### The Combinatorics of the Waldspurger Decomposition

James McKeown

University of Miami

March 5, 2016

### Reflection Groups

A element  $g \in O(n)$  is a <u>reflection</u> if it sends some nonzero vector  $\alpha \in \mathbb{R}^n$  to its negative and fixes the hyperplane orthogonal to  $\alpha$  pointwise.

### Reflection Groups

A element  $g \in O(n)$  is a <u>reflection</u> if it sends some nonzero vector  $\alpha \in \mathbb{R}^n$  to its negative and fixes the hyperplane orthogonal to  $\alpha$  pointwise.

Let  $G \subset O(n)$  be a finite group generated by reflections.

## Reflection Groups

A element  $g \in O(n)$  is a <u>reflection</u> if it sends some nonzero vector  $\alpha \in \mathbb{R}^n$  to its negative and fixes the hyperplane orthogonal to  $\alpha$  pointwise.

Let  $G \subset O(n)$  be a finite group generated by reflections.

Example:  $G = \mathfrak{S}_n \subset O(n)$  permuting coordinates

### Reducibility

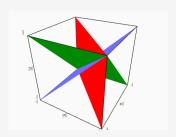


Figure:  $\mathfrak{S}_3 \curvearrowright \mathbb{R}^3$ 

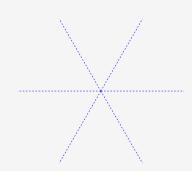


Figure:  $\mathfrak{S}_3 \curvearrowright \mathbb{R}^2 = \mathbb{R}^3/(1,1,1)$ 

### Reducibility

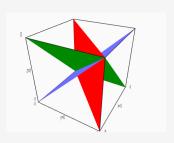


Figure:  $\mathfrak{S}_3 \curvearrowright \mathbb{R}^3$ 

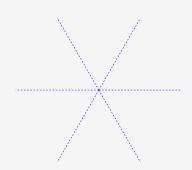


Figure:  $\mathfrak{S}_3 \curvearrowright \mathbb{R}^2 = \mathbb{R}^3/(1,1,1)$ 

A finite reflection group  $(W, \rho)$  is called <u>irreducible</u> if it cannot be written as an orthogonal direct sum of (nontrivial) finite reflection groups.

### Reducibility

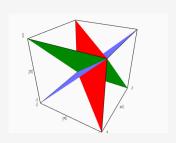


Figure:  $\mathfrak{S}_3 \sim \mathbb{R}^3$ 

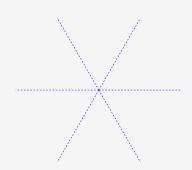


Figure:  $\mathfrak{S}_3 \curvearrowright \mathbb{R}^2 = \mathbb{R}^3/(1,1,1)$ 

A finite reflection group  $(W, \rho)$  is called <u>irreducible</u> if it cannot be written as an orthogonal direct sum of (nontrivial) finite reflection groups.

FACT: Finite reflection groups are completely reducible.

Q:) Can we classify irreducible finite reflection groups?

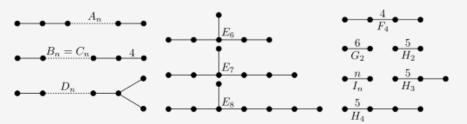
Q:) Can we classify irreducible finite reflection groups?

A:) YES!

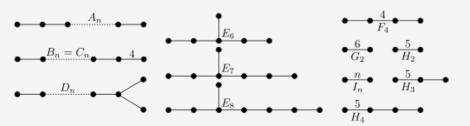
Q:) Can we classify irreducible finite reflection groups?

A:) YES!

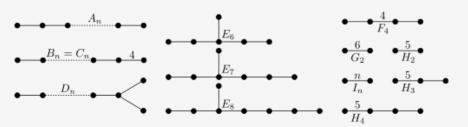
In 1934, building on the work of Möbius, Jordan, Shläfli, Killing, Cartan, and Weyl, HSM Coxeter used diagrams for the classification of finitely generated reflection groups.



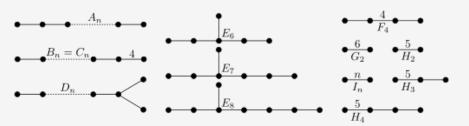
Vertices are a special set of generating reflections.



- Vertices are a special set of generating reflections.
- No edge means the generators commute.



- Vertices are a special set of generating reflections.
- No edge means the generators commute.
- Unlabeled edges between vertices i and j impose the relation  $(S_iS_i)^3 = 1$ .



- Vertices are a special set of generating reflections.
- No edge means the generators commute.
- Unlabeled edges between vertices i and j impose the relation  $(S_iS_j)^3 = 1$ .
- Edges labeled k between vertices i and j impose the relation  $(S_iS_j)^k = 1$ .



Theorem (Coxeter): Let  $\mathcal{A}$  be an arrangement in  $\mathbb{R}^n$  of reflecting hyperplanes for the reflection group G. Then  $G \curvearrowright (\mathbb{R}^n \setminus \cup_{H \in \mathcal{A}} H)$  freely and transitively on the chambers.

Theorem (Coxeter): Let  $\mathcal{A}$  be an arrangement in  $\mathbb{R}^n$  of reflecting hyperplanes for the reflection group G. Then  $G \curvearrowright (\mathbb{R}^n \setminus \cup_{H \in \mathcal{A}} H)$  freely and transitively on the chambers.

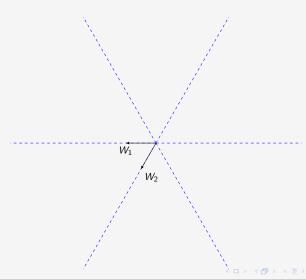
We pick one such chamber and call it the "weight cone" denoted  $C_W$ . The cone dual to  $C_W$  we call the "root cone" and denote  $C_R$ .

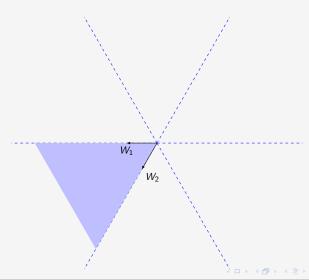
Fact (Coxeter):  $C_w$  is a simplicial cone.

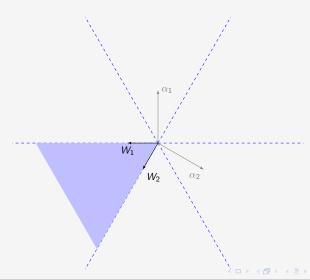
Let  $w_1, w_2, \ldots, w_n$  be vectors generating the rays of  $C_W$  [Jargon: called the "fundamental weights"] Then the dual cone is defined as

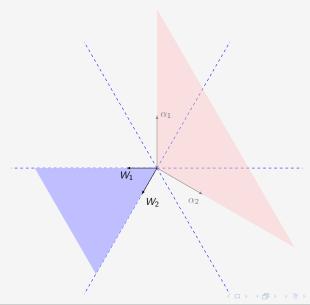
$$C_R := \{x \in \mathbb{R}^n : (x, y) \le 0 \,\forall y \in C_W\}$$

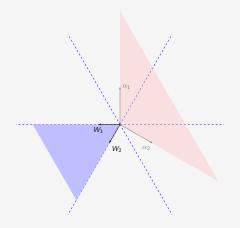
Let  $\alpha_1, \alpha_2, \dots, \alpha_n$  be vectors which generate rays of  $C_R$  [Jargon: called the "simple roots"]











$$3w_1 = -2\alpha_2 - 1\alpha_1$$
  
 $3w_2 = -1\alpha_2 - 2\alpha_1$ 

$$-\alpha_1 = \frac{2w_2 - 1w_1}{-\alpha_2} = \frac{-1}{2}w_2 + \frac{2w_1}{2}w_1$$

$$\begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}$$

In type A, it is conventional to let  $\alpha_i = e_i - e_{i+1}$  so  $(\alpha_i, \alpha_i) = 2 \ \forall i$ 

In type A, it is conventional to let  $\alpha_i = e_i - e_{i+1}$  so  $(\alpha_i, \alpha_i) = 2 \ \forall i$ 

Lengths of weights are then normalized so that

In type A, it is conventional to let  $\alpha_i = e_i - e_{i+1}$  so  $(\alpha_i, \alpha_i) = 2 \ \forall i$ 

Lengths of weights are then normalized so that

The matrix of  $\alpha$ 's is called the <u>Cartan Matrix</u>. It gives the coordinates of the simple roots in the basis of fundamental weights.

## Waldspurger's Theorem

Waldspurger's Theorem (2005!):

For G a finite reflection group acting on a Euclidean vector space V,  $C_R$  the (closed) root cone, and  $\mathring{C}_W \subset V$  the interior of the weight cone, one has the following decomposition:

$$C_R = \bigsqcup_{g \in G} (1 - g) \mathring{C}_W$$

## Waldspurger's Theorem

Waldspurger's Theorem (2005!):

For G a finite reflection group acting on a Euclidean vector space V,  $C_R$  the (closed) root cone, and  $\mathring{C}_W \subset V$  the interior of the weight cone, one has the following decomposition:

$$C_R = \bigsqcup_{g \in G} (1 - g) \mathring{C}_W$$

It is amazing that this decomposition exists for all reflection groups!

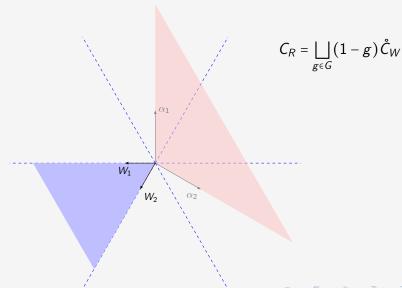
## Waldspurger's Theorem

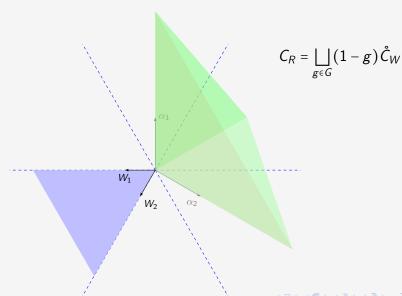
Waldspurger's Theorem (2005!):

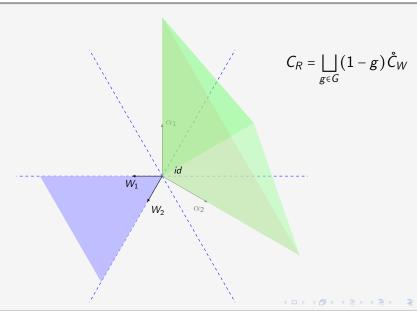
For G a finite reflection group acting on a Euclidean vector space V,  $C_R$  the (closed) root cone, and  $\mathring{C}_W \subset V$  the interior of the weight cone, one has the following decomposition:

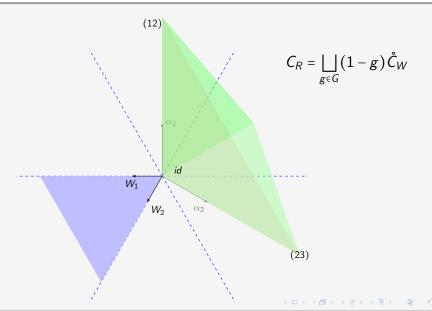
$$C_R = \bigsqcup_{g \in G} (1 - g) \mathring{C}_W$$

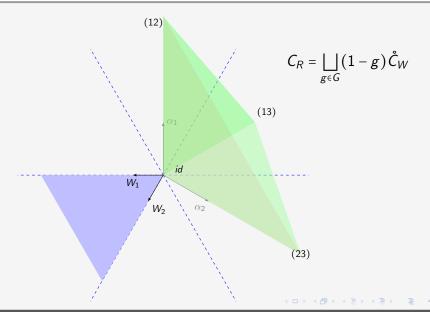
It is amazing that this decomposition exists for all reflection groups! In type  $A_n$  what does it tell us about the symmetric group  $\mathfrak{S}_{n+1}$ ?

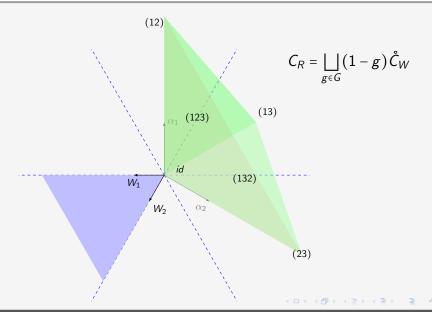




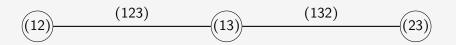




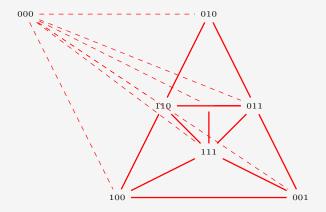


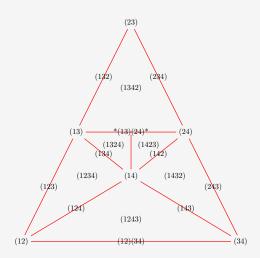


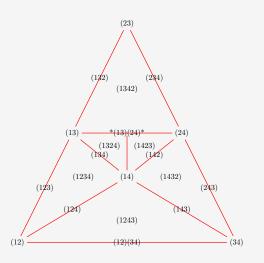
#### Slice it, put it in root coordinates



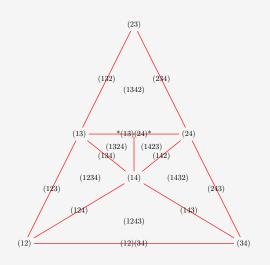
$$(1,0) \qquad \qquad (0,1)$$



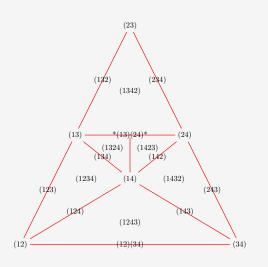




■ four copies of  $\mathfrak{S}_3$  picture

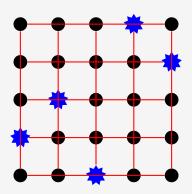


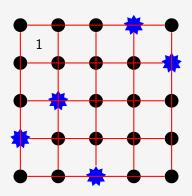
- four copies ofS<sub>3</sub> picture
  - Dimension  $\updownarrow$  # cycles (c(n,k))

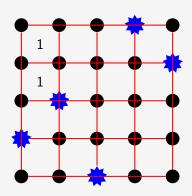


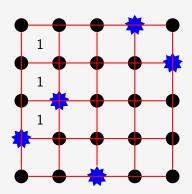
- four copies of 𝔾₃ picture
  - Dimension  $\updownarrow$  # cycles (c(n, k))
- NOT A CWcomplex!

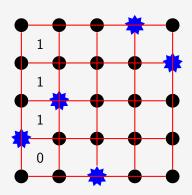
Theorem (Armstrong, M. 2015): The following algorithm turns linear algebra into combinatorics:

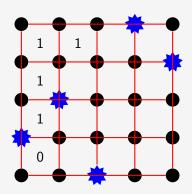


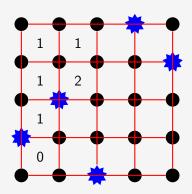


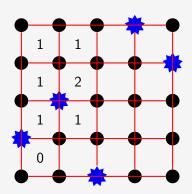


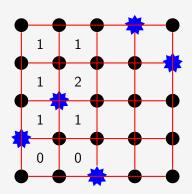


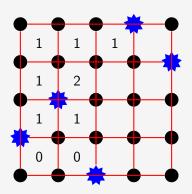


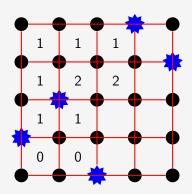


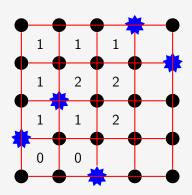


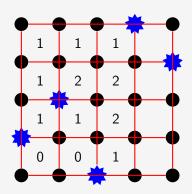


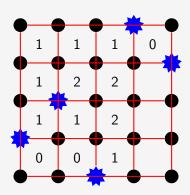


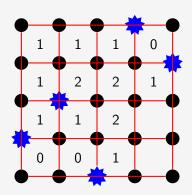


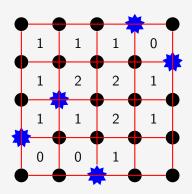


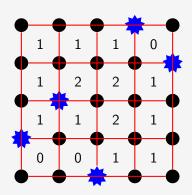




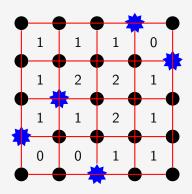








#### Consider $43512 \in \mathfrak{S}_5$



that is,

$$43512 \mapsto \left\{ a \begin{pmatrix} 1\\1\\1\\0 \end{pmatrix} + b \begin{pmatrix} 1\\2\\1\\0 \end{pmatrix} + c \begin{pmatrix} 1\\2\\2\\1 \end{pmatrix} + d \begin{pmatrix} 0\\1\\1\\1 \end{pmatrix} \middle| a, b, c, d \in \mathbb{R}_{\geq 0} \right\}$$

990

### proof

Proof: Let P be the  $(n-1) \times (n-1)$  matrix for the permutation  $\pi \in S_n$  expressed in root coordinates. Let C be the  $(n-1) \times (n-1)$  Cartan matrix and let D be the  $(n-1) \times (n-1)$  matrix

$$D_{i,j} = \begin{cases} \sum_{\substack{a \le i \\ b > j}} \pi_{a,b} & i \le j \\ \sum_{\substack{a > i \\ b \le i}} \pi_{a,b} & i \ge j \end{cases}.$$

We will show (I - P) = DC.

### proof

We use the fact that  $C = A^T A$  where A is the  $n \times (n-1)$  matrix

$$A = \begin{pmatrix} 1 & 0 & 0 & \dots & 0 \\ -1 & 1 & 0 & \dots & 0 \\ 0 & -1 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 1 \\ 0 & 0 & 0 & \dots & -1 \end{pmatrix}$$

to rewrite the conjecture :

$$P = I - DA^T A$$

We multiply both sides on the left by A:

$$AP = A - ADA^{T}A$$

Substitute  $AP = \pi A$  and cancel the A's on the right:

$$\pi = I - ADA^T$$

This we will verify.



Simply multiplying A and D we see that  $(AD)_{i,j} = D_{i,j} - D_{i-1,j}$  with the understanding  $D_{0,k} := 0$  for all k. One more multiplication gives us that

$$(ADA^T)_{i,j} = D_{i,j} - D_{i-1,j} - D_{i,j-1} + D_{i-1,j-1}$$

once again, with the understanding that if either i = 0 or j = 0 then  $D_{i,j} := 0$ 

### Case 1

If i = j then

$$(ADA^{T})_{i,j} = D_{i,j} - D_{i-1,j} - D_{i,j-1} + D_{i-1,j-1}$$

$$= \sum_{\substack{a \le i \\ b > j}} \pi_{a,b} - \sum_{\substack{a \le i-1 \\ b > j}} \pi_{a,b} - \sum_{\substack{a > i \\ b \le j-1}} \pi_{a,b} + \sum_{\substack{a > i-1 \\ b \le j-1}} \pi_{a,b}$$

$$= \sum_{k \ne j} \pi_{i,k}$$

$$= \begin{cases} 0 & \pi_{i,j} = 1 \\ 1 & \pi_{i,j} = 0 \end{cases}$$

If the second to last equality seems like a bit of a jump consider that we are summing over the following terms of permutation matrices:

Thus,  $(I - ADA^T)_{i,j} = \pi_{i,j}$  for this case.

◆□▶→□▶→□▶→□

### Case 2

If i < j then

$$(ADA^{T})_{i,j} = D_{i,j} - D_{i-1,j} - D_{i,j-1} + D_{i-1,j-1}$$

$$= \sum_{\substack{a \le i \\ b > j}} \pi_{a,b} - \sum_{\substack{a \le i-1 \\ b > j}} \pi_{a,b} - \sum_{\substack{a \le i \\ b > j-1}} \pi_{a,b} + \sum_{\substack{a \le i-1 \\ b > j-1}} \pi_{a,b}$$

$$= -\pi_{i,j}$$

This last equality is, again, perhaps more easily understood visually:

Thus,  $(I - ADA^T)_{i,j} = \pi_{i,j}$  for this case as well.



### Case 3

If i > j then

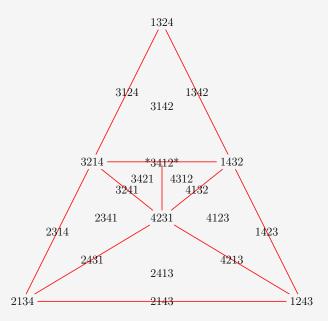
$$(ADA^{T})_{i,j} = D_{i,j} - D_{i-1,j} - D_{i,j-1} + D_{i-1,j-1}$$

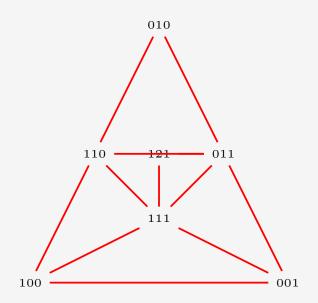
$$= \sum_{\substack{a>i\\b\leq j}} \pi_{a,b} - \sum_{\substack{a>i-1\\b\leq j-1}} \pi_{a,b} - \sum_{\substack{a>i\\b\leq j-1}} \pi_{a,b} + \sum_{\substack{a>i-1\\b\leq j-1}} \pi_{a,b}$$

$$= -\pi_{i,j}$$

Here once more, the visual aid comes to the rescue and makes the last equality apparent.

Thus,  $(I - ADA^T)_{i,j} = \pi_{i,j}$  in this final case.





#### Theorem:

 $2^n$  vertices arise as columns of Waldspurger matrices for type  $A_n$ .

Theorem:

 $2^n$  vertices arise as columns of Waldspurger matrices for type  $A_n$ . Sketch of a proof:

#### Theorem:

 $2^n$  vertices arise as columns of Waldspurger matrices for type  $A_n$ . Sketch of a proof:

Only a zero or a one can appear at the top and bottom of a column.

#### Theorem:

 $2^n$  vertices arise as columns of Waldspurger matrices for type  $A_n$ . Sketch of a proof:

- Only a zero or a one can appear at the top and bottom of a column.
- Entries in the columns are unimodal.

#### Theorem:

 $2^n$  vertices arise as columns of Waldspurger matrices for type  $A_n$ . Sketch of a proof:

- Only a zero or a one can appear at the top and bottom of a column.
- Entries in the columns are unimodal.
- Entries in the columns can only increase or decrease by one.

# Consequences of the algorithm

#### Theorem:

 $2^n$  vertices arise as columns of Waldspurger matrices for type  $A_n$ . Sketch of a proof:

- Only a zero or a one can appear at the top and bottom of a column.
- Entries in the columns are unimodal.
- Entries in the columns can only increase or decrease by one.
- There are  $2^{n-1}$  Unimodal Motzkin Paths of length n.

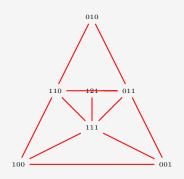
# Consequences of the algorithm

#### Theorem:

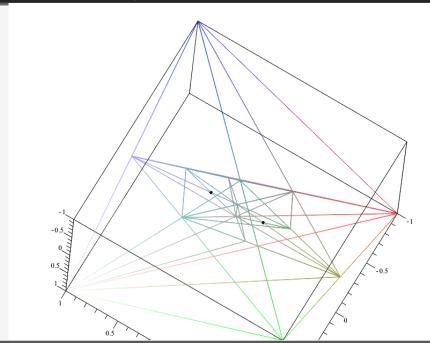
 $2^n$  vertices arise as columns of Waldspurger matrices for type  $A_n$ . Sketch of a proof:

- Only a zero or a one can appear at the top and bottom of a column.
- Entries in the columns are unimodal.
- Entries in the columns can only increase or decrease by one.
- There are  $2^{n-1}$  Unimodal Motzkin Paths of length n.
- Given any column with these properties, one has enough freedom to complete it to a Waldspurger matrix.

# Not all [virtual] vertices come from Waldspurger Matrices!

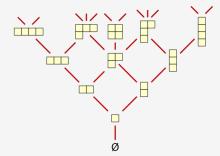


Our plan was to complete the Waldspurger decomposition to a polytopal complex intersecting facets to get faces of codimension one, intersecting those to get faces of codimension two, etc. This is problematic.

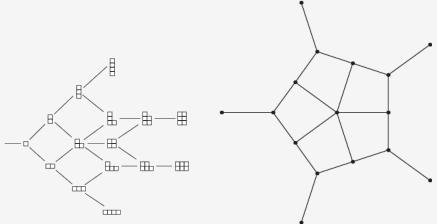


### Connection to Young's lattice

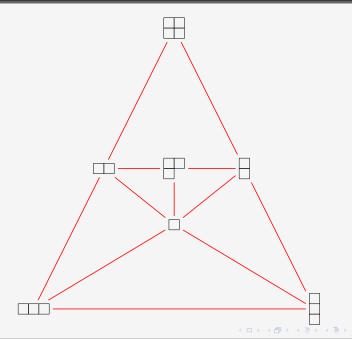
In 2002 Ruedi Suter exhibited a subposet of Young's lattice with dihedral symmetry.



For  $n \ge 3$  define  $Y_n$  to be the induced subgraph of partitions with hooklength less than or equal to n.  $Y_n$  has they same dihedral symmetry as a regular n-gon.



 $Y_n$  has  $2^{n-1}$  elements! (counting the empty partition)



# Why this bijection?... Abelian Ideals!

■ Ruedi Suter showed that elements in  $Y_n$  represent abelian ideals of the Borel subalgebra of  $\mathfrak{sl}_n(\mathbb{C})$ 

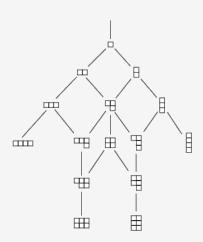
# Why this bijection?... Abelian Ideals!

- Ruedi Suter showed that elements in  $Y_n$  represent abelian ideals of the Borel subalgebra of  $\mathfrak{sl}_n(\mathbb{C})$
- An ideal of a Lie algebra is a set with the absorbing property with respect to the bracket.

# Why this bijection?... Abelian Ideals!

- Ruedi Suter showed that elements in  $Y_n$  represent abelian ideals of the Borel subalgebra of  $\mathfrak{sl}_n(\mathbb{C})$
- An ideal of a Lie algebra is a set with the absorbing property with respect to the bracket.
- An ideal of a Lie algebra is called <u>abelian</u> if the Lie bracket vanishes on it.

The Borel subalgebra of  $\mathfrak{sl}_5(\mathbb{C})$  consists of all upper triangular matrices with trace= 0. These partitions represent each of its abelian ideals.



# Open Questions:

Does this connection with abelian ideals hold in other types?

# Open Questions:

Does this connection with abelian ideals hold in other types?

Does the dihedral symmetry say anything about the Waldspurger picture?

# Open Questions:

Does this connection with abelian ideals hold in other types?

Does the dihedral symmetry say anything about the Waldspurger picture?

Is there more going on here?

# Original Goal, backtracking

■ Complete the Waldspurger decomposition to a CW-complex and compute its f-vector.

# Original Goal, backtracking

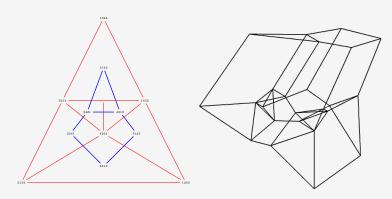
- Complete the Waldspurger decomposition to a CW-complex and compute its f-vector.
- This gives even more "virtual vertices" than those from Waldspurger matrices.

# Original Goal, backtracking

- Complete the Waldspurger decomposition to a CW-complex and compute its f-vector.
- This gives even more "virtual vertices" than those from Waldspurger matrices.
- New approach: Use the recursive structure and consider facets.

Theorem (Bibikov, Zhgoon): Two facets  $c_1$  and  $c_2$  share a codimension one boundary iff  $c_1s_i = c_2s_j$  for  $s_i$  and  $s_j$  adjacent transpositions.

This defines a graph on n – cycles.



The following table gives the number of vertices of given degree for the dual graph of  $Wd(\mathfrak{S}_n)$ :

The following table gives the number of vertices of given degree for the dual graph of  $Wd(\mathfrak{S}_n)$ :

| n\deg | 1 | 2 | 3 | 4  | 5  | 6  | 7   | 8   | 9   | 10  | 11  | 12  | 13  | 14  | 15  | 16  | 17 | 18 | 19 | 20 | 21 |
|-------|---|---|---|----|----|----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|----|----|----|----|----|
| 3     | 2 |   |   |    |    |    |     |     |     |     |     |     |     |     |     |     |    |    |    |    |    |
|       |   | 4 | 2 |    |    |    |     |     |     |     |     |     |     |     |     |     |    |    |    |    |    |
| 5     |   |   | 8 | 10 | 4  | 2  |     |     |     |     |     |     |     |     |     |     |    |    |    |    |    |
|       |   |   |   | 16 | 34 | 30 | 24  | 8   | 6   | 2   |     |     |     |     |     |     |    |    |    |    |    |
| 7     |   |   |   |    | 32 | 98 | 138 | 158 | 106 | 80  | 58  | 28  | 16  | 4   | 2   |     |    |    |    |    |    |
| 8     |   |   |   |    |    | 64 | 258 | 504 | 764 | 774 | 692 | 632 | 492 | 380 | 220 | 122 | 74 | 46 | 10 | 6  | 2  |

The following table gives the number of vertices of given degree for the dual graph of  $Wd(\mathfrak{S}_n)$ :

| n∖deg | 1 | 2 | 3 | 4  | 5  | 6  | 7   | 8   | 9   | 10  | 11  | 12  | 13  | 14  | 15  | 16  | 17 | 18 | 19 | 20 | 21 |
|-------|---|---|---|----|----|----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|----|----|----|----|----|
| 3     | 2 |   |   |    |    |    |     |     |     |     |     |     |     |     |     |     |    |    |    |    |    |
| 4     |   | 4 | 2 |    |    |    |     |     |     |     |     |     |     |     |     |     |    |    |    |    |    |
| 5     |   |   | 8 | 10 | 4  | 2  |     |     |     |     |     |     |     |     |     |     |    |    |    |    |    |
| 6     |   |   |   | 16 | 34 | 30 | 24  | 8   | 6   | 2   |     |     |     |     |     |     |    |    |    |    |    |
| 7     |   |   |   |    | 32 | 98 | 138 | 158 | 106 | 80  | 58  | 28  | 16  | 4   | 2   |     |    |    |    |    |    |
| 8     |   |   |   |    |    | 64 | 258 | 504 | 764 | 774 | 692 | 632 | 492 | 380 | 220 | 122 | 74 | 46 | 10 | 6  | 2  |



# "Adjacent Adjacent Transpositions" and Bounds on degrees

Lemma: Let c be an n-cycle and  $s_i$  be the transposition switching i and i+1. Either  $cs_is_{i+1}$  is an n-cycle, or  $cs_{i+1}s_i$  is an n-cycle. Not both.

# "Adjacent Adjacent Transpositions" and Bounds on degrees

Lemma: Let c be an n-cycle and  $s_i$  be the transposition switching i and i+1. Either  $cs_is_{i+1}$  is an n-cycle, or  $cs_{i+1}s_i$  is an n-cycle. Not both.

Corollary: Vertices in the Waldspurger dual graph for  $\mathfrak{S}_n$  must have at least n-2 neighbors and can have at most  $\binom{n-1}{2}$  neighbors.

# "Adjacent Adjacent Transpositions" and Bounds on degrees

Lemma: Let c be an n-cycle and  $s_i$  be the transposition switching i and i+1. Either  $cs_is_{i+1}$  is an n-cycle, or  $cs_{i+1}s_i$  is an n-cycle. Not both.

Corollary: Vertices in the Waldspurger dual graph for  $\mathfrak{S}_n$  must have at least n-2 neighbors and can have at most  $\binom{n-1}{2}$  neighbors.

### "Non-adjacent Adjacent transpositions"

Lemma 2: If j > i + 1, then there are two classes of *n*-cycles related by (i, i + 1)(j, j + 1)

$$(i, a_1, ..., a_k, j, b_1, ..., b_l, i+1, c_1, ..., c_m, j+1, d_1, ..., d_n)$$
 (1)

and

$$(i, a_1, ..., a_k, j+1, b_1, ..., b_l, i+1, c_1, ..., c_m, j, d_1, ..., d_n).$$
 (2)

### "Non-adjacent Adjacent transpositions"

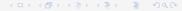
Lemma 2: If j > i + 1, then there are two classes of *n*-cycles related by (i, i + 1)(j, j + 1)

$$(i, a_1, ..., a_k, j, b_1, ..., b_l, i+1, c_1, ..., c_m, j+1, d_1, ..., d_n)$$
 (1)

and

$$(i, a_1, \ldots, a_k, j+1, b_1, \ldots, b_l, i+1, c_1, \ldots, c_m, j, d_1, \ldots, d_n).$$
 (2)

Corollary 1: If  $cs_is_j$  is an *n*-cycle, then so is  $c^{-1}s_is_j$ . In particular, c and  $c^{-1}$  have the same degree in  $\mathfrak{S}_n$  dual graph.



#### When does $s_i s_i$ take you to another n-cycle?

Lemma 2: If j > i + 1, then there are two classes of *n*-cycles related by (i, i + 1)(j, j + 1)

$$(i, a_1, \dots, a_k, j, b_1, \dots, b_l, i+1, c_1, \dots, c_m, j+1, d_1, \dots, d_n)$$
 (3)

and

$$(\mathbf{i}, a_1, \dots, a_k, \mathbf{j+1}, b_1, \dots, b_l, \mathbf{i+1}, c_1, \dots, c_m, \mathbf{j}, d_1, \dots, d_n).$$
 (4)



### When does $s_i s_i$ take you to another n-cycle?

Lemma 2: If j > i + 1, then there are two classes of *n*-cycles related by (i, i + 1)(j, j + 1)

$$(i, a_1, \dots, a_k, j, b_1, \dots, b_l, i+1, c_1, \dots, c_m, j+1, d_1, \dots, d_n)$$
 (3)

and

$$(i, a_1, \ldots, a_k, j+1, b_1, \ldots, b_l, i+1, c_1, \ldots, c_m, j, d_1, \ldots, d_n).$$
 (4)

Corollary 2: Written in cycle notation beginning with a 1, the n-cycles with vertex degree n-2 in  $\mathfrak{S}_n$  correspond to unimodal sequences.



### When does $s_i s_i$ take you to another *n*-cycle?

Lemma 2: If i > i + 1, then there are two classes of *n*-cycles related by (i, i + 1)(j, j + 1)

$$(i, a_1, \dots, a_k, j, b_1, \dots, b_l, i+1, c_1, \dots, c_m, j+1, d_1, \dots, d_n)$$
 (3)

and

$$(\mathbf{i}, a_1, \dots, a_k, \mathbf{j+1}, b_1, \dots, b_l, \mathbf{i+1}, c_1, \dots, c_m, \mathbf{j}, d_1, \dots, d_n).$$
 (4)

Corollary 2: Written in cycle notation beginning with a 1, the *n*-cycles with vertex degree n-2 in  $\mathfrak{S}_n$  correspond to unimodal sequences.

Example: (1,2,3,4) (1,3,4,2) (1,4,3,2) (1,2,4,3) are the four vertices of degree two in the  $\mathfrak{S}_4$  dual graph.

Lemma 2: If j > i + 1, then there are two classes of *n*-cycles related by (i, i + 1)(j, j + 1)

$$(i, a_1, \ldots, a_k, j, b_1, \ldots, b_l, i+1, c_1, \ldots, c_m, j+1, d_1, \ldots, d_n)$$

and

$$(i, a_1, \ldots, a_k, j+1, b_1, \ldots, b_l, i+1, c_1, \ldots, c_m, j, d_1, \ldots, d_n).$$



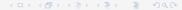
Lemma 2: If j > i + 1, then there are two classes of *n*-cycles related by (i, i + 1)(j, j + 1)

$$(i, a_1, \ldots, a_k, j, b_1, \ldots, b_l, i+1, c_1, \ldots, c_m, j+1, d_1, \ldots, d_n)$$

and

$$(i, a_1, \ldots, a_k, j+1, b_1, \ldots, b_l, i+1, c_1, \ldots, c_m, j, d_1, \ldots, d_n).$$

|   | n∖deg  | 1 | 2 | 3 | 4  | 5  | 6  | 7   | 8   | 9   | 10  | 11  | 12  | 13  | 14  | 15  | 16  | 17 | 18 | 19 | 20 | 21 |
|---|--------|---|---|---|----|----|----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|----|----|----|----|----|
| ĺ | 3      | 2 |   |   |    |    |    |     |     |     |     |     |     |     |     |     |     |    |    |    |    |    |
|   |        |   | 4 | 2 |    |    |    |     |     |     |     |     |     |     |     |     |     |    |    |    |    |    |
|   | 5      |   |   | 8 | 10 | 4  | 2  |     |     |     |     |     |     |     |     |     |     |    |    |    |    |    |
|   | 5<br>6 |   |   |   | 16 | 34 | 30 | 24  | 8   | 6   | 2   |     |     |     |     |     |     |    |    |    |    |    |
|   | 7      |   |   |   |    | 32 | 98 | 138 | 158 | 106 | 80  | 58  | 28  | 16  | 4   | 2   |     |    |    |    |    |    |
|   | 8      |   |   |   |    |    | 64 | 258 | 504 | 764 | 774 | 692 | 632 | 492 | 380 | 220 | 122 | 74 | 46 | 10 | 6  | 2  |



Lemma 2: If j > i + 1, then there are two classes of *n*-cycles related by (i, i + 1)(j, j + 1)

$$(i, a_1, \ldots, a_k, j, b_1, \ldots, b_l, i+1, c_1, \ldots, c_m, j+1, d_1, \ldots, d_n)$$

and

$$(i, a_1, \ldots, a_k, j+1, b_1, \ldots, b_l, i+1, c_1, \ldots, c_m, j, d_1, \ldots, d_n).$$

| n\deg | 1 | 2 | 3 | 4  | 5  | 6  | 7   | 8   | 9   | 10  | 11  | 12  | 13  | 14  | 15  | 16  | 17 | 18 | 19 | 20 | 21 |
|-------|---|---|---|----|----|----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|----|----|----|----|----|
| 3     | 2 |   |   |    |    |    |     |     |     |     |     |     |     |     |     |     |    |    |    |    |    |
| 4     |   | 4 | 2 |    |    |    |     |     |     |     |     |     |     |     |     |     |    |    |    |    |    |
| 5     |   |   | 8 | 10 | 4  | 2  |     |     |     |     |     |     |     |     |     |     |    |    |    |    |    |
| 6     |   |   |   | 16 | 34 | 30 | 24  | 8   | 6   | 2   |     |     |     |     |     |     |    |    |    |    |    |
| 7     | İ |   |   |    | 32 | 98 | 138 | 158 | 106 | 80  | 58  | 28  | 16  | 4   | 2   |     |    |    |    |    |    |
| 8     |   |   |   |    |    | 64 | 258 | 504 | 764 | 774 | 692 | 632 | 492 | 380 | 220 | 122 | 74 | 46 | 10 | 6  | 2  |

Corollary 3:  $(1,3,5,\ldots,2,4,6,\ldots)$  and its inverse are the two vertices of degree  $\binom{n-1}{2}$ .



Our Dual graph  $G = G_A + G_B$  where  $G_A$  has edges from  $\{s_i s_{i+1}\}$  and  $G_B$  has edges from the other  $\{s_i s_i\}$ .

Our Dual graph  $G = G_A + G_B$  where  $G_A$  has edges from  $\{s_i s_{i+1}\}$  and  $G_B$  has edges from the other  $\{s_i s_j\}$ .

 $G_A$  is regular with every vertex having degree n-2.

Our Dual graph  $G = G_A + G_B$  where  $G_A$  has edges from  $\{s_i s_{i+1}\}$  and  $G_B$  has edges from the other  $\{s_i s_j\}$ .

 $G_A$  is regular with every vertex having degree n-2.

 $G_B$  has the same degree histogram as G without the leading zeros  $n \backslash deg$ 30 24 122 74 46 10

Our Dual graph  $G = G_A + G_B$  where  $G_A$  has edges from  $\{s_i s_{i+1}\}$  and  $G_B$  has edges from the other  $\{s_i s_j\}$ .

 $G_A$  is regular with every vertex having degree n-2.

| $G_B$ ha | as th | ne sa | me  | degr | ee h | istog | gram | as  | G w | itho | ut tl | ne I | ead | ing | zer | OS |
|----------|-------|-------|-----|------|------|-------|------|-----|-----|------|-------|------|-----|-----|-----|----|
| n∖deg    | 0     | 1     | 2   | 3    | 4    | 5     | 6    | 7   | 8   | 9    | 10    | 11   | 12  | 13  | 14  | 15 |
| 3        | 2     |       |     |      |      |       |      |     |     |      |       |      |     |     |     |    |
| 4        | 4     | 2     |     |      |      |       |      |     |     |      |       |      |     |     |     |    |
| 5        | 8     | 10    | 4   | 2    |      |       |      |     |     |      |       |      |     |     |     |    |
| 6        | 16    | 34    | 30  | 24   | 8    | 6     | 2    |     |     |      |       |      |     |     |     |    |
| 7        | 32    | 98    | 138 | 158  | 106  | 80    | 58   | 28  | 16  | 4    | 2     |      |     |     |     |    |
| 8        | 64    | 258   | 504 | 764  | 774  | 692   | 632  | 492 | 380 | 220  | 122   | 74   | 46  | 10  | 6   | 2  |

The trailing numbers appear to stabilize for even and odd n.

| n\deg | 1 | 2 | 3 | 4 | 5  | 6  | 7   | 8   | 9   | 10  | 11  | 12  | 13  | 14  | 15  | 16 | 17 | 18 | 19 | 20 | 21 |
|-------|---|---|---|---|----|----|-----|-----|-----|-----|-----|-----|-----|-----|-----|----|----|----|----|----|----|
| 3     | 1 |   |   |   |    |    |     |     |     |     |     |     |     |     |     |    |    |    |    |    |    |
| 4     | İ | 2 | 1 |   |    |    |     |     |     |     |     |     |     |     |     |    |    |    |    |    |    |
| 5     |   |   | 4 | 5 | 2  | 1  |     |     |     |     |     |     |     |     |     |    |    |    |    |    |    |
| 6     |   |   |   | 8 | 17 | 15 | 12  | 4   | 3   | 1   |     |     |     |     |     |    |    |    |    |    |    |
| 7     |   |   |   |   | 16 | 49 | 69  | 79  | 53  | 40  | 29  | 14  | 8   | 2   | 1   |    |    |    |    |    |    |
| 8     |   |   |   |   |    | 32 | 129 | 252 | 382 | 287 | 346 | 316 | 246 | 190 | 110 | 61 | 37 | 23 | 5  | 3  | 1  |

| n\deg | 1 | 2 | 3 | 4 | 5  | 6  | 7   | 8   | 9   | 10  | 11  | 12  | 13  | 14  | 15  | 16 | 17 | 18 | 19 | 20 | 21 |
|-------|---|---|---|---|----|----|-----|-----|-----|-----|-----|-----|-----|-----|-----|----|----|----|----|----|----|
| 3     | 1 |   |   |   |    |    |     |     |     |     |     |     |     |     |     |    |    |    |    |    |    |
| 4     |   | 2 | 1 |   |    |    |     |     |     |     |     |     |     |     |     |    |    |    |    |    |    |
| 5     |   |   | 4 | 5 | 2  | 1  |     |     |     |     |     |     |     |     |     |    |    |    |    |    |    |
| 6     |   |   |   | 8 | 17 | 15 | 12  | 4   | 3   | 1   |     |     |     |     |     |    |    |    |    |    |    |
| 7     |   |   |   |   | 16 | 49 | 69  | 79  | 53  | 40  | 29  | 14  | 8   | 2   | 1   |    |    |    |    |    |    |
| 8     |   |   |   |   |    | 32 | 129 | 252 | 382 | 287 | 346 | 316 | 246 | 190 | 110 | 61 | 37 | 23 | 5  | 3  | 1  |

■ 1,5,17,49,129,... counts the number of Dyck paths with exactly one peak at or above height three.

| 1 | n∖deg | 1 | 2 | 3 | 4 | 5  | 6  | 7   | 8   | 9   | 10  | 11  | 12  | 13  | 14  | 15  | 16 | 17 | 18 | 19 | 20 | 21 |
|---|-------|---|---|---|---|----|----|-----|-----|-----|-----|-----|-----|-----|-----|-----|----|----|----|----|----|----|
| Γ | 3     | 1 |   |   |   |    |    |     |     |     |     |     |     |     |     |     |    |    |    |    |    |    |
|   | 4     |   | 2 | 1 |   |    |    |     |     |     |     |     |     |     |     |     |    |    |    |    |    |    |
|   | 5     |   |   | 4 | 5 | 2  | 1  |     |     |     |     |     |     |     |     |     |    |    |    |    |    |    |
|   | 6     |   |   |   | 8 | 17 | 15 | 12  | 4   | 3   | 1   |     |     |     |     |     |    |    |    |    |    |    |
|   | 7     |   |   |   |   | 16 | 49 | 69  | 79  | 53  | 40  | 29  | 14  | 8   | 2   | 1   |    |    |    |    |    |    |
|   | 8     |   |   |   |   |    | 32 | 129 | 252 | 382 | 287 | 346 | 316 | 246 | 190 | 110 | 61 | 37 | 23 | 5  | 3  | 1  |

- 1,5,17,49,129,... counts the number of Dyck paths with exactly one peak at or above height three.
- 2,15,69,252,... counts the number of Dyck paths with exactly two "long ascents."

| 1 | n∖deg | 1 | 2 | 3 | 4 | 5  | 6  | 7   | 8   | 9   | 10  | 11  | 12  | 13  | 14  | 15  | 16 | 17 | 18 | 19 | 20 | 21 |
|---|-------|---|---|---|---|----|----|-----|-----|-----|-----|-----|-----|-----|-----|-----|----|----|----|----|----|----|
| Γ | 3     | 1 |   |   |   |    |    |     |     |     |     |     |     |     |     |     |    |    |    |    |    |    |
|   | 4     |   | 2 | 1 |   |    |    |     |     |     |     |     |     |     |     |     |    |    |    |    |    |    |
|   | 5     |   |   | 4 | 5 | 2  | 1  |     |     |     |     |     |     |     |     |     |    |    |    |    |    |    |
|   | 6     |   |   |   | 8 | 17 | 15 | 12  | 4   | 3   | 1   |     |     |     |     |     |    |    |    |    |    |    |
|   | 7     |   |   |   |   | 16 | 49 | 69  | 79  | 53  | 40  | 29  | 14  | 8   | 2   | 1   |    |    |    |    |    |    |
|   | 8     |   |   |   |   |    | 32 | 129 | 252 | 382 | 287 | 346 | 316 | 246 | 190 | 110 | 61 | 37 | 23 | 5  | 3  | 1  |

- 1,5,17,49,129,... counts the number of Dyck paths with exactly one peak at or above height three.
- 2,15,69,252,... counts the number of Dyck paths with exactly two "long ascents."
- The OEIS doesn't know any more diagonals.



| n  | #edges                        |
|----|-------------------------------|
| 3  | 1                             |
| 4  | 7                             |
| 5  | 48                            |
| 6  | 360                           |
| 7  | 3000                          |
| 8  | 27720                         |
| 9  | 282240                        |
| 10 | 3144960                       |
| :  | :                             |
| n  | $\frac{(n+3)(n-2)(n-1)!}{12}$ |

These numbers appear in the OEIS in relation to two things:

| n  | #edges                        |
|----|-------------------------------|
| 3  | 1                             |
| 4  | 7                             |
| 5  | 48                            |
| 6  | 360                           |
| 7  | 3000                          |
| 8  | 27720                         |
| 9  | 282240                        |
| 10 | 3144960                       |
| ÷  | :                             |
| n  | $\frac{(n+3)(n-2)(n-1)!}{12}$ |

These numbers appear in the OEIS in relation to two things:

• # "series parallel networks" with n vertices and 2n-1 edges

| n  | #edges                        |
|----|-------------------------------|
| 3  | 1                             |
| 4  | 7                             |
| 5  | 48                            |
| 6  | 360                           |
| 7  | 3000                          |
| 8  | 27720                         |
| 9  | 282240                        |
| 10 | 3144960                       |
| ÷  |                               |
| n  | $\frac{(n+3)(n-2)(n-1)!}{12}$ |

These numbers appear in the OEIS in relation to two things:

- # "series parallel networks" with n vertices and 2n-1 edges
- Labeling tableaux of shape  $(3, 1^{n-2})$  with [n-1] such that the first row is decreasing and the first column has n-1 labels (two blank spots):

| n  | #edges                        |
|----|-------------------------------|
| 3  | 1                             |
| 4  | 7                             |
| 5  | 48                            |
| 6  | 360                           |
| 7  | 3000                          |
| 8  | 27720                         |
| 9  | 282240                        |
| 10 | 3144960                       |
| :  | :                             |
| n  | $\frac{(n+3)(n-2)(n-1)!}{12}$ |

These numbers appear in the OEIS in relation to two things:

- # "series parallel networks" with n vertices and 2n-1 edges
- Labeling tableaux of shape  $(3, 1^{n-2})$  with [n-1] such that the first row is decreasing and the first column has n-1 labels (two blank spots):
- There are 7 ways of labeling the tableau of shape (3,1,1) with 1, 2 and 3 (with each label being used once) such that the first row is decreasing and the first column has 1 label.

#### What next?

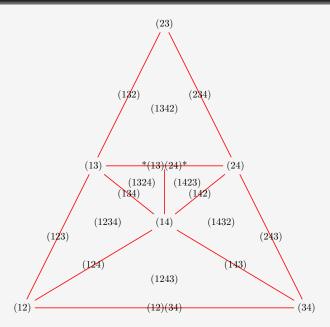
■ Further interpret the degree sequence of the Waldspurger dual graph of  $\mathfrak{S}_n$ .

#### What next?

- Further interpret the degree sequence of the Waldspurger dual graph of  $\mathfrak{S}_n$ .
- The "adjacent adjacent" transpositions  $\{s_is_{i+1}: 1 \le i \le n-2\}$ , form a generating set for the alternating group  $A_n$ . In the Waldspurger decomposition, they act like hyperplanes and give the alternating group a "Coxeter like structure." Make this precise and understand it better.

#### What next?

- Further interpret the degree sequence of the Waldspurger dual graph of  $\mathfrak{S}_n$ .
- The "adjacent adjacent" transpositions  $\{s_is_{i+1}: 1 \le i \le n-2\}$ , form a generating set for the alternating group  $A_n$ . In the Waldspurger decomposition, they act like hyperplanes and give the alternating group a "Coxeter like structure." Make this precise and understand it better.
- Is there a better dual object, say a dual complex that would help better understand the Waldspurger decomposition?



Thanks!