮ ⋮ ⋮ ⋱

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

-

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⋱ ⋮ ⋮ ⋮ ⋰

. . . πi−1,j−1 πi−1,j πi−1,j+1 . . .

. . . πi,j−1 πi,j πi,j+1 . . .

. . . πi+1,j−1 πi+1,j πi+1,j+1 . . .

⋰ ⋮ ⋮ ⋮ ⋱

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

-

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⋱ ⋮ ⋮ ⋮ ⋰

. . . πi−1,j−1 πi−1,j πi−1,j+1 . . .

. . . πi,j−1 πi,j πi,j+1 . . .

. . . πi+1,j−1 πi+1,j πi+1,j+1 . . .

⋰ ⋮ ⋮ ⋮ ⋱

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⋱ ⋮ ⋮ ⋮ ⋰

. . . πi−1,j−1 πi−1,j πi−1,j+1 . . .

. . . πi,j−1 πi,j πi,j+1 . . .

. . . πi+1,j−1 πi+1,j πi+1,j+1 . . .

⋰ ⋮ ⋮ ⋮ ⋱

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Thus, (I −ADAT )i,j = πi,j for this case as well.
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Case 3. If i > j then

(ADAT )i,j =Di,j −Di−1,j −Di,j−1 +Di−1,j−1

=∑
a>i
b≤j

πa,b − ∑
a>i−1
b≤j

πa,b − ∑
a>i
b≤j−1

πa,b + ∑
a>i−1
b≤j−1

πa,b

= −πi,j

As before, the final equality is apparent with a visual:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⋱ ⋮ ⋮ ⋮ ⋰

. . . πi−1,j−1 πi−1,j πi−1,j+1 . . .

. . . πi,j−1 πi,j πi,j+1 . . .

. . . πi+1,j−1 πi+1,j πi+1,j+1 . . .

⋰ ⋮ ⋮ ⋮ ⋱

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

-

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⋱ ⋮ ⋮ ⋮ ⋰

. . . πi−1,j−1 πi−1,j πi−1,j+1 . . .

. . . πi,j−1 πi,j πi,j+1 . . .

. . . πi+1,j−1 πi+1,j πi+1,j+1 . . .

⋰ ⋮ ⋮ ⋮ ⋱

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

-

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⋱ ⋮ ⋮ ⋮ ⋰

. . . πi−1,j−1 πi−1,j πi−1,j+1 . . .

. . . πi,j−1 πi,j πi,j+1 . . .

. . . πi+1,j−1 πi+1,j πi+1,j+1 . . .

⋰ ⋮ ⋮ ⋮ ⋱

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⋱ ⋮ ⋮ ⋮ ⋰

. . . πi−1,j−1 πi−1,j πi−1,j+1 . . .

. . . πi,j−1 πi,j πi,j+1 . . .

. . . πi+1,j−1 πi+1,j πi+1,j+1 . . .

⋰ ⋮ ⋮ ⋮ ⋱

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Thus, (I −ADAT )i,j = πi,j in this final case.

1.2 UM Vectors

Suppose v is the k-th column of the Waldspurger matrix associated to the permutation

π. It is evident from the transformation diagram that v1 = 0 or v1 = 1 since the one in

the first row of π can either be to the left or to the right of v1. By similar reasoning,

for i ≤ k we have vi = vi−1 or vi = vi−1 + 1 and for i > k we have vi = vi−1 or vi = vi−1 − 1

with vn = 0 or vn = 1. In other words, v will start with a zero or a one, weakly increase

(by steps of 0 or 1) until the kth entry, and then weakly decrease (by steps of 0 or

1), to the last entry.

Definition 6. A Motzkin path is a lattice path in the integer plane Z×Z consisting

of steps (1,1), (1,−1), (1,0) which starts and ends on the x-axis, but never passes



47

2134 1243

1324

4231

3214 1432

3142

3421 4312

2341 4123

2413

4321

2143

2314

3124

3412

3241

4213

1423

1342

4132

2431

(12) (34)

(23)

(14)

(13) (24)

(1342)

(1324) (1423)

(1234) (1432)

(1243)

(14)(23)

(12)(34)

(123)

(132)

*(13)(24)*

(134)

(143)

(243)

(234)

(142)

(124)

Figure 1.4: A slice of the Root cone A3 =S4



48

below it. A Motzkin path is unimodal if all occurrences of the step (1,1) are before

the occurrences of (1,−1). For brevity, we will henceforth refer to unimodal Motzkin

paths as UMP ’s.

Lemma 2. (counting UMPs)

There are 2n−1 UMPs between (0,0) and (0, n).

Proof. (induction)

Base case: There is only one UMP of length one, and only two UMPs of length two.

Induction hypothesis: Suppose there are 2k−1 UMPs of length k for all k ≤ n−1.

Consider an arbitrary UMP of length n.

We will partition UMPs of length n into four (nondisjoint) classes:

(A) Those starting with an up-step.

(B) Those ending with an up-step.

(C) Those starting and ending with an up-step.

(D) Those starting and ending with a flat step.

By the principle of inclusion-exclusion, #UMPs = #A +#B −#C +#D.

Class A:

The first step of the UMP is (1,0). Cutting off this step, we have an arbitrary UMP

of length n − 1 and so by induction, that there are 2n−2 such UMPs.

Class B:

The last step of the UMP is (1,0). Cutting off this last step, we have an arbitrary
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UMP of length (n − 1) and so by induction, that there are 2n−2 such UMPs.

Class C:

If the first and last steps of a UMP are both (1,0) then the UMP was counted by both

of the previous cases. Cutting off both the first and last steps we have an arbitrary

UMP of length n − 2. There are, by induction, 2n−3 such UMPs.

Class D:

The first and last steps of the UMP are (1,1) and (1,−1), respectively. Cutting these

steps once again, we see by induction, that there are 2n−3 such UMPs.

So we see that there are 2n−2 + 2n−2 − 2n−3 + 2n−3 = 2n−1 UMPs of length n.

Definition 7. A UM vector is any vector that appears as a column in WT(π) for

some permutation π.

Theorem 1.2. There is a bijective correspondence between UM vectors of length n−1

and UMPs with n steps. Consequently, there are 2n UM vectors of length n.
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Proof. We will define a map from UM vectors to UMPs which is easily inverted. What

is less clear, a priori, is that our map is surjective; equivalently, does every vector with

integer entries starting and ending with a zero or one having no ascents after the first

decent appear as the column vector of WT(π) for some permutation π? This we will

show by induction.

A UM vector must start with a zero or a one, weakly increase by one until its

entry on the diagonal, and then weakly decrease by one until its final entry, a zero

or one. Any row vector of a Waldspurger matrix must also be a UM vector with its

maximum also on the diagonal. Padding a UM vector with zeros on each end gives

the x coordinates for a UMP of length n. For example,

(1,2,3,3,2,1,0)↔ (0,1,2,3,3,2,1,0,0)↔

To show surjectivity, consider an arbitrary UMP, and use the bijection above to turn it

into a vector v with integer entries starting and ending with a zero or one having no as-

cents after the first decent. Suppose v starts with a zero, that is v = (0, v2, v3, ..., vn−1).

By induction, there exists a permutation π of n−1 whose Waldspurger transform has

column vector (v2, v3, ..., vn−1). Let π̂ be the permutation of n which sends 1 to 1,

and k to π(k − 1) for k ∈ {2, ..., n}. Then WT(π̂) has v as a column vector.

A similar trick works for vectors ending with a zero.

If the vector starts and ends with a one, v = (1, v2, ..., vn−2,1), then by induction,

there exists a permutation π of n−2 whose Waldspurger transform has column vector

(v2−1, v3−1, ..., vn−2−1). Let π̂ be the permutation of n which sends 1 to n, and n to

1 and k to π(k − 1) for k ∈ {2, ..., n − 1}. Then WT(π̂) has v as a column vector.

It turns out UM vectors were implicitly considered by Kostant, Panyushev, and

Peterson in the context of Lie theory as abelian ideals in the nilradical of the Lie alge-

bra sln. Rather than introduce more machinery, we give the following combinatorial

definition:
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(1, 1, 0, 0) (0, 1, 1, 0) (0, 0, 1, 1)

(1, 1, 1, 0) (0, 1, 1, 1)

(1, 1, 1, 1)

(1, 0, 0, 0) (0, 1, 0, 0) (0, 0, 1, 0) (0, 0, 0, 1)

←→

Figure 1.5: Abelian ideals in the nilradical of the Lie algebra sln correspond to certain
order filters in the poset of positive roots and to Ferrer’s shapes with hooklengths less
than or equal to n. In this figure, each of the positive roots are given as vectors in
simple root coordinates.

Definition 8. An abelian ideal is an order filter I in the poset of positive roots

possessing the property that if r1 ∈ I and r2 ∈ I then r1 + r2 ∉ I.

While abelian ideals are define for all types, in type A they are naturally in

bijection with Ferrer’s shapes with bounded hooklength: Given λ a partition of the

integer k, that is λ = (λ1, λ2, . . . , λ`(λ)) with λ1 ≥ λ2 ≥ ⋅ ⋅ ⋅ ≥ λ`(λ) and
`(λ)
∑
i=1

λi = k, one

may consider itsYoung diagram, an arrangement of k cells in `(λ) left aligned rows,

the ith row having λi cells. Give the cell in the ith row and jth column coordinates

(i, j). The hook Hλ(i, j) is the set of cells (a, b) such that a = i and b ≥ j or a ≥ i and

b = j. The hook-length hλ(i, j) is the number of cells in the hook Hλ(i, j). Every

order filter in the type A positive roots poset may be identified with a Ferrer’s shape

given the correspondence in Figure 1.5. The ideal will be abelian iff the shape has all

hooklengths less than or equal to n.

Proposition 1.3. UM vectors are in bijection with Ferrer’s shapes with hook lengths

bounded above by n and also with abelian ideals in the nilradical of the Lie algebra

sln.

Proof Sketch. Take any UM vector and write it as a sum of positive roots by recur-

sively subtracting the highest root whose nonzero entries (in simple root coordinates)

correspond to positive nondecreasing entries in the UM vector. For example, the
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vector (0,1,2,1) = (0,1,1,0) + (0,0,1,1). These vectors generate an order filter in

the poset of positive roots which corresponds to a Ferrer’s shape with bounded hook

length, as seen in Figure 1.5. This map is clearly injective. Kostant and Panyushev

showed that there are 2n−1 such abelian ideals, and so we conclude that it is bijective.

In 2004 Rudi Suter [41] showed that these Ferrer’s shapes with bounded hook-

lengths exibit a dihedral symmetry when considered as a subposet of Young’s lattice.

Question 1. Does this group action have a meaningful interpretation with respect

to the combinatorics of Waldspurger matrices or the geometry of the Waldspurger

and Meinrenken decompositions?

Kostant, Panyushev, and Peterson showed [32] (again for all types) that abelian

ideals could be faithfully expressed as the sum of their generators, and that such vec-

tors were exactly the coroots inside a certain polytope. For type A (where roots and

coroots are equivalent) we show that, in root coordinates, these vectors are precisely

our UM vectors.

Theorem 1.4. UM vectors are exactly the roots c (in root coordinates) such that

−1 ≤ (c, r) ≤ 2 for every positive root r. They are roots inside the polytope defined by

affine hyperplanes at heights −1 and 2 orthogonal to every positive root.

Proof. We will show that our 2n−1 UM vectors satisfy the inequalities coming from the

defining hyperplanes. Explicitly, suppose that x̄ is a UM vector and ȳ is a positive

root (both expressed in root coordinates). Then the dot product is expressed as

(x, y) = xt ⋅ y = x̄tAtAȳ = x̄tCȳ where A is the matrix defined in Theorem 1.1 and C

is the Cartan matrix. Suppose that ȳ = (0, . . . ,0,1, . . . ,1,0, . . .0)t where the first one
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is in position i and the last one is in position j. Then

x̄tCȳ = 2(
j

∑
k=i
xk) − xi−1 − xj+1 − 2(

j−1

∑
k=i+1

xk)

= −xi−1 + xi + xj − xj+1

Because (x1, . . . , xn−1) is a UM vector, xi and xi−1 can differ by at most one, and

likewise xj and xj+1 can differ by at most one. This yields that

−2 ≤ xi − xi−1 + xj − xj+1 ≤ 2.

However, the −2 is unattainable by the unimodality of UM vectors. Suppose that

xi−1 > xi, that is xi−1 = xi +1. Then xj ≥ xj+1, that is, xj = xj+1 or xj +1 = xj+1. Either

way, xi − xi−1 + xj − xj+1 = xi − (xi + 1) + xj − xj+1 > −2. Thus

−1 ≤ xi − xi−1 + xj − xj+1 ≤ 2

showing that our UM vectors are all inside the polytope.

We appeal to the enumeration given by Kostant, Panyushev, and Peterson to show

that these are all of the root vectors in the polytope.

Question 2. Every Waldspurger matrix has UM vectors for its row and column

vectors, with each row and column having it maximum entry on the diagonal. Are

all matrices with this property WT(π) for some π ∈ Sn? If not, can such matrices

be characterized?

The answer to this first question is no. One may verify that the 2 × 2 identity

matrix has UM vectors for rows and columns, but is not WT(π) for any π ∈S3. The

second question has a surprising and beautiful answer (Theorem 1.6).
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1.3 Entropy, Alternating Sign Matrices, and a Gen-

eralized Waldspurger Transform

In section 0.7 we referred to a result of Lascoux and Schützenberger stating that

the componentwise order on monotone triangles (or equivalently reduced monotone

triangles) was isomorphic to Dedekind-MacNeille completion of Bruhat order on per-

mutations. Knowing this, it is straightforward to show that summing all of the entries

in a reduced monotone triangle gives its rank in the lattice. It is natural to ask if

this statistic restricts in a meaningful way to a statistic on permutations. Lascoux

and Schützenberger showed that it in fact does, and that the rank of a permutation

in the Dedekind-MacNeille completion of Bruhat order is half its entropy.

Definition 9. The entropy (alternatively called variance in the literature [27]) of a

permutation π is

E(π) ∶=
n

∑
i=1

(π(i) − i)2.

Entropy is a statistic which also showed up in our study of Waldspurger matrices.

Theorem 1.5. For π ∈ Sn, let its Waldspurger height h(π) be the sum of the

entries of WT(π) then

h(π) ∶=
n

∑
i=1

n

∑
j=1

WT(π)i,j =
1

2
E(π).

Proof. Consider what each “star” in the transformation diagram contributes to the

entries in the Waldspurger matrix. A star contributes one to every entry enclosed in

the right triangle between itself and the main diagonal, and one half to every entry

on the main diagonal whose box is cut by the triangle.
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1 1 1 0 0

1 2 2 1 0

1 2 3 2 1

0 1 2 2 1

0 0 1 1 1

That is, the star in the ith column contributes (π(i) − i)2/2 to the entries of the

Waldspurger matrix. We conclude that

n

∑
i=1

(π(i) − i)2/2 =
n

∑
i=1

n

∑
j=1

WT(π)i,j.

This theorem suggests at least some kind of relationship between Waldspurger

matrices and monotone triangles or ASMs. Inspired by this, we extend the domain of

the Waldspurger transform from the set of permutation matrices to a broader class

of square matrices. Recall from section 1.1 that an entry on the diagonal of the

Waldspurger matrix counted both the number of stars “above and to the right” in the

transformation diagram, and the number of stars “below and to the left”. Desiring to

preserve this diagonal property, we define the generalized Waldspurger transform

only for sum-symmetric matrices. An n × n matrix M is sum-symmetric2 if its ith

row sum equals its ith column sum for all 1 ≤ i ≤ ne write M ∈ SSn.

2these matrices are sometimes called “line-sum-symmetric” in literature [15]. Other sources use
the name sum-symmetric to describe a different class of matrices altogether [1].
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Definition 10. From an n×n sum-symmetric matrix M , define the (n− 1)× (n− 1)

matrix, WT(M) where

WT(M)i,j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
a≤i
b>j

Ma,b i ≤ j

∑
a>i
b≤j

Ma,b i ≥ j
.

Sum-symmetric matrices are a natural choice for the domain of WT because they

are exactly the matrices for which the diagonal property is preserved, and one can

show that the map WT ∶ SSn ↠ Matn−1 is linear and surjective with kernel the

diagonal matrices. Restricting the domain to the set of ASMs, however, reveals the

answer to Question 2. If M ∈ ASM we say that WT(M) is an ASM Waldspurger

matrix.

Theorem 1.6. The restriction of the Waldspurger transform to alternating sign ma-

trices has as its image all M ∈ Matn−1 such that columns and rows of M are UM

vectors with maximums on the diagonal. Component-wise comparison of these matri-

ces is exactly the same order as is defined on the ASM lattice via monotone triangles.

Proof. Because an ASM can be uniquely recovered from its non-diagonal entries, and

because the kernel of WT consists of only diagonal matrices, we know that WT

gives a bijection between ASMs and Waldspurger ASMs. We also have the bijection

between ASMs and monotone triangles described in section 0.7. We will show that

the composition of these two bijections

Monotone Triangles→ ASMs→Waldspurger ASMs
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⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 0 0 0
0 1 −1 1 0 0
0 0 0 0 1 0
0 0 1 0 −1 1
1 0 0 0 0 0
0 0 0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

↔

3
2 4
2 4 5
2 3 4 6
1 2 3 4 6
1 2 3 4 5 6

↔

2
1 2
1 2 2
1 1 1 2
0 0 0 0 1

1 1 0 0 0

1 1 1 0 0

1 1 2 1 0

1 1 1 1 1

0 0 0 0 1

Figure 1.6: An ASM and corresponding monotone triangle, reduced monotone trian-
gle, and generalized Waldspurger matrix. (The blue 9-sided stars represent 1’s, and
the green six-sided stars represent -1’s in the transformation diagram.)

has an explicit description in terms of “painting instructions” and that it is order

preserving. The map is easy to describe, but it will take a little work to verify that

it is well-defined, surjective and order preserving.

The map, from monotone triangles to Waldspurger matrices is as follows: Sub-

tract off the monotone triangle corresponding to the identity permutation, and then

consider the entries of this reduced monotone triangle as “painting instructions.” The

(i, j)th entry of the reduced triangle tells us how much paint to load our brush with

for a left-to-right stroke beginning at the (i, j)th entry of the corresponding Wald-

spurger matrix. As a working example, consider Figure 1.6. The two at the top of

the reduced triangle is “painted” onto the (1,1) and (1,2) entries of the associated

Waldspurger matrix. The one in the next row is painted onto the (2,1) entry, and

the two after it is painted onto the (2,2) and (2,3) entries.



58



001
010
100






001
100
010






010
100
001






100
010
001






100
001
010






010
001
100






0 1 0
1−1 1
0 1 0




[
11
11

]

[
11
01

]

[
10
00

]

[
00
00

]

[
00
01

]

[
10
11

]

[
10
01

]

3
23
123

3
13
123

2
12
123

1
12
123

1
13
123

2
23
123

2
13
123

2
11

2
01

1
00

0
00

0
01

1
11

1
01

Figure 1.7: The Dedekind-MacNeille completion of Bruhat order A2 viewed as ASMs,
Generalized Waldspurger Matrices, monotone triangles, and reduced monotone tri-
angles
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Figure 1.8: There are four ways to peel the UM vector 1233332221. It may peel
into three, four, five, or six parts, depending on which 3 is on the diagonal of the
Waldspurger matrix it is appearing in.

To check that our painting map is well defined, we must check that it gives a matrix

with unimodal rows and columns with maximums on the diagonal. The left-to-right

painting process ensures that the entries in each row of the Waldspurger matrix will

increase weakly by one up to the diagonal. The fact that rows of the reduced triangle

are weakly increasing guarantees that the row of the Waldspurger matrix will be

weakly decreasing by ones after the diagonal. The conditions on the columns are a

bit more disguised, but the fact that reduced monotone triangles increase weakly up

columns guarantees that the columns of the Waldspurger matrix will increase weakly

up to the diagonal. Finally, the fact that reduced monotone triangles decrease by at

most one in the ↘ direction, guarantees that the columns of the Waldspurger matrix

will decrease weakly above the diagonal. This follows from induction on the size of the

monotone triangle. Suppose that the lower-left corner or the monotone trianges maps

onto a generalized Waldspurger matrix of dimension one less. Then painting a new

diagonal will preserve the unimodality in rows and columns, and keep the maximums

on the diagonal.

This painting map has an inverse “peeling” operation. UM vectors by themselves

are not in bijection with rows of reduced monotone triangles, but, if one knows that

the UM vector is to appear in row k, our painting map will have an inverse “peeling”

operation into k entries as seen in Figure 1.8.

To peel a UM vector into k parts, create a diagram as in Figure 1.8 and specify k

starting points, one at the top of each of the k columns. First draw a path from the

kth starting point to the end, staying as far up and to the right as possible. Then do
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1 1 1 1 1
1 2 2 2 1
1 2 3 2 1
1 2 2 2 1
1 1 1 1 1

Figure 1.9: the number of ways of fixing each entry in a 5 × 5 Waldspurger matrix
(also the top element in the Waldspurger version of the ASM lattice.)

the same with the (k − 1)st point. Note that the unimodality condition on the UM

vector guarantees that this path will be weakly shorter than the first one. Continue

in this way until all of the vertices are exhausted. Record the length of the paths to

get the corresponding row in the associated reduced monotone triangle.

Alterative Proof3. In Section 0.7 we considered an (n−1)×(n−1) North-East corner-

sum matrix NE(M) for each n × n ASM M and asserted that the component-wise

partial order on corner-sum matrices was the same as the one on monotone triangles.

It follows easily from the definition of WT and NE that

WT(M)i,j =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

NE(M)i,j if i ≤ j

NE(M)i,j + j − i if i ≥ j

and therefore,

WT(M1) ≤WT(M2)⇔ NE(M1) ≤ NE(M2).

The relationship between the tetrahedral poset and ASMs has been studied else-

where [40], but Waldspurger matrices provide a new prospective. Bigrassmannian

permutations have Waldspurger matrices determined by fixing a single entry and

then “falling down" as quickly as possible. That is, π ∈Sn is bigrasmannian iff there

exists a row, column, value triple (i, j, k) for which WT(π)i,j = k and all other entries

of WT(π) are as small as possible (so as to still have UM vectors for columns and
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Figure 1.10: A tetrahedron of oranges sitting on its edge and viewed from on top.
Stable configurations of oranges correspond to Waldspurger matrices, with the full
tetrahedron corresponding to the Waldspurger matrix from Figure 1.9.

rows with maximums on the diagonals). More poetically, WT(π) for bigrassmannian

π describes an arrangement of oranges4 in a tetrahedral orange basket (held up so

that one edge is parallel with the ground) where only one orange may be removed

without causing a tumble.

Let us verify the enumeration: In the set of n × n Waldspurger matrices, the

number of ways of fixing a single entry to be a one is n2, to be a two is (n−2)2, to be

a three is (n − 3)2, etc. (See figure 1.9.) This sum of alternating squares is equal to

(n
3
), the tetrahedral number, which we know from Section 0.7, counts bigrassmannian

permutations. (See [28] for more on the tetrahedral numbers.)

The Waldspurger decomposition thus identifies each bigrassmannian permutation

π ∈Sn with a triple (i, j, k) where 1 ≤ i, j,≤ n−1 and 1 ≤ k ≤ min{i, j, n−i, n−j}. This

is reminiscent of something from Section 0.7 where we exhibited a simple bijection

between bigrasmannian permutations in Sn and triples (a, b, c) with 0 ≤ a < b < c ≤ n.

With a bit of work, one can show that the correspondence between these two types

of triples is as follows:
4Thank you Ryan Holmquist for the help making Figure 1.10 in Blender!
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given (i,j,k) if i ≥ j given (i,j,k) if i ≤ j given (a,b,c)

a = j − k a = i − k i = b

b = i b = j j = c − b + a

c = i + k c = j + k k = min{b − a, c − a}

Question 3. It seems curious that this (a, b, c)↔ (i, j, k) bijection does not depend

on n, and thus it plays nice with the inclusion S2 ⊂ S3 ⊂ ⋅ ⋅ ⋅ ⊂ Sn ⊂ . . . . Does this

fact have any deeper consequences?

1.4 Centers of Mass and Geometric Realizations of

Hasse Diagrams

Our definition for Waldspurger matrices was geometrically motivated, but we have

seen that they are also very combinatorially related to the ASM lattice. It is then

natural to ask how this partial order and the geometry are connected. One classical

invariant of posets with a distinctly geometric flavor is the notion of order dimension.

The order dimension of a poset P is the smallest n for which P ≅ Q ⊂ Rn where

the elements of Q are ordered componentwise. In [34], Reading computed the order

dimension of Bruhat orders for types A and B, the former being dim(An) = ⌊ (n+1)2
4 ⌋.

This tells us, in particular, that there is no way of embedding the lattice of 3 × 3

Waldspurger matrices in dimension less than 4 in a way that preserves componentwise

comparison. On the other hand, for each of these 3×3 matrices, we have an associated

simplex ∆M ⊂ R3 and may consider the natural map which takes ∆M to its center of

mass.

If one replaces each simplex ∆π (where π ∈ Sn) with its center of mass, one gets

back a translate of the vertex set of the classical permutohedron. If one instead

considers the centers of mass for each ∆(M) where M is an alternating sign matrix,
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one obtains every lattice point on the interior of the permutohedron as well; some

appearing with multiplicities. (see Figure 1.12). For example, the two generalized

Waldspurger matrices below have the same center of mass.

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0

0 1 0

0 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0

0 1 0

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

.

Proposition 1.7. The Waldspurger height, ∑WT(M)i,j is not only the rank of an

ASM M in the lattice, it is also the height of the center of mass of ∆M inside of the

Meinrenken tile in the direction of ρ, the sum of the positive roots.

Proof. We want to show that projection of the center of mass of ∆M onto ρ is (up to

scalar multiple) equal to the sum of the entries in WT(M). By the definition of ∆M ,

its center of mass is a scalar times the vector of column sums of WT(M). We will

be done if we can show that projection of a vector v onto ρ is (up to scalar multiple)

ρ times the sum of the entries of v.

Projection of a vector v onto ρ in root coordinates, is vTCρ
ρTCρρ. The denominator is

just a scalar, and the numerator is

vTCρ = vT

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 −1 0 . . . . . .

−1 2 −1 0 . . .

0 −1 2 −1 . . .

⋮ ⋮ ⋮ ⋮ ⋱

0 . . . 0 −1 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

n

2(n − 1)

3(n − 2)

⋮

(n − 2)3

(n − 1)2

n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= vT θ
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Figure 1.11: Place WT(M) at the baricenter of ∆M for each M ∈ ASM to get a
geometric realization of the Hasse diagram inside the Meinrenken tile

where θ is the vector of all ones. We conclude that, up to scalars, this projection is

the sum of the entries of v.

Question 4. It is a classical result in Ehrhart theory [33] that the number of lattice

points inside of the permutohedron is the number of forests on the vertex set [n] =

{1,2, . . . n}. We have exhibited a surjective map from ASMs to these same points. Is

there an interpretation of these multiplicities in terms of forest structures?

1.5 M Vectors and Interval Decompositions of the

ASM Lattice

In Section 1.2 we defined UM vectors abstractly as the vectors which appeared as

rows or columns of Waldspurger matrices. We then showed that they corresponded

naturally to unimodal Motzkin paths and could be alternatively defined as vectors

starting and ending with a zero or one, increasing by zero or one up to a given point,

and decreasing by zero or one thereafter. The vectors which appear as diagonals
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Figure 1.12: There are 38 lattice points in the permutohedron and 42 Alternating
sign matrices in this dimension. Four of the interior points have multiplicity two.

of Waldspurger matrices possess a similar classification in terms of (not necessarily

unimodal) Motzkin paths. The same vector/path correspondence (see the proof of

Theorem 1.2) allows us to define M vectors– vectors of length n corresponding to

Motzkin paths of length n+2. That is, an M vector is vector of non-negative integers

starting and ending with a zero or one, with adjacent entries differing by zero or one.

Theorem 1.8. The diagonal of an n×n Waldspurger matrix is an M vector of length

n. Moreover, each M vector appears as the diagonal of WT(π) for some permutation

π. Grouping Waldspurger matrices by their diagonal M vectors partitions the Wald-

spurger ASM lattice into disjoint intervals. Each interval contains a unique involution

whose cycle decomposition gives a non-crossing partial pairing.

Proof. It is known that the number of involutions in Sn with cycle decomposition a

non-crossing partial pairing is the nth Motzkin number [29]. Because of this, it will

suffice for us to only verify three things:

1. Adjacent diagonal entries of Waldspurger matrices must stay the same, increase

by one, or decrease by one.

2. The set of ASMs with diag(WT(M)) = v for v an M vector forms an interval

in the ASM lattice.
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3. Given an M vector v, there exists an involution π whose cycle decomposition

gives a non-crossing pairing with the diagonal of WT(π) equal to v.

The first item follows from considering local movements within the transformation

diagram.

• If WT(M)i,i = k then both WT(M)i,i+1 and WT(M)i+1,i are in {k, k − 1}.

1. If WT(M)i,i+1 =WT(M)i+1,i = k, then WT(M)i+1,i+1 ∈ {k, k + 1}.

2. If one or both of WT(M)i,i+1 and WT(M)i+1,i is equal to k − 1, then

WT(M)i+1,i+1 ∈ {k − 1, k}.

Now for the second item: Because the ASM lattice is distributive, and the join-

irreducibles correspond to Waldspurger matrices specified by a single entry, there

is a unique minimal Waldspurger matrix with a given prescribed diagonal– the join

of Waldspurger matrices specified by each diagonal entry. Since the partial order

on Waldspurger matrices is componentwise, the join of all elements with a prescribed

diagonal will also have that diagonal, meaning there is a unique maximal Waldspurger

matrix with each prescribed diagonal.

Finally, the third item: Given an M vector, m = (m1,m2, . . . ,mn−1), construct an

involution π ∈Sn iteratively from the identity permutation as follows:

Letmi be the first entry ofM which equals one, and letmj+1 be the first entry after

mi which equals zero. By the previous proposition, mj = 1 and, by construction, all

entries between mi and mj are greater than or equal to one. Multiply the involution

by the transposition (i, j), subtract one from mi,mi+1, . . . ,mj−1,mj.

Repeat until the the M vector is reduced to all zeros. Every involution intro-

duced during this process does not cross any of the previous ones, and the process is

reversible. (see Figure 1.13.)
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1232321 0121010 0010010 0000010 0000000
(1,8) (2,5) (3,4) (6,7)

1 2 3 4 5 6 7 8

1 1 1 1 1 1 1

1 2 2 2 1 1 1

1 2 3 2 1 1 1

1 2 2 2 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 2 1

1 1 1 1 1 1 1

Figure 1.13: The permutation 85432761 is the unique permutation π ∈S8 with cycle
decomposition a non-crossing pairing, and with diag(WT(π)) = 1232121.
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10000 01000 00100 00010 00001

02000 00200 00020

00300

Figure 1.14: The lattice of M vectors of length five ordered componentwise is isomor-
phic to the lattice of order ideals in this poset

Like ASM Waldspurger matrices, M vectors with the componentwise comparison

order form a distributive lattice. Whereas ASM Waldspurger matrices corresponded

to order ideals in the tetrahedral poset (see Figure 1.10) M vectors correspond to

order ideals in the poset in Figure 1.14 This poset is, in fact, a slice of the tetrahedral

poset.

Question 5. Let N(α) denote the number of Waldspurger matrices with diagonal

vector α. One may write

n! = ∑
α∈M Vectors

N(α)

Can one express N(α) only in terms of α?

Question 6. (likely less tractable) LetM(α) denote the number of ASMWaldspurger

matrices with diagonal vector α. One may express the number of ASMs as

ASM(n) =
n−1

∏
k=0

(3k + 1)!
(n + k)! = ∑

α∈M Vectors
M(α)

Can one express M(α) only in terms of α?



Chapter 2

Types B and C

For general crystallographic root systems, Φ, define the Waldspurger Transform of a

Weyl group element g to be the matrix

WTΦ(g) ∶= (Id −Rg)C−1
Φ

where Rg is the matrix of g in the coordinates of the simple roots of Φ, and C−1
Φ is the

inverse of the Cartan matrix1. We call WTΦ(g) a type Φ Waldspurger matrix

and define the Waldspurger Order (Φ,⪰) as the componentwise order on type Φ

Waldspurger matrices. If no root system is specified, we will assume type A, so that

WT = WTA is the Waldspurger transform already discussed. Recall that type A
1For type A, the columns of C−1

Φ are the (non-zero) vertices of the fundamental alcove in root
coordinates. As noted in Section 0.5, one must, in general, scale the ith column of C−1

Φ by the ith
“mark” to get the ith non-zero vertex of the fundamental alcove. While it may be more natural
geometrically to include this scaling in the definition of WTΦ, it would cause type B and type C
Waldspurger matrices to have non-integer entries. Prioritizing the combinatorics above the geometry,
we have chosen (at least for the duration of this thesis) to leave this scaling as an afterthought.

69
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Waldspurger order is isomorphic to type A Bruhat order and that

WT(π)i,j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
a≤i
b>j

πa,b i ≤ j

∑
a>i
b≤j

πa,b i ≥ j
.

It is natural to ask which phenomena of those we observed in type A will hold

more generally. In particular, how does the combinatorics of the Waldspurger de-

composition relate to the Dedekind-MacNeille completion of Bruhat order for type

B?

Lascoux and Schützenberger showed that the Dedekind-MacNeille completion of

Bruhat order for type B is a distributive lattice, and gave a description of the join-

irreducible elements as a subset of the bigrassmannian elements [23]. They showed

that, while the number of bigrassmannian elements is (n+4
4
) + (n+3

3
) − (n+2

2
), which is

counted by the coefficients of

1

(1 − z)5
+ 1

(1 − z)4
= 1 + 6z + 19z2 + 45z3 + 90z4 + 161z5 + . . . (2.1)

the number of join-irreducibles or elements of the “base” is the octahedral number
n(2n2+1)

3 which is counted by the coefficients of

(1 + z)2

(1 − z)4
= 1 + 6z + 19z2 + 44z3 + 85z4 + 146z5 + . . . . (2.2)

Geck and Kim [17] gave a more in-depth treatment of exactly when bigrassmannian

elements fail to be part of the base. (Figure 4 in the appendix shows transformation

diagrams for the 15 = 161 − 146 bigrassmannian elements which are not in the base

of B6.) Reading gave a combinatorial description of the base in terms of signed
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monotone triangles [34]. Recently, Anderson gave another combinatorial description

of the base in terms of type B Rothe diagrams and essential sets [3].

Despite all this, the story is still a bit unsatisfying; there are two posets in com-

petition for the title of “type B alternating sign matrices”:

1. The partial order on monotone triangles coming from centrally symmmetric

2n × 2n ASMs (hereafter call HTASM for half-turn-alternating-sign-matrices).

2. The Dedekind-MacNeille completion of Bruhat order for the Weyl group of Bn

(hereafter called BASM).

Reading noted in [34] that these two are not isomorphic for n > 3. While the number

of elements in the former is given by a nice product formula (Theorem 2.2) there

is not even a conjecture for the size of BASM (though we present some data later).

Moreover, up until now, the elements of BASM have had no explicit combinatorial

description. In this chapter we show that BASMn can be seen as a sublattice of

WT(HTASM2n). Both posets happen to be distributive lattices with octrahedral

many join-irreducible elements. We show that all but tetrahedral many of these

join-irreducibles are the same, and we describe the ones which differ.

We then turn to the geometry of the Waldspurger decomposition for types B and

C, showing that WTB and WTC can be computed via “folding” centrally symmetric

Waldspurger matrices. This folding obfuscates some of the poset theory, but intro-

duces some interesting questions. In particular, Bruhat order and Waldspurger order

are not isomorphic for type Bn when n > 3. We discuss the complications which arise,

and end the chapter with some open questions.

2.1 Centrally Symmetric Permutation Matrices

Recall from Section 0.4 that for type B, the underlying vector space was V = Rn, and

our roots Φ consisted of all integer vectors in V of length 1 or
√

2, for a total of 2n2
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roots. We chose the simple roots: αi = ei − ei+1, for 1 ≤ i ≤ n − 1 and αn = en a shorter

root. The type C roots are the same αi = ei − ei+1 but αn = 2 ⋅ en so there is a unique

long simple root instead of a unique short simple root.

These root systems share a Weyl group of size 2nn! given by the presentation

⟨s1, s2, . . . , sn ∣ s2
i = s2

n = (sisi+1)3 = (sn−1sn)4 = 1 ∀1 ≤ i < n − 1⟩.

The geometric realization represents this group with the set of n×n signed per-

mutation matrices, ±Sn. That is, ±Sn is the set of all n × n matrices with entries

in {0,1,−1} having exactly one nonzero entry in each row and column. We will

need this representation in Section 2.3 when we investigate WTB and WTC , but in

the meantime, there is another representation which will prove more combinatorially

convenient.

Call a square n × n matrix centrally symmetric if it is preserved under 180○

rotation; that is if Mi,j =Mn−i,n−j for all 1 ≤ i, j ≤ n− 1. Let CSn ⊂Sn denote the set

of permutations whose n × n permutation matrices are centrally symmetric.

Proposition 2.1. The group CS2n ⊂ S2n is isomorphic to the group ±Sn of signed

permutations via a “folding move”.

Proof. If π is a 2n × 2n centrally symmetric permutation matrix, we may “fold” it to

obtain π⋆, a signed permutation on n, by letting

π⋆i,j = πi,j − π2n−i+1,j
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The map is invertible because π was a permutation matrix, meaning that

π⋆i,j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if πi,j = 1

−1 if π2n−i+1,j = 1

0 otherwise

i.e. there will never be any collisions in the folding and the map is a bijection.

To see that multiplication is preserved, observe that generators map to generators:

abstract generators generators of CS2n generators of ±Sn

∀1 ≤ i < n, si (i, i + 1)(2n − i + 1,2n − i)

i i+1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

1 0 ⋯

0 1

⋮ ⋱

0 1 i

1 0 i + 1

⋱ ⋮

1 0

⋯ 0 1

sn (n,n + 1)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 . . .

0 1

⋮ ⋱ ⋮

1 0

⋯ 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

In Section 2.3 we will define a similar vertical folding map on centrally symmetric

type A Waldspurger matrices:

F ∶WTA2n−1
(CS2n)Ð→Matn

Where

F(M)i,j ∶=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Mi,j +M2n−i+1,j for all 1 ≤ i, j < n

Mi,j for all i = n, j ≤ n
.
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Folding will allow us to describe the maps WTB and WTC in terms of our original

type A Waldspurger transform.

Before doing this, we wish to study the lattice BASM. Using the correspondence

of generators from the proof of Proposition 2.1, it is straightforward to verify the

following:

Proposition 2.2. An element π ∈ CS2n represents a bigrassmannian element of type

Bn if and only if when considered as a permutation, π has exactly one or two left

descents, and exactly one or two right descents.

In [9, Chapter 8], Björner and Brenti show that componentwise order onNE(CS2n)

is isomorphic to type B Bruhat order. Combining this result with Theorem 1.6 we

obtain the following:

Proposition 2.3. The Bruhat order on the Weyl group of Bn is isomorphic to the

componentwise comparision order on WT(CS2n).

2.2 Centrally Symmetric Alternating Sign Matrices

In the 1980’s many beautiful conjectural product formulas arose from symmetry

classes of ASMs and plane partitions, similar in nature to one in Theorem 0.7. In

particular, Kuperberg was able to prove this early conjecture of Robbins:

Theorem 2.4. (Kuperberg 2002 [22]) The number of n × n ASMs invariant under

rotation by 180○, also called half-turn ASMS or HTASMs is

HTASM(2n)
ASM(n) = (−3)(n2)∏

i,j

3(j − i) + 2

j − i + n .

Because elements of Dedekind-MacNeille completion of Bruhat order for type A

corresponded to ASMs, and type B Bruhat order is the restriction of type A Bruhat
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order to centrally symmetric permutations, it is natural to consider extending the

folding map CS2n → ±Sn to the larger domain of HTASM2n. Unfortunately, the

folding map fails to be injective on ASMs. For example, the following two 6×6 ASMs

are folded to the same 3 × 3 matrix:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 0 0 0

0 1 −1 0 1 0

1 −1 1 0 0 0

0 0 0 1 −1 1

0 1 0 −1 1 0

0 0 0 1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 0 0 0

0 0 0 1 0 0

1 0 0 −1 1 0

0 1 −1 0 0 1

0 0 1 0 0 0

0 0 0 1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

↦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1

0 0 −1

1 −1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Though folding will be convenient for studying the geometry of the type B Wald-

spurger decomposition, these collisions in folding HTASMs will obfuscate their partial

order.

We will thus start by focusing on the componentwise order on WT(HTASM2n),

asking how this relates to the BASM lattice. While WT(HTASM2n) is (by defini-

tion) a subposet of WT(ASM2n), it follows from Proposition 0.7 that BASMn is as

well, and we will rely heavily on these embeddings.

Theorem 2.5. The set WT(HTASM2n) partially ordered componentwise, is a dis-

tributive lattice.

Proof. First notice that WT(HTASM2n) is a lattice. The componentwise min or

max of two centrally symmetric matrices is centrally symmetric. Moreover, compo-

nentwise min and max preserve the properties required to be a type A Waldspurger

matrix. Hence, for any M1,M2 ∈HTASM2n,

WT(M1) ∨WT(M2) = [max{WT(M1)i,j,WT(M2)i,j}]2n−1
i,j=1 ∈WT(HTASM2n)
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WT(M1) ∧WT(M2) = [min{WT(M1)i,j,WT(M2)i,j}]2n−1
i,j=1 ∈WT(HTASM2n).

Distributivity follows from distributivity of the type A case as well. For any HTASM,

M , we may express WT(M) as the join of WT(A1),WT(A2), . . . ,WT(Ak) where

the A’s are type A bigrassmannian elements and k is minimal. If any of the A’s are

centrally symmetric, then they are join-irreducibles in HTASM. For WT(M) to be

centrally symmetric, all of the non-centrally symmetric A’s must come in pairs. The

componentwise maxes of these pairs are the remaining join-irreducibles in HTASM.

Lascoux and Schützenberger showed that BASMn was a distributive lattice with

octahedral many join-irreducibles. We will show that the same holds forWT(HTASM2n).

We will then describe both sets of join-irreducibles in terms of elements inWT(ASM2n).

In order to do this, recall what we showed in the type A case: In the lattice

WT(ASM2n), each join-irreducible is WT(π) for some bigrassmannian permutation.

WT(π) is uniquely determined by a single matrix entry (i, j) with value 1 ≤ k ≤

min{i, j,2n − i,2n − j}. All other entries are made as small as possible so that rows

and columns are UM vectors. That is,

• Each row and column starts and ends with a 0 or 1.

• Adjacent entries in each row and column differ by 0 or 1.

• Rows and columns are unimodal, i.e. entries can’t increase after they decrease.

• Each row and column has its maximum (possibly not unique) on the matrix’s

diagonal.

Join-irreducibles in WT(ASM2n) can thus be identified with triples, (i, j, k) where i

is the row, j the column, and k the specified entry with 1 ≤ k ≤ min{i, j,2n− i,2n−j}.

From here on we will always assume given some i and j, that k is between 1 and

min{i, j,2n − i,2n − j}, and will call such values of k valid.
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For example the triple (3,2,2) in WT(ASM6) corresponds to the bigrassmannian

permutation given in one-line notation by 451236.

We use the join operator onWT(ASM2n) to define a map which takes a collection

of triples to the join of their corresponding join-irreducibles

J∆ ∶ {triples defining bigrassmannian permutations in S2n}Ð→WT(ASM2n)

and ask when J∆ of a particular set of tiples will be centrally symmetric.

Proposition 2.6. For i, j, ∈ [2n − 1], and valid k,

J∆((i, j, k), (2n − i,2n − j, k)) ∈WT(HTASM2n)

Moreover, restricting to the set of triples (i, j, k) where j < n or (i ≤ n and j = n)

gives a bijection onto the set of join-irreducibles of WT(HTASM2n).

Proof. By definition of J∆,

J∆((i, j, k)(2n − i,2n − j, k)) = J∆((i, j, k)) ∨ J∆((2n − i,2n − j, k)).

We also know J∆((i, j, k)) =WT(π) for some bigrassmannian permutation π as like-

wise J∆((2n − i,2n − j, k)) = WT(π′). Moreover, WT(π) and WT(π′) are related

by 180○ rotation, and because join in WT(ASM2n) is componentwise, their join is

centrally symmetric. Regardless of the i and j, it turns out for valid k, the matrix

J∆((i, j, k)(2n− i,2n−j, k)) is always a join-irreducible in WT(HTASM2n). Indeed,

decreasing the (i, j) and (2n − i,2n − j) entries by one gives the only HTASM Wald-

spurger matrix covered by J∆((i, j, k)(2n − i,2n − j, k)) in WT(HTASM2n). This

decrementation only changes two entries of the Waldspurger matrix (or only one if

(i, j) = (n,n) in which case only subtract one from this entry– not two.) It is thus
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 1 1 1
1 12 12 12
1 12 123 123
1 12 123 1234
1 12 123
1 12 12
1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Figure 2.1: Each entry in the matrix above corresponds to a valid (i, j, k) triple.
Join-irreducible in WT(HTASM8) are in bijection with these triples. There are 44
digits in this figure and 44 is the fourth octahedral number.

a uniquely minimal alteration preserving the properties on page 76 (necessary to be

the Waldspurger transform of some ASM) and preserving central symmetry.

The restrictions on i and j given in the statement of the proposition serve to ensure

that each join-irreducible in WT(HTASM2n) is obtained only once. See figure 2.1

for a pictorial explanation. There are

(n − 1)(2n − 1) + (n − 2)(2n − 3) + ⋅ ⋅ ⋅ + (1)(3)

valid triples (i, j, k) with j < n and

n + (n − 1) + (n − 2) + ⋅ ⋅ ⋅ + 1

valid triples (i, j, k) with i ≤ n and j = n for a total of

n−1

∑
k=1

k(2k + 1) + (n + 1

2
) = n(2n2 + 1)/3

or octahedral many distinct join-irreducibles.

Corollary. There exist two subposets P1 and P2 of WT(HTASM2n) with ∣P1∣ = ∣P2∣ =

n(2n2 + 1)/3 and

WT(HTASM2n) = J(P1)
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1 1 0 0 0

1 2 1 0 0

0 1 1 1 0

0 0 1 2 1

0 0 0 1 1

1 1 0 0 0

1 2 1 1 0

0 1 1 1 0

0 1 1 2 1

0 0 0 1 1

Figure 2.2: The transformation diagram for J∆((2,2,2), (4,4,2)) in WT(HTASM6)
on the left and for J∆((2,2,2), (4,4,2), (6 − 2,6 − 2,1), (6 − 4,6 − 4,1)) on the right.
These correspond to elements of P1 and P2 respectively. The left shows the smallest
centrally symmetric ASM Waldspurger matrix with (2,2) entry a 2. The right shows
the smallest centrally symmetric (permutation) Waldspurger matrix with the (2,2)
entry a 2. It follows from Proposition 0.7 all of the elements in P2 must come from
permutations.

BASMn = J(P2).

We see from the proof of Proposition 2.2 that the poset P1 is a very natural oc-

tahedral poset. Similar to the tetrahedral poset in figure 1.10, it even possesses a

geometric description: One may think of its elements in P1 as oranges in an octahe-

dral orange basket sitting on its edge. WT(HTASM2n) is the lattice of all stable

configurations of oranges in this basket. A configuration is naturally identified with

the set of oranges that may be removed without causing a tumble– i.e. matrices

M ∈WT(HTASM2n) correspond to antichains or order ideals in P1.

Though J(P1) =WT(HTASM2n) is a complete lattice containing type B Bruhat

order as a subposet, it is not minimal in the sense of Dedekind-MacNeille completion.

By Proposition 0.7 every element of BASMn ⊂WT(HTASM2n) must be expressible

as the join of some set of elements inWT(CS2n). The element J∆((2,2,2), (4,4,2)) ∈

WT(HTASM6) (with transformation diagram given on the left of figure 2.2) cannot

be expressed as such a join, however, because there is no π ∈ CS2n with WT(π)2,2 =
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 1 1 1 1
1 12 12 12 12
1 12 123 123 123
1 12 123 1234 1234
1 12 123 1234 12345
1 12 123 1234
1 12 123 123
1 12 12 12
1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Figure 2.3: In WT(HTASM2n), every join-irreducible is the J∆((i, j, k), (2n −
i,2n − j, k)) for some (i, j, k) in the fundamental octahedron (see figure 2.1). Here,
the italicized entries in green correspond to the join-irreducibles in BASM8 ⊂
WT(HTASM2n) which are J∆ of a singleton. Entries in black correspond to J∆

of a doubleton, and the bold entries in red correspond to J∆ of a four-tuple.

2 and WT(π) ≤ J∆((2,2,2), (4,4,2)). Indeed, P1 has (n
3
) elements coming from

HTASM2n ∖ CS2n all of which share this difficulty.

Before characterizing the join-irreducibles in BASMn, let us define the funda-

mental octahedron to be the set of triples

{(i, j, k) ∣ j < n or (i ≤ n and j = n)}.

Note that every point in the fundamental octahedron corresponded to a unique join-

irreducible in WT(HTASM2n) (see figure 2.2). The same is true for BASMn ⊂

WT(HTASM2n).

Theorem 2.7. Every join-irreducible in BASMn (i.e. every element in P2) is J∆

of exactly one, two, or four join-irreducibles of WT(ASM2n). Let M be a centrally

symmetric (2n − 1) × (2n − 1) Waldspurger matrix. Then M is in P2 if and only if

one of the following three hold:

1. M = J∆((n,n, k)) for 1 ≤ k ≤ n.

2. M = J∆((i, j, k) and (2n − i,2n − j, k))

for i > n, j < n and k ≤ min{i, j}
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or for i < n, j = n and k ≤ min{i, j}

or for i = n, j < n and k ≤ min{i, j}.

or for i, j < n and k ≤ min{i, j,2n − i − 1,2n − j − 1}.

3. M = J∆((i, j, k), (2n − i,2n − j, k), (2n − i, j, k −min{n − i, n − j}), (i,2n − j, k −

min{n − i, n − j}))

for i, j < n and 2 ≤ min{n − i, n − j} < k ≤ min{i, j}

Proof. These cases partition the fundamental octahedron into three parts as shown

in figure 2.3. Before getting into details, first check that the enumeration is correct:

By Lascoux and Scützenberger’s result, we know that there are n(2n2+1)
3 elements in

P2. We have n elements of the first type, 2(n2)+(n+1
3
)+∑n−1

k=1 k
2 elements of the second

type, and (n
3
) elements of third type and one can check that indeed,

n + 2(n
2
) + (n + 1

3
) +

n−1

∑
k=1

k2 + (n
3
) = n(2n

2 + 1)
3

.

From Proposition 0.7 it follows that every element in P2 must be WT(π) for some

permutation π ∈ CS2n. Further, we know that each of WT(π) ∈WT(CS2n) is J∆(S)

for some set S of (i, j, k) triples. To determine S, we need only specify triples (i, j, k)

in the fundamental octahedron, as central symmetry implies that for such triples

(i, j, k) ∈ S ⇐⇒ (2n − i,2n − j, k) ∈ S.

We will show that given a triple (i, j, k) in the fundamental octahedron, there is a

unique minimal set S such that J∆(S) =WT(π) for some π ∈ CS2n and that WT(π)

is the smallest (permutation) Waldspurger matrix whose (i, j) entry has value k.

Case 1:

If i = j = n then J∆(i, j, k) is also an element in P1 and is WT(π) for π a centrally

symmetric bigrassmannian permutation. It covers exactly one element in BASMn
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because it is uniquely minimal amoung (2n − 1) × (2n − 1) Waldspurger matrices

whose (n,n) entry is k.

Case 2:

The set of (i, j, k) triples in the fundamental octahedron which fall into the second

case come in four flavors. There is no hope of reducing the size of S without breaking

central symmetry, but we must check that WT−1(J∆((i, j, k), (2n − i,2n − j, k))) is

indeed a permutation matrix, and not just an ASM. We will argue this with subcases,

using the transformation diagram.

Subcase 1:

For triples (i, j, k) in the fundamental octahedron with i, j < n and k < min{i, j,2n−

i − 1,2n − j − 1} it is easy to see that

WT−1(J∆((i, j, k), (2n − i,2n − j, k))) =
⎛
⎜⎜
⎝

A 0

0 B

⎞
⎟⎟
⎠

which is a permutation matrix since A and B are permutation matrices for bigrass-

mannian permutations. Indeed,

A =WT−1
n (J∆((i, j, k))

B = A rotated by 180○.

Subcase 2:

For triples in the fundamental octahedron with i ≥ n, notice that J∆((i, j, k)(2n−

i,2n− j, k)) will contain a 2(i−n)+1×2(n− j)+1 rectangular submatrix centered at

(n,n) with all values equal to k, as shown in figure 2.4 Any entry on the diagonal of

the transformation diagram which is inside this box gets a star. Outside of this box,

the placement of stars on the left half of the diagram coinsides with the stars in the

transformation diagram of WT−1
2n(J∆((i, j, k)) and the placement of the stars on the
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right half of the diagram coinsides with the stars inWT−1
2n(J∆((2n−i,2n−j, k)). That

is,WT−1(J∆((i, j, k), (2n−i,2n−j, k))) is the permutation which maps 1,2, . . . j to the

same placeWT−1
2n(J∆((i, j, k))) would, fixes j+1, . . . ,2n−j, and maps 2n−j+1, . . . ,2n

to the same place WT−1
2n(J∆((2n − i,2n − j, k))) would.

1 1 0 0 0 0 0

1 2 1 1 1 1 0

1 2 2 2 2 2 1

1 2 2 2 2 2 1

1 2 2 2 2 2 1

0 1 1 1 1 2 1

0 0 0 0 0 1 1

Figure 2.4: The transformation diagram for the join-irreducible J∆((5,2,2), (3,6,2))
in BASM4

Subcase 3:

For triples in the fundamental octahedron with j = n and i ≤ n, an argument analo-

gous to the one in Subcase 2 works by considering the transpose of the transformation

diagram.

Case 3:

We already saw in figure 2.2 that there are elements in P1 which are WT(M) for

M ∈ HTASM2n ∖ CS2n and that by Proposition 0.7, such elements cannot be in P2.

We will see exactly what these (n
3
) elements should be replaced with.

Let us attempt to build a transformation diagram in a minimal way by fixing the

(i, j) entry with value k where j ≤ i < n and 2 ≤ min{n − i, n − j} ≤ k ≤ min{i, j}. We

will consider the case when i ≤ j and n−j ≤ n−i , and a similar argument will work for

i > j. To preserve central symmetry, fixing the (i, j) entry with value k necessitates
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fixing the (2n − i,2n − j) entry with value k. After this, consider the vertical strip

between the specified entries. There are 2n − 2j vertical lines in this strip on which

we need to place stars. Making the matrix as small as possible necessitates placing

the k stars above and to the right of entry (i, j) as close to (i, j) as possible, that

is, on the left most k of the 2n − 2j vertical lines. By symmetry, we are forced to

place the k stars below and to the left of (2n − i,2n − j) as close to (2n − i,2n − j)

as possible, that is on the right most k of the 2n − 2j vertical lines. We now have

placed 2k stars on 2n − 2j vertical lines but by assumption n − j < k. Conclude by

the pigeonhole principle that we have placed two stars in the same column and that

our quest for minimality has lead us to creating the transformation diagram of some

M ∈HTASM2n ∖ CS2n.

Backing up, we see that creating the transformation diagram of some π ∈ CS2n

(after having fixed (i, j, k) and (2n− i,2n− j, k)) necessitates placing at most n− j of

the k stars above and to the right of (i, j) in the vertical strip and at most n − j of

the k stars below and to the left of (2n − i,2n − j) in the vertical strip. That is, we

are prescribing two additional triples: (2n− i, j, k − (n− j)) and (i,2n− j, k − (n− j)).

We have now shown that it is necessary for a centrally symmetric (permutation)

Waldspurger matrix with (i, j) entry k (where j ≤ i < n and 2 ≤ min{n − i, n − j} ≤

k ≤ min{i, j}) to be above J∆((i, j, k), (2n − i,2n − j, k), (2n − i, j, k − min{n − i, n −

j}), (i,2n − j, k − min{n − i, n − j})). It turns out, moreover, that J∆((i, j, k), (2n −

i,2n− j, k), (2n− i, j, k −min{n− i, n− j}), (i,2n− j, k −min{n− i, n− j})) will always

be the Waldspurger transform of some permutation, and showing this will conclude

our proof.

To this end, we give the permutation explicitly: Let a = k−min{i, j}. Let b = n−j+a

and let c = k+a. Write down the identity permutation of S2n in oneline notation, and

place cuts after positions a, b, c, n,2n − c,2n − b,2n − a. This partitions the numbers

1,2, . . . ,2n into 8 parts, (the first and last part may be empty). We will not touch the
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first and last parts, but label the other 6 from left to right with the letters C-O-R-

S-E-T (or N-O-R-M-A-S2). We then reorder the blocks to R-E-C-T-O-S (or R-A-N-

S-O-M). This yields the oneline notation for the permutation whose transformation

diagram we have been considering, J∆((i, j, k), (2n− i,2n− j, k), (2n− i, j, k−min{n−

i, n − j}), (i,2n − j, k −min{n − i, n − j})).

For example, if (i, j, k) = (3,3,3) and n = 4, then (a, b, c) = (0,1,3) and

∣ 1®
C

∣ 23®
O

∣ 4®
R

∣ 5®
S

∣ 67®
E

∣ 8®
T

∣ ⇐⇒ ∣ 4®
R

∣ 67®
E

∣ 1®
C

∣ 8®
T

∣ 23®
O

∣ 5®
S

∣

Consider the transformation diagram and verify that indeed,

1 1 1 0 0 0 0

1 2 2 1 1 0 0

1 2 3 2 2 1 0

0 1 2 2 2 1 0

0 1 2 2 3 2 1

0 0 1 1 2 2 1

0 0 0 0 1 1 1

WT(46718235) = J∆((3,3,3), (5,5,3), (5,3,2), (3,5,2)).

We now have an explicit description of the elements of P2 ⊂ BASMn ⊂WT(HTASM2n)

as Waldspurger matrices. We used this to compute the size of BASMn for n =

2,3,4,5, . . . to be

2,10,132,4824, . . .

2We chose to label these parts so that the rearrangement would be an anagram. This is totally
unnecessary. In the process, we discovered the following useless fact: these two pairs of words are
the only anagrams on six letters in the English language related by the involution 351624.
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Note that this is indeed less than the size of HTASM2n for n = 2,3,4,5 . . . which is

2,10,140,5544,622908,198846076, . . .

Given some M ∈ WT(HTASM2n) it is relatively straight forward to express it as

J∆(S) for S a minimal set of (i, j, k) triples, and to check if the triples in the fun-

damental octahedron are accompanied by those suggested by Theorem 2.2. This, at

the very least, gives hope that a more intrinsic description of the elements of BASMn

may be possible.

Question 7. Is there a faster way to compute #J(P2) (the size of BASMn) and

does it admit a closed formula?

2.3 WTB and WTC via Folding

We now consider the definitions of the maps WTB and WTC given at the beginning

of this chapter, and work towards combinatorial descriptions. This necessitates famil-

iarizing ourselves with type B and C root coordinates and we follow the conventions

established in Section 0.4.

Let P be the change of basis matrix that gives the simple roots of Bn in terms of

the standard basis vectors, and define Q analogously for Cn. That is,

Pi,j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if i = j

−1 if i = j + 1

0 otherwise

Qi,j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if i = j, j < n

−1 if i = j + 1

2 if i = j = n

0 otherwise

.
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One can then verify that

P −1
i,j =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 if i ≥ j

0 otherwise
Q−1
i,j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if i = j, j < n

1/2 if i = j = n

0 otherwise

.

With respect to this ordering on the simple roots, one can further verify that the

inverses of the Cartan matrices for the root systems Bn and Cn are, respectively:

(C−1
Bn

)i,j =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

min(i, j) if j < n

i/2 if j = n
(C−1

Cn
)i,j =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

min(i, j) if i < n

j/2 if i = n
.

Next, if we let S = Q(C−1
Cn

), and let R = P (C−1
Bn

), one may verify that

S =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 if j ≥ i

0 otherwise
R =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if j ≥ i, j ≠ n

1/2 if j = n

0 otherwise

.

Theorem 2.8. F is a bijection between centrally symmetric Waldspurger matrices of

type A2n−1, and Waldspurger matrices of type Cn and the following diagram commutes:

±Sn WTCn
(±Sn)

CS2n WT(CS2n)

WTCn

WT

⋆ F
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Proof. We will show that F(WT(π))i,j and WTCn
(π⋆)i,j are summing over the same

parts of the permutation matrix π. On the one hand,

F(WT(π))i,j =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

WT(π)i,j +WT(π)2n−i+1,j for all 1 ≤ i, j < n

WT(π)i,j for all i = n, j ≤ n

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2n

∑
a≤i
b>j

πa,b +
2n

∑
a>2n−i+1

b≤j

πa,b i ≤ j < n

2n

∑
a>i
b≤j

πa,b +
2n

∑
a>2n−i+1

b≤j

πa,b j ≤ i < n

2n

∑
a>i
b≤j

πa,b i = n

.

On the other hand,
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WTCn
(π⋆)i,j = (Id − (Q−1π⋆Q)C−1

Cn
)
i,j

= (C−1
Cn
− (Q−1π⋆S))

i,j

= (C−1
Cn

)
i,j
− ((Q−1π⋆S))

i,j

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

min(i, j) if i < n

j/2 if i = n
−

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∑
a≤i,b≤j

π⋆a,b if i < n

1
2 ∑
a≤i,b≤j

π⋆a,b if i = n

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

min(i, j) −
2n

∑
a≤i,b≤j

πa,b − π2n−a+1,b if i < n

j
2 − 1

2

2n

∑
a≤i,b≤j

πa,b − π2n−a+1,b if i = n

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

i −
2n

∑
a≤i,b≤j

πa,b − π2n−a+1,b if i ≤ j < n

j −
2n

∑
a≤i,b≤j

πa,b − π2n−a+1,b if j ≤ i < n

j
2 − 1

2

2n

∑
a≤i,b≤j

πa,b − π2n−a+1,b if i = n

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2n

∑
a≤i
πa,b −

2n

∑
a≤i,b≤j

πa,b +
2n

∑
a>2n−i+1

b≤j

πa,b if i ≤ j < n

2n

∑
b≤j
πa,b −

2n

∑
a≤i,b≤j

πa,b +
2n

∑
a>2n−i+1

b≤j

πa,b if j ≤ i < n

j
2 − 1

2

2n

∑
a≤i,b≤j

πa,b − π2n−a+1,b if i = n

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2n

∑
a≤i
b>j

πa,b +
2n

∑
a>2n−i+1

b≤j

πa,b i ≤ j < n

2n

∑
a>i
b≤j

πa,b +
2n

∑
a>2n−i+1

b≤j

πa,b j ≤ i < n

2n

∑
a>i
b≤j

πa,b i = n

.

The last equality is explained pictorially on the next page.
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Because transposition and the map ⋆ ∶ CS2n → ±Sn commute, we will from now

on abuse notation and identify centrally symmetric permutations with their images

in ±Sn.

Proposition 2.9. WTCn
(π⊺) = (WTBn

(π))⊺ for any π ∈ ±Sn.

Proof.

WTCn
(π⊺) = Id − (Q−1π⊺Q)C−1

Cn

= C−1
Cn
− (Q−1π⊺S)

= (C−1
Bn

)⊺ − (R⊺π⊺(P −1)⊺)

= Id − (P −1πR)⊺(C−1
Bn

)⊺

= (Id − (P −1πR)C−1
Bn

)⊺

= (WTBn
(π))⊺.

Informally, this proposition tells us that while the geometry of the Waldspurger

decompositions and Meinrenken tiles for types B and C may be different in higher

dimensions, their combinatorics will remain essentially the same.

2.4 B2 and C2 in Detail

There are exactly eight centrally symmetric 3 × 3 Waldspurger matrices of type A:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0

0 0 0

0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0

0 0 0

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0

0 1 0

0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0

0 1 0

0 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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(0, 0) (1, 0)

(0, 1)

(2, 2)

(2, 1)

(0, 0) (1, 0)

(0, 1) (1, 1)

(2, 2)

Figure 2.5: The Meinrenken tiles for C2 and B2 respectively

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0

1 1 1

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1

1 1 1

1 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0

1 2 1

0 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1

1 2 1

1 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

We may fold them vertically to get type C Waldspurger matrices, or horizontally

to get type B:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎣

0 0

0 0

⎤⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎣

1 0

0 0

⎤⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎣

0 0

0 1

⎤⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎣

1 2

0 1

⎤⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎣

1 0

1 1

⎤⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎣

2 2

1 1

⎤⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎣

1 2

1 2

⎤⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎣

2 2

1 2

⎤⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎣

0 0

0 0

⎤⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎣

1 0

0 0

⎤⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎣

0 0

0 1

⎤⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎣

1 1

0 1

⎤⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎣

1 0

2 1

⎤⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎣

2 1

2 1

⎤⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎣

1 1

2 2

⎤⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎣

2 1

2 2

⎤⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
.

Recall that, in type A, the dimensions of each of the simplices was determined by the

number of cycles of the corresponding permutation, and so the number of simplices

of a given dimension was a Stirling number of the first kind. In type B, we see “type

B Stirling numbers of the first kind” [42] with our 1 point, 4 edges, and 3 triangles

for B2 and C2. In this dimension there are two HTASMs which are not permutations,
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Figure 2.6: In the case of C2, (and B2, though it is not shown here) Waldspurger order
is exactly Bruhat order, and componentwise comparison of folded centrally symmetric
ASMs is exactly its Dedekind-MacNeille completion.

with type A Waldspurger matrices

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0

0 1 0

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0

1 1 1

0 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. They fold vertically to

give us the two extra matrices pictured in the right hand side of Figure 2.6.

One is given hope from Figure 2.4 and other low dimensional examples that Bruhat

order might, as in type A, be merely componentwise comparison of Waldspurger

matrices. Indeed, it is true for C2 and C3 and in both cases, the Dedekind-MacNeille

completion comes from simply folding centrally symmetric ASMs. We will see, in

Section 2.6 that it fails for Cn when n ≥ 4.

2.5 UM Vectors for types B and C

One may wonder if the column vectors and row vectors of type B and type C Wald-

spurger matrices admit nice classifications, similar to UM vectors in the type A case.

By Proposition 2.3 the set of columns (respectively rows) coming from WTB will be
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the same as the set of rows (respectively columns) coming from WTC . Unlike in type

A, however, it is not true that the set of columns coming from WTB will be the same

as the set of rows coming from WTB. For example, the vector (2,1) appears as a

row of a B2 Waldspurger matrix, but not as a column. (See the list of all type B2

Waldspurger matrices on page 92).

This subtlety should not mask the fact that both column and row vectors (for

both WTB and WTC) are essentially folded UM vectors, and we desire to handle

them as such. Notice where the column/row disparity arises: When folding centrally

symmetric Waldspurger matrices vertically via the map F (to get type C Waldspurger

matrices), the middle column gets doubled, but the middle row does not. Similarly,

when folding horizontally (to get type B Waldspurger matrices) the middle row gets

doubled but the middle column does not.

Desiring to give a unified definition for UM vectors of types B and C, we conflate

these two notions by considering a new vertical folding map F̃ which folds the middle

row onto itself, doubling it.

F̃(M)i,j ∶=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Mi,j +M2n−i+1,j for all 1 ≤ i, j < n

2Mi,j for all i = n, j ≤ n
.

Definition 11. A UM vector of type B or C is any vector which appears as a

column of F̃(WT(π)) for π ∈ CS2n.

The inequality description of UM vectors from Theorem 1.4 immediately gives an

inequality description for “UM vectors for types B and C”.

Proposition 2.10. UM vectors of type B or C must start with entries 0,1,2, increase

by 0,1, or 2 up to the diagonal, and increase by −1,0, or 1 after the diagonal, ending

with an even number.
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The proof involves showing that for all i ∈ [n−1], the i+1st entry of a UM vector

of type B or C depends on the the ith entry, and showing that, moreover, every vector

satisfying this condition appears as a column of F̃(WT(π)) for some π ∈ CS2n. It is

quite similar to the proof of Theorem 1.2 and so we omit it.

Given v = (v0, v1, . . . , vn) a UM vector of type Bn or Cn, one can show that

(v0, v1, . . . ,
vn
2 ) will be a column vector in some type C Waldspurger matrix, (and a

row vector in some type BWaldspurger matrix). The vector v will also be a row vector

in some type C Waldspurger matrix (and column vector in some type B Waldspurger

matrix) unless all of its entries are even. In that case, (v0

2 ,
v1

2 , . . . ,
vn
2 ) will be. In all

these cases, the enumeration is the same and follows from the previous proposition.

Corollary. There are 2 ⋅ 3n−1 UM vectors of type B or C.

We also omit this proof as it is similar to the type A case.

We saw in Section 1.2 that UM vectors correspond to abelian ideals in the Lie

algebra sln and that there are 2n−1 of them. It is known [20] that the number of abelian

ideals is a power of two for both of the Lie algebras so2n+1 and sp2n (corresponding

to types B and C). Our enumeration from the corollary above is a bit disappointing

because it implies that the type A (UM vectors ↔ abelian ideals) phenomenon does

not generalize to types B and C.

Question 8. Do UM vectors of type B and C have Lie theoretic significance? Do

they characterize certain order filters in the poset of positive roots?

2.6 Folding the Base and Waldspurger Order

We now return to the poset of join irreducibles P2 ⊂ BASMn ⊂ WT(HTASM2n)

from Section 2.2 and consider its image under the vertical folding map F . Because

of the combinatorial equivalence established in Proposition 2.3 we will restrict our

attention to the type C case.
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Recall from Theorem 2.2 that every element of the base (that is, a join irreducible

in BASMn ⊂ WT(HTASM2n) or element of P2) is uniquely minimal with respect

to some (i, j, k) triple in the fundamental octahedron. In contrast, minimal type C

Waldspurger matrices, with respect to a single fixed entry, need not be unique. The

smallest such example arises from the group ±S4 of 4×4 signed permutation matrices.

There are two incomparable elements of the base whose type C Waldspurger matrices

are minimal after fixing the (2,2) entry to be a two:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 0

1 2 1 0

0 1 1 0

0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

vs

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0

0 2 2 1

0 2 2 1

0 2 2 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

These two matrices may be “unfolded” to the centrally symmetric type A Wald-

spurger matrices:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 0 0 0 0

1 2 1 0 0 0 0

0 1 1 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 1 1 0

0 0 0 0 1 2 1

0 0 0 0 0 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0

0 1 1 1 1 1 0

0 1 1 1 1 1 0

0 1 1 1 1 1 0

0 1 1 1 1 1 0

0 1 1 1 1 1 0

0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

If we write the (2,2) entry as 2 = 2 + 0 and we “fall down” in the type A way, we get

the matrix on the left. If we write 2 = 1+ 1 and “fall down” in the type A way, we get

the matrix on the right.

Folding seems to take yet another step away from the underlying octahedral ge-

ometry. The poset P1 (of join-irreducible elements of WT(HTASM2n)) perfectly
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encapsulated this geometry; stable configurations of oranges in an octahedral orange

basket governed by gravity. The poset P2, preserved the direction of gravity and

even some of the octahedral geometry, but somehow a tetrahedron of oranges got

“punched” upwards. In terms of oranges and gravity, the poset F(P2) is best de-

scribed as a strong mimosa, and I will say nothing more for fear that this thesis

might be rejected.

Not only this, folding destroys Bruhat order. Among the bigrassmannian ele-

ments of the Weyl group for type C4, there are exactly two cover relations in type C

Waldspurger order which are not cover relations in Bruhat order:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 0

1 2 1 0

0 1 1 0

0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

<

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 2 2 1

2 2 2 1

2 2 2 1

2 2 2 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0

0 2 2 1

0 2 2 1

0 2 2 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

<

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 0

1 2 3 1

1 3 5 2

0 2 4 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Folding WT(HTASM8) also breaks the lattice structure with respect to componen-

twise order. The same sort of failures were recognized for signed monotone triangles

by Reading in Section 10, Question 4 of [34].

2.7 Further Questions

1. Is there a description of Waldspurger order in terms of words in the Coxeter

group?

2. For type A, Waldspurger order equals Bruhat order. For types B and C, Wald-

spurger order extends Bruhat order. How does Waldspurger order behave in

other types?

3. In the beginning of Chapter 3 we defined the Waldspurger transform for general

crystallographic root systems in terms of the inverse Cartan matrix, C−1
Φ , as
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WTΦ(w) ∶= (id − w)C−1
Φ . This was somewhat less natural than letting A be

the matrix whose column vectors give the non-zero vertices of the fundamental

alcove in root coordinates and defining WTΦ(w) =®
alt

(id − w)A. In choosing to

leave the scaling of columns by the “marks” (see page 17) as an afterthought, we

were able make type A, B and C, Waldspurger matrices all have non-negative

integer entries. Is this concession in definitions sufficient to make WTΦ(w)i,j ∈

Z≥0 for all crystallographic types?

4. How many elements are there in the Dedekind-MacNeille completion of Bruhat

order for type B?

5. In [25], Meinrenken has another intriguing theorem: Let W an affine Weyl

group with A a fundamental alcove. Then for any endomorphism S, in the same

connected component as 0 in the set {S ∈ End(V ) ∣ det(S −w) ≠ 0∀w ∈W}, the

simplices (S −w)A for w ∈W are all disjoint and their closures cover the entire

vector space V .

This theorem seems to provide an interesting interpolation between the affine

hyperplane arrangement, or Stiefel diagram, and the Meinrenken tile. Does

any nice combinatorics arise from selecting nice endomorphisms? Is there an

intrinsic characterization of the types of tilings that arise in this way? (See

Figure 5 in the appendix, or [2].)



Chapter 3

Other Combinatorics in the

Meinrenken Tile

Thus far, we have shown that the Waldspurger transform of permutations and al-

ternating sign matrices is intimately connected with the type A and type B Bruhat

orders and their Dedekind-MacNeille completions. The motivation for defining the

WT, however, was to better understand the geometry of the Waldspurger and Mein-

renken theorems. In this chapter we return to the geometry primarily in the type

A case, now better equipped with a combinatorial understanding of WT. We rely

heavily on the notation introduced in Section 0.8. In particular, for π ∈ Sn, let ci

denote the ith column vector of WT(π) and recall that we associated one cone and

two simplices with π:

Cπ ∶= {
n−1

∑
i=1

aici ∣ ai ∈ R≥0}

Aπ ∶= {
n−1

∑
i=1

aici ∣ ai ∈ R≥0 and ∑ai ≤ 1}

∆π ∶= {
n−1

∑
i=1

aici ∣ ai ∈ R≥0 and ∑ai = 1} .
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We start by describing basic symmetries of the Meinrenken tile M ∶= ⊔
w∈W

Aw in

terms of operations on the permutations and their transformation diagrams.

3.1 Symmetries of the Waldspurger Decomposition

and Meinrenken Tile

Recall from Figure 9 and Figure 10 that the dimension of the cone Cw in the Wald-

spurger decomposition and the dimension of the simplex Aw in the Meinrenken tile

depend on the element w ∈W . In general, the codimension of Aw in M is exactly the

dimension of the space fixed by w acting on V . When W = Sn, this is equivalent to

the following:

Proposition 3.1. The number of cycles of π ∈Sn equals the codimension of the cone

Cπ and the simplex Aπ in Rn
0 . That is,

dim(Cπ) = dim(Aπ) = n −#cycles of π.

Indeed, in Figure 1.4 the four-cycles are the triangles, the three-cycles and prod-

ucts of two disjoint two-cycles are the edges, the transpositions are vertices, and the

identity permutation is the empty face. This was also noted in [7] and can be seen as

a corollary of the Chevalley-Shephard-Todd theorem [10].

Notice also in Figure 1.4 that there is a left-right symmetry to the Waldspurger

decomposition. This corresponds to 180○ rotation of the transformation diagram, or

conjugation by the longest element (the permutation sending k to n−k for all k ∈ [n]).

We will see that multiplication by the transposition (1, n) (on both the left and

right) also plays a fundamental role in the geometry:

Theorem 3.2. Let R denote reflection through the affine hyperplane orthogonal to the

longest positive root, θ, at height one. Then R is an involution on the set of ∆π’s. At
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Figure 3.1: The Meinrenken tile forS3 and the hyperplane corresponding to reflection
R from Theorem 3.2.

the level of permutations, this involution is multiplication by the transposition (1, n)

on the left:

R(∆π) = ∆(1,n)π.

In contrast, applying the transposition (1, n) on the right to π gives the unique

ψ ∈Sn for which ∆ψ and ∆π are simple coroot translates:

∆π + c = ∆π(1,n) for some simple coroot c.

Proof. Consider how the transformation diagram changes when one applies the trans-

position (1, n) on the left (respectively right). Only two of the stars in the diagram

will move– those on the left and right (respectively top and bottom) of the diagram.

The two moving stars will cause θ = (1,1, . . . ,1)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n−1

to be subtracted from all columns
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(respectively rows) starting and ending with 1’s, and to be added to all columns

(respectively rows) starting and ending with 0’s.

Adding θ’s to columns is the reflection R across the hyperplane orthogonal to θ

at height one. Indeed, consider where R sends column vectors. If we let P denote

projection onto θ, then R sends v ↦ (id−2P )v+θ. In root coordinates, 2P is described

by the matrix 2θθTC
θTCθ = JC where J is the matrix of all ones and C is the Cartan matrix.

One may verify that

JC =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 . . . 0 1

1 0 . . . 0 1

⋮ ⋮ ⋮ ⋮ ⋮

1 0 . . . 0 1

1 0 . . . 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and thus R sends column vector v to

v ↦ (id − JC)v + θ = v − (v1 + vn−1)θ + θ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v if v1 + vn−1 = 1

v + θ if v1 + vn−1 = 0

v − θ if v1 + vn−1 = −1.

In contrast, adding or subtracting θ’s from rows is acting by translation by a co-

root on the ∆π’s. Since coroot translation (disjointly) tiles space with the Meinrenken

tile and this transformation preserves being a Waldspurger matrix, it must be unique.

3.2 SIF Permutations and Combinatorial Dimension

There are three types of dimension associated with each π ∈Sn via the Waldspurger

transform:
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• The linear dimension ∶= dim(Aπ).

• The affine dimension ∶= dim(∆π).

• The combinatorial dimension CD(π) ∶= # distinct non-zero columns of

WT(π).

Proposition 3.1 tells us that the linear dimension of π is exactly n − #cycles of π.

This is a well understood phenomenon.

Affine dimension is closely related to linear dimension, but can be at most n−2. If

WT(π) has an all zeros column, then by definition Aπ = ∆π and the affine dimension

and linear dimension of π coincide. If, however, WT(π) does not have a zero column

then dim(∆π) = dim(Aπ)−1. Suppose the all zeros vector is not a column of WT(π).

By Theorem 3.2, there is a unique ψ ∈Sn such that ∆π and ∆ψ are coroot translates

and 0 ∈ ∆ψ. Meinrenken’s theorem (Theorem 0.8) implies that ∆π ∩M = ∅ (even

though ∆π ∩M = ∆π) and ∆ψ ∩M = ∆ψ. One may think of M as being topologically

“half-open” in Rn
0 , and we use this matching to enumerate permutations by their affine

dimension.

Theorem 3.3. Let a(n, k) denote the number of π ∈Sn with dim(∆π) = k. Then

n−1

∑
k=0

a(n, k)xn−1−k = 2
n−1

∏
i=2

(x + i).

Proof. Let c(n, k) denote the unsigned Stirling numbers of the first kind, i.e. the

number of permutations in Sn with exactly k disjoint cycles (counting fixed points

as cycles). Proposition 1.3.7 of EC1 [37] tells us that

n

∑
k=0

c(n, k)xk = x(x + 1)(x + 2) . . . (x + n − 1).

We know from Proposition 3.1 that c(n, k) = #{π ∈Sn ∣ dim(Aπ) = n − k} and

because dim(Aπ) ≈ dim(∆π) it is at least reasonable that the two formulas look
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similar. We proceed using the “buddy system.” Say that π and ψ are buddies if

π ⋅(1, n) = ψ, and call dim(∆π) the affine dimension of π. It follows from Proposition

3.1 that if π is an n-cycle, then dim(∆π) = n − 1. By Theorem 3.2, we know that

know ∆π and ∆π⋅(1,n) are coroot translates thus dim(∆π⋅(1,n)) = n−1 as well. We also

know that π ⋅(1, n) must have exactly two cycles. This accounts for, n! = c(n,1) of the

permutations with exactly two cycles, and we see that there are 2c(n,1) permutations

of affine dimension n − 1.

The remaining c(n,2) − c(n,1) permutations with two disjoint cycles have affine

dimension one lower. Their buddies will have exactly three cycles and will again have

the same affine dimension.

The remaining c(n,3) − (c(n − 2) − c(n − 1)) permutations with three cycles have

affine dimension one lower still, as will their buddies, etc.

This sequence has the generation function

2
n

∑
k=1

(
k

∑
i=0

c(n, i)(−1)i+k)xk−1 (3.1)

We will prove that this equals 2(x + 2)(x + 3) . . . (x + n − 1) by induction.

2
n+1

∑
k=1

(
k

∑
i=1

c(n + 1, i)(−1)i+k)xk−1

= 2
n+1

∑
k=1

k

∑
i=1

[n ⋅ c(n, i) + c(n, i − 1)](−1)i+kxk−1

= 2
n+1

∑
k=1

n
k

∑
i=1

c(n, i)(−1)i+kxk−1 + 2
n+1

∑
k=1

k

∑
i=1

c(n, i − 1)(−1)i+kxk−1

= 2n(x + 2)(x + 3) . . . (x + n − 1) + 2x
n+1

∑
k=1

k+1

∑
i=2

c(n, i − 1)(−1)i+k+2xk−1

= 2n(x + 2)(x + 3) . . . (x + n − 1) + 2x(x + 2) . . . (x + n − 1)

= 2(x + 2)(x + 3) . . . (x + n − 1)(x + n).
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We see that linear dimension and affine dimension are closely related and would

like to see how combinatorial dimension fits into the picture. For all π ∈ Sn it is

immediate that dim(Aπ)− 1 ≤ CD(π) ≤ n− 1 since WT(π) has at most n− 1 distinct

non-zero columns and since the linearly independent column vectors are necessarily

distinct and non-zero. Unfortunately, it seems that combinatorial dimension is a

much more complicated notion and that even enumerating the permutations in Sn

with combinatorial dimension n − 1 is non-trivial.

Definition 12. A permutation on [n] = {1,2, . . . , n} is stabilized-interval-free (SIF)

if it does not stabilize any proper subinterval of [n].

For example (3,6,5,4)(1,7,2) in cycle notation, fails to be SIF because it stabilizes

the interval [3,6] = {3,4,5,6}. SIF permutations were recently shown by Ardila,

Rincón, and Williams to be in bijection with connected positroids [4], a subclass of

matroids introduced by Postnikov to study the totally nonnegative grassmannian.

Let fn denote the number of SIF permutations in Sn, define a generating function

A(x) = ∑∞
n=0 fnx

n, and let [xn] be an operator that extracts the coefficient of xn from a

power series. Callan [13] showed that [xn−1]A(x)n = n!. He also obtained a recurrence

for enumerating SIF permutations:

f0 = f1 = 1, fn = (n − 1)fn−1

n−2

∑
j=2

(j − 1)fjfn−j for all n ≥ 2.

Theorem 3.4. For any permutation π ∈Sn,

CD(π) = n − 1⇐⇒ π is SIF.

Proof. For notational brevity, let Mσ = WT(σ) and suppose that Mσ has column i

all zeros. Then row i must also be all zeros. Indeed, recall that Waldspurger matrices

are unimodal in both row and column, with both row and column maxima on the
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n/k 0 1 2 3 4 5 6 7 8
2 1 1
3 1 3 2
4 1 6 10 7
5 1 10 30 45 34
6 1 15 70 170 258 206
7 1 21 140 490 1134 1778 1476
8 1 28 252 1190 3766 8764 14196 12123
9 1 36 420 2562 10458 32340 76956 128241 111866

Figure 3.2: It is an open problem to enumerate permutations inSn with combinatorial
dimension k. Note that the trailing sequence f(n,n−1) = 2,7,34,206, . . . enumerates
SIF permutations.

diagonal. If Mi,i = 0, then both row i and column i must be all zeros. This means

that σ stabilizes the intervals [1, i] and [i + 1, n]. Thus, σ SIF implies 0 ∉ ∆π.

Now suppose Mσ has identical columns i and j. I claim that σ stabilizes [i+1, j].

Indeed, sinceMi,i =Mi,j , all stars above and to the right of (i, i) in the transformation

diagram must be above and to the right of (i, j) making the region in between and

above a “no man’s star’s zone.” Likewise, ifMj,i =Mj,j , all stars below and to the left

of (j, j) in the transformation diagram must be below and to the left of (j, i) making

the region in between and below another “no star’s zone.” We are forced to conclude

that σ(i+ 1), σ(i+ 2), . . . , σ(j) ∈ [i+ 1, j]. The claim follows from the fact that Mσ is

a permutation matrix. Thus σ SIF implies Mσ has distinct columns.

The converse now follows easily. If σ is not SIF, then either is stabilizes an interval

of the form [1, i] (and hence also [i + 1, n]) forcing Mσ to have ith column zero, or σ

stabilizes an interval [i, j] forcing Mσ to have columns i − 1 and j equal.

Question 9. Define f(n, k) ∶= #{π ∈ Sn ∣ CD(π) = k} so that f(n,n − 1) =

#SIF pemutations ∈ Sn. (See Figure 3.2.) One can show that f(n,0) = 1 and

f(n,1) = (n
2
) and f(n,2) = 2(n+1

4
). Find f(n, k) for general n and k.

Notice in Figure 3.2 that for fixed n, the numbers f(n, k) appear to be unimodal

with maximum f(n,n−2). We are able to show that f(n,n−2) > f(n,n−1) whenever
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n > 2 and obtain a few more enumerative results by breaking up the set

{π ∈Sn ∣ CD(π) = n − 2}.

This set consists of the permutations π for which WT(π) has a single zero column,

and those for which WT(π) has exactly one repeated column and no zero column.

To that end we make the following definition:

Definition 13. Call a permutation on [n] h-SIF (half-stabilized-interval-free) if it

stabilizes exactly one pair of intervals 1, . . . , k and k + 1, . . . , n.

One may alternatively define h-SIF permutations to be the set of π ∈Sn for which

WT(π) has distinct columns, one of which is the all zeros vector. While (by Theorem

3.2) the set of SIF permutations equals {π ∈Sn ∣ CD(π) = n−1}, note that the set

of h-SIF permutations is a strict subset of {π ∈Sn ∣ CD(π) = n−2}. For example,

CD(4321)=2, but WT(4321) does not have a zero column.

Theorem 3.5. The number of h-SIF permutations in Sn with affine dimension n−2

is given by the formula
n−2

∑
k=0

k!(n − 2 − k)!

Proof. Note that this is less than 2(n − 1)! = #{π ∈ Sn ∣ dim(∆π) = n − 2}. By

definition, h-SIF permutations have Waldspurger matrices with all distinct columns

exactly one of which is the all zeros vector. Having a zero column forces a Waldspurger

matrix to have a zero row and forces the permutation to have at least two cycles.

Having more than two cycles would reduce the linear dimension which equals the

affine dimension (because of the zero column). Thus, we are counting all permutations

with exactly two cycles, the first of which contains 1, . . . , k. From here the formula is

immediate.



108

Theorem 3.6. Let on denote the number of h-SIF permutations of n and sn denote

the number of SIF permutations of n. Then

on =
n

∑
k=0

sksn−k.

Proof. The proof is entirely analogous to that of Theorem 3.5.

It is immediate form Theorem 3.6, that the number of h-SIF permutations is

greater than the number of SIF permutations (whenever n>2) and because

{π ∈Sn ∣ π is h-SIF} ⊂ {π ∈Sn ∣ CD(π) = n − 2}

we may conclude that f(n,n − 2) > f(n,n − 1). Because of the restrictions on where

columns of a Waldspurger matrix may appear, it seems more difficult to enumerate

{π ∈Sn ∣ CD(π) = n − 2} ∖ {π ∈Sn ∣ π is h-SIF}.

Question 10. In an attempt to answer Question 9, one may consider separately the

two statistics, #non-zero columns of WT(π) and # distinct columns of WT(π). The

first statistic is equivalent to the number of “components” of the permutation, and

has been studied [30]. The second statistic does not appear to have been studied, but

appears to have nice unimodality properties. (See Figure 6 in the appendix for some

data.) Find an enumerative formula.

Question 11. Linear, affine, and combinatorial dimension may be defined for any

crystallographic type Φ using the WTΦ. One may define SIF elements abstractly as

elements of the Weyl group with maximum combinatorial dimension. Can one find a

combinatorial interpretation for these analogs of SIF permutations?
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2134 1243

1324

4231

3214 1432

3142

3421 4312

2341 4123

2413

Figure 3.3: the dual graph on n-cycles for S3 and S4

3.3 A Dual Graph on n-cycles

Theorem 3.7. (Bibikov and Zhgoon 2009 [7]) Given (W,S) a finite Coxeter system,

two cones Cπ and Cσ of the same dimension in the Waldspurger decomposition share

a codimension one boundary iff πsi = σsj for some pair of simple generators si, sj ∈ S.

Restricting our attention to type A, this gives rise to a graph structure G(n) on n-

cycles ofSn. Two n-cycles c1 and c2 are adjacent iff there exist adjacent transpositions

si and sj such that c1sisj = c2. This section is dedicated to the study of this graph.

The following lemma will establish bounds on degrees of vertices in G(n).

Lemma 3. Let c1 be an n-cycle and si be the transposition switching i and i + 1.

Either c1sisi+1 is an n-cycle, or c1si+1si is an n-cycle. Not both.

Proof. Suppose your n-cycle is

(i, a1, ..., ak, i + 1, b1, ..., bj, i + 2, c1, ..., cl).

Multiplying by (i, i + 1)(i + 1, i + 2) = (i, i + 1, i + 2) on the right gives the n-cycle

(i, b1, ..., bj, i + 2, a1, ..., ak, i + 1, c1, ..., cl).
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but multiplying by (i + 1, i + 2)(i, i + 1) = (i, i + 2, i + 1) on the right gives

(i, c1, ..., cl)(i + 1, a1, ..., ak)(i + 2, b1, ..., bj).

On the other hand, suppose your n-cycle is

(i, a1, ..., ak, i + 2, b1, ..., bj, i + 1, c1, ..., cl).

Multiplying by (i, i + 1)(i + 1, i + 2) = (i, i + 1, i + 2) on the right gives

(i, c1, ..., cl)(i + 1, b1, ..., bj)(i + 2, a1, ..., ak).

but multiplying by (i+1, i+2)(i, i+1) = (i, i+2, i+1) on the right gives the n-cycle

(i, c1, ..., cl, i + 1, b1, ..., bj, i + 2, a1, ..., ak).

Corollary. Vertices in G(n) must have at least n−2 neighbors and may have at most

(n−1
2
) neighbors.

Observe that if n is odd, the n-cycle (1,3,5, . . . , n,2,4,6, . . . , n−1) and its inverse

both obtain the (n−1
2
) maximum number of neighbors. The same is true for

(1,3,5, . . . , n − 1,2,4,6, . . . , n) and its inverse when n is even.

Lemma 4. If j > i+1, then there are two classes of n-cycles related by (i, i+1)(j, j+1)

(i, a1, . . . , ak, j, b1, . . . , bl, i+1, c1, . . . , cm, j+1, d1, . . . , dn) (3.2)

and

(i, c1, . . . , cm, j+1, b1, . . . , bl, i+1, a1, . . . , ak, j, d1, . . . , dn). (3.3)
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Proof. The proof is a straightforward exercise in multiplying permutations, much like

the proof of Lemma 3 and we omit it.

This lemma implies that there are two types of edges in our Waldspurger dual

graph; those coming from “adjacent adjacent transpositions” sisi+1 and those coming

from “non-adjacent adjacent transpositions” sisj where j > i+1. It is helpful to study

them separately. To that end we make the following definitions:

Definition 14. Let Gadj(n) be a graph on n-cycles where c1 and c2 share an edge iff

there exists an i ∈ [n − 2] such that c1sisi+1 = c2

Definition 15. Let Gnadj(n) be a graph on n-cycles where c1 and c2 share an edge

iff there exists i, j ∈ [n − 2] with j > i + 1 such that c1sisj = c2.

Lemma 3 implies that Gadj(n) is a regular graph. We will use this fact to prove

the following:

Theorem 3.8.

#E(G(n)) = (n + 3)(n − 2)(n − 1)!
12

Proof. There are two types of edges in G(n), edges from Gadj and edges from Gnadj.

In Gadj there are (n − 1)! vertices each with degree n − 2 for a total of

(n − 2)(n − 1)!
2

edges in Gadj(n).

In Gnadj vertices of forms

(i, a1, . . . , ak, j, b1, . . . , bl, i+1, c1, . . . , cm, j+1, d1, . . . , dn) (3.4)

and

(i, c1, . . . , cm, j+1, b1, . . . , bl, i+1, a1, . . . , ak, j, d1, . . . , dn). (3.5)
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are adjacent via the edge labeled sisj. These are the only edges inGnadj. To count such

edges we may pick the pair sisj in (n−2
2
) ways, order the numbers of [n]−{i, i+1, j, j+1}

in (n − 4)! ways, and break up that ordering into a’s, b’s, c’s, and d’s in (n−1
3
) ways.

That is, there are

(n − 2

2
)(n − 1

3
)(n − 4)! = (n − 3)(n − 2)(n − 1)!

12
edges in Gnadj(n).

Adding the edges from Gadj and Gnadj we see that G(n) has

6(n − 2)(n − 1)!
2

+ (n − 3)(n − 2)(n − 1)!
12

= (n + 3)(n − 2)(n − 1)!
12

edges.

Proof. A bijective proof:

Consider tableaux of shape (3,1n−2). It is a result of Campbell [31] that there are
(n+3)(n−2)(n−1)!

12 ways to fill this shape using each element of [n− 2] once, and infinities

twice with the row decreasing and containing at most one infinity. We will biject

these tableaux with pairs of n-cycles and the sisj connecting them in G.

Case 1:

There is an infinity in the top row. This signifies that j = i + 1. The placement

of the second infinity determines what i is. In the example below since the second

infinity is in the fourth block of size one, i = 4. By Lemma 3, we know that

(i, a1, ..., ak, i+1, b1, ..., bj, i+2, c1, ..., cl)sisi+1 = (i, b1, ..., bj, i+2, a1, ..., ak, i+1, c1, ..., cl)

thus all that is left is to construct our sequence of a’s, b’s and c’s. The integer entries

in the first column form a permutation in one line notation. Write it in the letters of

the alphabet [n] − {i, i + 1, i + 2} In the example below, 3214 written in the alphabet
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{1237} is 3217. We now use the numbers in the top row to break this word up into

a’s, b’s, and c’s. The last block tells us the number of a’s plus one and the second

block minus the last block tells us the number of b’s plus one. In the example, the 5

tells us there are four a’s and the 6 tells us there are no b’s (which there better not

be since we used all four of our letters already). Any numbers remaining from our

word will become c’s.
∞ 6 5

3

2

1

∞
4

z→ S4S5

(4321756)

(4632175)
Case 2:

The two infinities are in the ith and jth rows of size one. Then our n-cycles will

be related by sisj+1. From Lemma 4 we know that

(i, a1, . . . , ak, j, b1, . . . , bl, i+1, c1, . . . , cm, j+1, d1, . . . , dn)sisj =

(i, c1, . . . , cm, j+1, b1, . . . , bl, i+1, a1, . . . , ak, j, d1, . . . , dn).

As in case one, we use the integer entries of the first column to make a word in

the alphabet [n]−{i, i+1, j, j+1} and the entries in the first column to decide how to

break up the word into a’s b’s c’s and d’s. In the example we have S2S5 coming from

the positions of the infinities. We rewrite the permutation 163 in the alphabet {147}

to get 174 and break it using the first row. There is 2− 1 = 1 a (our 1), 4− 2− 1 = 1 b

(our 7), and no c’s. This leaves one d (our 4).
5 4 2

1

∞
6

∞
3

z→ S2S5

(2157364)

(2673154)
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In both cases, the algorithm is reversible. Given a pair of adjacent transpositions

we know how to place our infinities. We can count our number of a’s, b’s, c’s (and

d’s if we are in case two) and use them to determine the entries of our top row. We

can then concatenate the a’s, b’s, c’s (and d’s) to make a permutation word which we

can write in the alphabet of whatever letters we have left to place in our tableau and

we are done.

The following table gives the number of vertices of given degree for G(n):

n/deg 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

3 2

4 4 2

5 8 10 4 2

6 16 34 30 24 8 6 2

7 32 98 138 158 106 80 58 28 16 4 2

Since Gadj(n) is regular, it suffices to study the degree sequence for Gnadj(n):

n/deg 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

3 2

4 4 2

5 8 10 4 2

6 16 34 30 24 8 6 2

7 32 98 138 158 106 80 58 28 16 4 2

8 64 258 504 764 774 692 632 492 380 220 122 74 46 10 6 2

For notational convenience, define Bn,k ∶= {v ∈ Gnadj(n) ∣ deg(v) = k}
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Theorem 3.9.

#Bn,0 = 2n−2

Proof. If n and n − 1 are not to be entangled then they must appear next to each

other in our n-cycle. If not, we would have a partition of [n− 2] into two blocks, one

of which would have to contain some i < n − 2 with i + 1 in the other block, meaning

that our n-cycle was entangled via sisn−1. Now view n − 1 and n as a single block

and note that in a similar way, n − 2 must be appear next to this block. Continuing

in this way, we have one choice at each step: do we place i on the left or right of n?

Once we place 1 we close our cycle. Notice that our placement of 1 and n was forced,

meaning we made 2n−2 choices.

Theorem 3.10.

#Bn,1 = (n − 4)2n−2 + 2

Proof. Induction on n: When n = 4 there are two such vertices and when n = 5 there

are 10 such vertices (as seen in the table). Suppose for induction that #Bn−1,1 =

(n − 5)2n−3 + 2 For the remainder of the proof we will consider our permutations

written in cycle notation starting with a one.

There is a two natural injective maps φ̂ ∶ Bn−1,1 Ð→ Bn,1 and φ̃ ∶ Bn−1,1 Ð→ Bn,1

that inserts an n directly to the left (respectively right) of n − 1. That is to say, for

any given

v = (1, a1, . . . , ak, n − 1, b1, . . . , bn−k−2) ∈ Bn−1,1

I claim that both

v̂ ∶= (1, a1, . . . , ak, n − 1, n, b1, . . . , bn−k−2) ∈ Bn,1

and ṽ ∶= (1, a1, . . . , ak, n, n − 1, b1, . . . , bn−k−2) ∈ Bn,1
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Indeed, v ∈ Bn−1,1 means there exists a unique pair sisj j > i+1 so that i, i+1, j, j+1

appear in an entangled order as in Lemma 4.

No entanglements will be created or destroyed by inserting n into v to make v̂ or

ṽ.

Thus, there are 2((n − 5)2n−2 + 2) vertices in Bn,1 such that n − 1 and n are next

to each other.

We must now figure out what other n-cycles v are in Bn,1. Since v will be of the

form

(n, , n − 1, )

we must consider how to place the remaining n−2 elements in the two blanks so that

we only have one entanglement. We must have the following properties:

1. Only one pair i, i + 1 can be in separate blanks.

2. 1,2, . . . , i− 1 must be in the same blank as i and i+ 2, i+ 3, . . . , n− 2 must be in

the same blank as i + 1

3. Entries in the blank containing one must be “anti-unimodal" (decreasing and

then increasing).

The first two properties are obviously necessary to avoid extra entanglements. The

third property follows from Theorem 3.9.

Consider how we may insert n − 2 into the pattern above. It must be adjacent to

n − 1. (Otherwise 1,2, . . . , n − 3 must be between n − 2 and n − 1 meaning the other

blank is empty.) Thus n − 2 can be placed in two ways. n − 3 can either be placed

next to n − 2 (sandwiching n − 2 between n − 1 and n − 3) or in the opposite blank

from n − 2. Once we place a number in the second blank, by property 1 there is no

going back. If we do want to stay in the first blank, by the same argument as above,

i must always be placed next to i + 1. Once we place a number in the second blank,
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every number after it can be placed either to the right or to the left of where one will

be. Thus there are 2n−2 − 2 ways of placing 1,2, . . . , n − 2 since we cannot place all of

them in the first blank or all in the second, but otherwise we a binary choice to make

each time we place a number. This gives us the desired number of vertices:

2n−2 − 2 + 2((n − 5)2n−2 + 2) = (n − 4)2n−2 + 2

There seems little hope for enumerating Bn,k in general. For k not equal to zero

or one, the entanglements become quite complected. There is one more interesting

observation about Gnadj, however which seems worth noting.

Definition 16. Define the nth Pell number, P (n) defined recursively from P (0) =

0, P (1) = 1 and for n > 1,

P (n) = 2P (n − 1) + P (n − 2).

Conjecture 1. Let Gnadj be the graph on n-cycles where the n-cycles c1 and c2 share

and edge iff there exist adjacent transpositions si and sj for j ∉ {i − 1, i, i + 1} such

that c1si = c2sj. Then Gnadj has P (n) connected components, where P (n) is the nth

Pell number.

Recall that Theorem 3.3 is quite general, holding for any finite Coxeter system (not

necessarily even crystallographic!) It turns out that n-cycles are to Sn as “Coxeter

elements” are to Coxeter system (W,S). A Coxeter element is a product of all

simple reflections. The product depends on the order in which they are taken, but

different orderings produce conjugate elements, which have the same (group theoretic)

order in W .
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Theorem 3.11. (Bibikov and Zhgoon 2009 [7]) Given a finite real reflection group

W with a set of simple generators S, the top dimensional cones Cw1
and Cw2

share a

codimension one boundary in the Waldspurger decomposition iff w1si = w2sj for some

si, sj ∈ S.

One may then, define a Waldspurger dual graph with respect to any (W,S).

Definition 17. Given a Coxeter system (W,S) define three graphs with vertex set,

the Coxeter elements.

1. G((W,S)) where two Coxeter elements share an edge iff w1si = w2sj for any

si, sj ∈ S with i ≠ j

2. Gadj((W,S)) where two Coxeter elements share an edge iff w1si = w2sj for any

si, sj ∈ S with i ≠ j and sisj = sjsi

3. Gnadj((W,S)) where two Coxeter elements share an edge iff w1si = w2sj for any

si, sj ∈ S with i ≠ j and sisj ≠ sjsi

Computer evidence supports the following two conjectures:

Conjecture 2. The number of connected components in the graph Gnadj(Bn) is 4n −

n2n and satisfies the recurrence

a(n) = 4a(n − 1) + 2a(n − 2).

Conjecture 3. Let P (n) denote the nth Pell number. Then the number of connected

components in the graph Gnadj(Dn) is

nP (n)∑
d∣n

1

dP (d) .
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0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 0 0 0 0 0 0 0

0 0 1 2 1 1 1 1 0 0 0

0 0 0 1 1 1 1 1 0 0 0

0 0 0 1 1 1 1 1 0 0 0

0 0 0 1 1 1 1 1 0 0 0

0 0 0 1 1 1 1 2 1 0 0

0 0 0 0 0 0 0 1 1 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 1 1 0 0 0 0 0 0 0 0

0 1 2 1 0 0 0 0 0 0 0

0 1 2 2 1 1 1 1 1 0 0

0 0 1 1 1 1 1 1 1 0 0

0 0 1 1 1 1 1 1 1 0 0

0 0 1 1 1 1 1 1 1 0 0

0 0 1 1 1 1 1 2 2 1 0

0 0 0 0 0 0 0 1 2 1 0

0 0 0 0 0 0 0 0 1 1 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 1 1 0 0 0 0 0 0 0 0

0 1 2 1 1 1 1 1 1 0 0

0 0 1 1 1 1 1 1 1 0 0

0 0 1 1 1 1 1 1 1 0 0

0 0 1 1 1 1 1 1 1 0 0

0 0 1 1 1 1 1 1 1 0 0

0 0 1 1 1 1 1 1 1 0 0

0 0 1 1 1 1 1 1 2 1 0

0 0 0 0 0 0 0 0 1 1 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 1 1 1 0 0 0 0 0 0 0

0 1 2 2 1 1 1 1 0 0 0

0 0 1 2 1 1 1 1 0 0 0

0 0 0 1 1 1 1 1 0 0 0

0 0 0 1 1 1 1 1 0 0 0

0 0 0 1 1 1 1 1 0 0 0

0 0 0 1 1 1 1 2 1 0 0

0 0 0 1 1 1 1 2 2 1 0

0 0 0 0 0 0 0 1 1 1 0

0 0 0 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0 0 0

1 2 1 0 0 0 0 0 0 0 0

1 2 2 1 0 0 0 0 0 0 0

1 2 2 2 1 1 1 1 1 1 0

0 1 1 1 1 1 1 1 1 1 0

0 1 1 1 1 1 1 1 1 1 0

0 1 1 1 1 1 1 1 1 1 0

0 1 1 1 1 1 1 2 2 2 1

0 0 0 0 0 0 0 1 2 2 1

0 0 0 0 0 0 0 0 1 2 1

0 0 0 0 0 0 0 0 0 1 1

1 1 0 0 0 0 0 0 0 0 0

1 2 1 0 0 0 0 0 0 0 0

1 2 2 1 1 1 1 1 1 1 0

0 1 1 1 1 1 1 1 1 1 0

0 1 1 1 1 1 1 1 1 1 0

0 1 1 1 1 1 1 1 1 1 0

0 1 1 1 1 1 1 1 1 1 0

0 1 1 1 1 1 1 1 1 1 0

0 1 1 1 1 1 1 1 2 2 1

0 0 0 0 0 0 0 0 1 2 1

0 0 0 0 0 0 0 0 0 1 1

1 1 0 0 0 0 0 0 0 0 0

1 2 1 1 1 1 1 1 1 1 0

0 1 1 1 1 1 1 1 1 1 0

0 1 1 1 1 1 1 1 1 1 0

0 1 1 1 1 1 1 1 1 1 0

0 1 1 1 1 1 1 1 1 1 0

0 1 1 1 1 1 1 1 1 1 0

0 1 1 1 1 1 1 1 1 1 0

0 1 1 1 1 1 1 1 1 1 0

0 1 1 1 1 1 1 1 1 2 1

0 0 0 0 0 0 0 0 0 1 1

1 1 1 0 0 0 0 0 0 0 0

1 2 2 1 1 1 1 1 1 0 0

0 1 2 1 1 1 1 1 1 0 0

0 0 1 1 1 1 1 1 1 0 0

0 0 1 1 1 1 1 1 1 0 0

0 0 1 1 1 1 1 1 1 0 0

0 0 1 1 1 1 1 1 1 0 0

0 0 1 1 1 1 1 1 1 0 0

0 0 1 1 1 1 1 1 2 1 0

0 0 1 1 1 1 1 1 2 2 1

0 0 0 0 0 0 0 0 1 1 1

1 1 1 1 0 0 0 0 0 0 0

1 2 2 2 1 1 1 1 0 0 0

0 1 2 2 1 1 1 1 0 0 0

0 0 1 2 1 1 1 1 0 0 0

0 0 0 1 1 1 1 1 0 0 0

0 0 0 1 1 1 1 1 0 0 0

0 0 0 1 1 1 1 1 0 0 0

0 0 0 1 1 1 1 2 1 0 0

0 0 0 1 1 1 1 2 2 1 0

0 0 0 1 1 1 1 2 2 2 1

0 0 0 0 0 0 0 1 1 1 1

1 1 1 0 0 0 0 0 0 0 0

1 2 2 1 0 0 0 0 0 0 0

1 2 3 2 1 1 1 1 1 0 0

0 1 2 2 1 1 1 1 1 0 0

0 0 1 1 1 1 1 1 1 0 0

0 0 1 1 1 1 1 1 1 0 0

0 0 1 1 1 1 1 1 1 0 0

0 0 1 1 1 1 1 2 2 1 0

0 0 1 1 1 1 1 2 3 2 1

0 0 0 0 0 0 0 1 2 2 1

0 0 0 0 0 0 0 0 1 1 1

0 0 0 0 0 0 0 0 0 0 0

0 1 1 1 0 0 0 0 0 0 0

0 1 2 2 1 1 1 1 0 0 0

0 1 2 3 2 2 2 2 1 0 0

0 0 1 2 2 2 2 2 1 0 0

0 0 1 2 2 2 2 2 1 0 0

0 0 1 2 2 2 2 2 1 0 0

0 0 1 2 2 2 2 3 2 1 0

0 0 0 1 1 1 1 2 2 1 0

0 0 0 0 0 0 0 1 1 1 0

0 0 0 0 0 0 0 0 0 0 0

1 1 1 0 0 0 0 0 0 0 0

1 2 2 1 0 0 0 0 0 0 0

1 2 3 2 1 1 1 1 1 0 0

1 2 3 3 2 2 2 2 2 1 0

0 1 2 2 2 2 2 2 2 1 0

0 1 2 2 2 2 2 2 2 1 0

0 1 2 2 2 2 2 2 2 1 0

0 1 2 2 2 2 2 3 3 2 1

0 0 1 1 1 1 1 2 3 2 1

0 0 0 0 0 0 0 1 2 2 1

0 0 0 0 0 0 0 0 1 1 1

1 1 1 1 0 0 0 0 0 0 0

1 2 2 2 1 1 1 1 0 0 0

1 2 3 3 2 2 2 2 1 0 0

0 1 2 3 2 2 2 2 1 0 0

0 0 1 2 2 2 2 2 1 0 0

0 0 1 2 2 2 2 2 1 0 0

0 0 1 2 2 2 2 2 1 0 0

0 0 1 2 2 2 2 3 2 1 0

0 0 1 2 2 2 2 3 3 2 1

0 0 0 1 1 1 1 2 2 2 1

0 0 0 0 0 0 0 1 1 1 1

1 1 1 0 0 0 0 0 0 0 0

1 2 2 1 1 1 1 1 1 0 0

1 2 3 2 2 2 2 2 2 1 0

0 1 2 2 2 2 2 2 2 1 0

0 1 2 2 2 2 2 2 2 1 0

0 1 2 2 2 2 2 2 2 1 0

0 1 2 2 2 2 2 2 2 1 0

0 1 2 2 2 2 2 2 2 1 0

0 1 2 2 2 2 2 2 3 2 1

0 0 1 1 1 1 1 1 2 2 1

0 0 0 0 0 0 0 0 1 1 1

1 1 1 1 0 0 0 0 0 0 0

1 2 2 2 1 1 1 1 0 0 0

1 2 3 3 2 2 2 2 1 0 0

1 2 3 4 3 3 3 3 2 1 0

0 1 2 3 3 3 3 3 2 1 0

0 1 2 3 3 3 3 3 2 1 0

0 1 2 3 3 3 3 3 2 1 0

0 1 2 3 3 3 3 4 3 2 1

0 0 1 2 2 2 2 3 3 2 1

0 0 0 1 1 1 1 2 2 2 1

0 0 0 0 0 0 0 1 1 1 1

Figure 4: There are (6
4
) = 15 Bigrassmannian elements in the Weyl group B6 which are

not join-irreducible in the Dedekind-MacNeille completion of Bruhat order. Here are
the transformation diagrams for the corresponding centrally symmetric permutations
in CS12.
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Figure 5: Each triangle in each figure is (S −w)A for A the fundamental alcove and
w some element of the affine symmetric group, S̃3. The six figures correspond to six
different S, each a scalar times the identity. Reading left to right and top to bottom,
the six scalar values are −0.8,−0.5,0,0.5,0.8,0.9.
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n/k 1 2 3 4 5 6 7
2 2
3 2 4
4 2 10 12
5 2 18 48 52
6 2 28 124 274 292
7 2 40 260 890 1864 1984
8 2 54 480 2280 7116 14716 15672

Figure 6: It is an open problem to count the π ∈ Sn with for which WT(π) has k
distinct columns.
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