SYMMETRIC GROUP TILINGS

The Waldspurger and Mienrenken Decompositions for Type A

James McKeown

April 2017

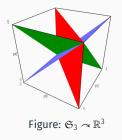
University of Miami

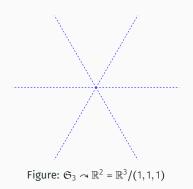
- · Background, Waldspurger and Meinrenken Theorems
- · Geometry \Rightarrow Permutations
- \cdot Permutations \Rightarrow Alternating Sign Matrices
- · Alternating Sign Matrices \Rightarrow Geometry

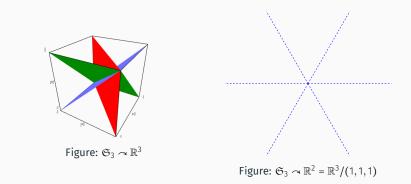
An element $g \in O(n)$ is a <u>reflection</u> if it sends some nonzero vector $\alpha \in \mathbb{R}^n$ to its negative and fixes the hyperplane orthogonal to α pointwise.

An element $g \in O(n)$ is a <u>reflection</u> if it sends some nonzero vector $\alpha \in \mathbb{R}^n$ to its negative and fixes the hyperplane orthogonal to α pointwise.

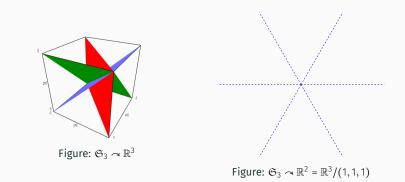
Let $G \subset O(n)$ be a finite group generated by reflections.







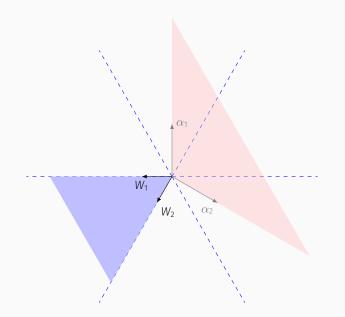
Theorem (Coxeter): Let \mathcal{A} be an arrangement in \mathbb{R}^n of reflecting hyperplanes for the reflection group G. Then $G \sim (\mathbb{R}^n \setminus \cup_{H \in \mathcal{A}} H)$ freely and transitively on the chambers.



Theorem (Coxeter): Let \mathcal{A} be an arrangement in \mathbb{R}^n of reflecting hyperplanes for the reflection group G. Then $G \curvearrowright (\mathbb{R}^n \smallsetminus \cup_{H \in \mathcal{A}} H)$ freely and transitively on the chambers.

We pick one such chamber and call it the "weight cone" denoted C_W . The cone dual to C_W we call the "root cone" and denote C_R .

A FIRST EXAMPLE- WEIGHTS AND ROOTS



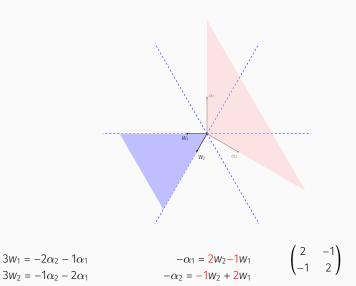
Fact (Coxeter): C_w is a simplicial cone.

Let w_1, w_2, \ldots, w_n be vectors generating the rays of C_W [Jargon: called the "fundamental weights"] Then the dual cone is defined as

$$C_R := \{ x \in \mathbb{R}^n : (x, y) \le 0 \,\forall y \in C_W \}$$

Let $\alpha_1, \alpha_2, \ldots, \alpha_n$ be vectors which generate rays of C_R [Jargon: called the "simple roots"]

The first example $\overline{A_2}$ (\mathfrak{S}_3)



In type A, it is conventional to let $\alpha_i = e_i - e_{i+1}$ so $(\alpha_i, \alpha_i) = 2 \forall i$

In type A, it is conventional to let $\alpha_i = e_i - e_{i+1}$ so $(\alpha_i, \alpha_i) = 2 \forall i$

Lengths of weights are then normalized so that

$$-\begin{pmatrix} | & | & | & | & | \\ | & | & | & | \\ \alpha_1 & \alpha_2 & \dots & \alpha_n \\ | & | & | & | \\ | & | & | & | \end{pmatrix} = \begin{pmatrix} | & | & | & | & | \\ | & | & | & | \\ W_1 & W_2 & \dots & W_n \\ | & | & | & | \\ | & | & | & | \end{pmatrix}^{-1}$$

In type A, it is conventional to let $\alpha_i = e_i - e_{i+1}$ so $(\alpha_i, \alpha_i) = 2 \forall i$

Lengths of weights are then normalized so that

$$-\begin{pmatrix} | & | & | & | \\ | & | & | & | \\ \alpha_1 & \alpha_2 & \dots & \alpha_n \\ | & | & | & | \\ | & | & | & | \end{pmatrix} = \begin{pmatrix} | & | & | & | \\ | & | & | & | \\ W_1 & W_2 & \dots & W_n \\ | & | & | & | \\ | & | & | & | \end{pmatrix}^{-1}$$

The matrix of α 's is called the <u>Cartan Matrix</u>. It gives the coordinates of the simple roots in the basis of fundamental weights.

Consider the reflection representation of the symmetric group

$$\phi:\mathfrak{S}_n\longrightarrow GL_{n-1}(\mathbb{R})$$

Let *D* be the matrix with columns the fundamental weights in basis of the simple roots (i.e. the $n - 1 \times n - 1$ inverse of the Cartan matrix).

 $\mathsf{W}(g) \coloneqq [\phi(1) - \phi(g)]D$

expressed in the coordinates of simple roots we will call the Waldspurger Matrix of *g*.

For *G* a finite reflection group acting on a Euclidean vector space *V*, C_R the (closed) cone over the positive roots, and $\mathring{C}_W \subset V$ the interior of a fundamental domain for the action of *G* (sometimes called the weight cone), one has the following decomposition:

$$C_R = \bigsqcup_{g \in G} (1 - g) \mathring{C}_W$$

Meinrenken's Theorem (2007):

For *G* a finite reflection group acting on a Euclidean vector space *V*, C_R the (closed) cone over the positive roots, and $\mathring{C}_W \subset V$ the interior of a fundamental domain for the action of *G* (sometimes called the weight cone), one has the following decomposition:

$$C_R = \bigsqcup_{g \in G} (1 - g) \mathring{C}_W$$

Take away: Waldspurger matrices give a tiling of the root cone!

Meinrenken's Theorem (2007):

Translation: Cones over columns of Waldspurger matrices give a tiling of the root cone!

Meinrenken's Theorem (2007):

Translation: Cones over columns of Waldspurger matrices give a tiling of the root cone!

Meinrenken's Theorem (2007):

For G an <u>affine</u> reflection group acting on a Euclidean vector space V, and $\mathring{A}_W \subset V$ the interior of a fundamental domain for the action of G (sometimes called a fundamental alcove) one has the following decomposition:

$$V = \bigsqcup_{g \in G} (1 - g) \mathring{A}_W$$

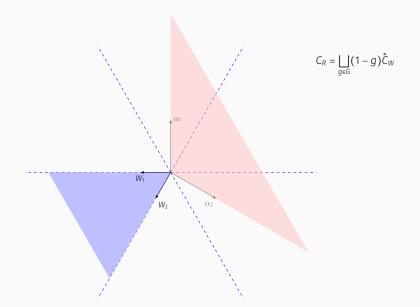
Translation: Cones over columns of Waldspurger matrices give a tiling of the root cone!

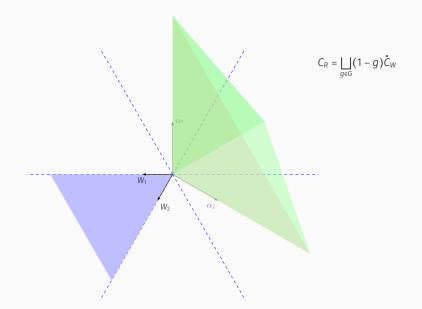
Meinrenken's Theorem (2007):

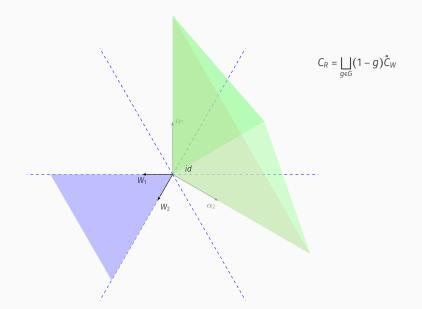
For G an <u>affine</u> reflection group acting on a Euclidean vector space V, and $\mathring{A}_W \subset V$ the interior of a fundamental domain for the action of G (sometimes called a fundamental alcove) one has the following decomposition:

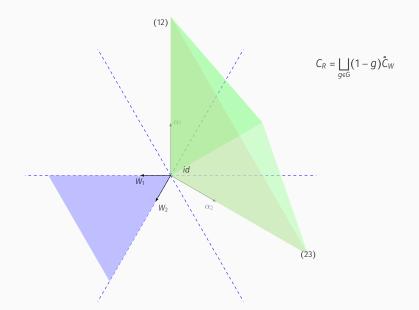
$$V = \bigsqcup_{g \in G} (1 - g) \mathring{A}_W$$

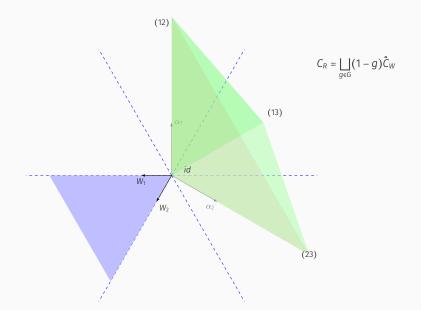
Take away: Convex hulls of columns of Waldspurger matrices (and the zero vector) give a tiling of the \mathbb{R}^n !

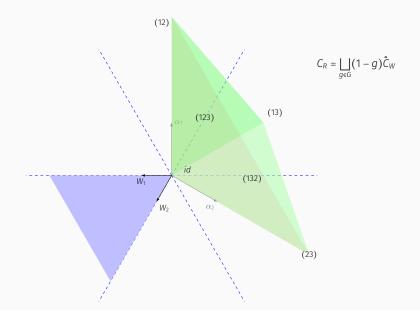




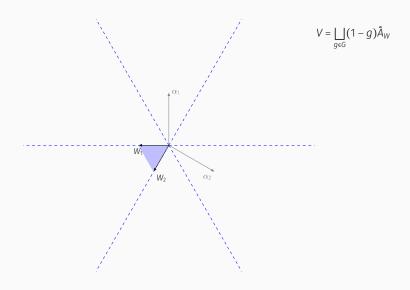




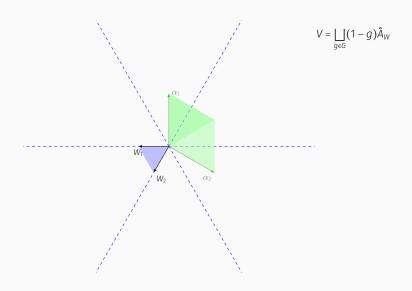




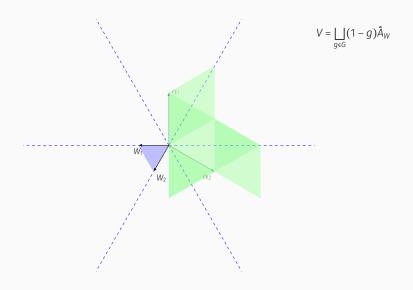
The Mienrenken Decomposition for A_2 (\mathfrak{S}_3)

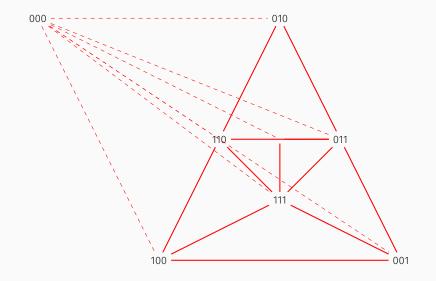


The Mienrenken Decomposition for A_2 (\mathfrak{S}_3)

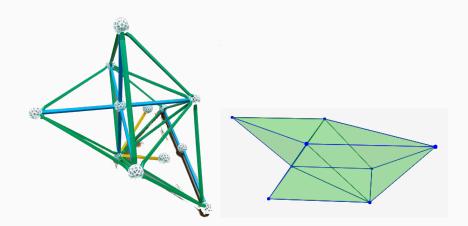


The Mienrenken Decomposition for A_2 (\mathfrak{S}_3)

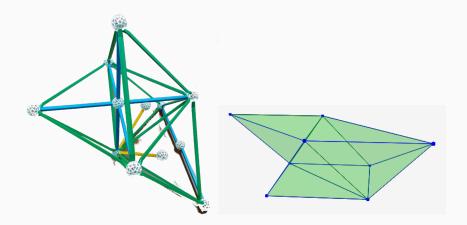




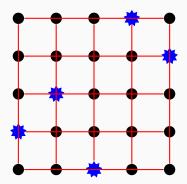
MEINRENKEN TILE FOR $A_3 = \mathfrak{S}_4$

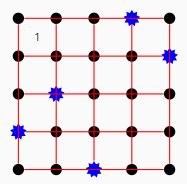


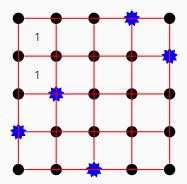
MEINRENKEN TILE FOR $A_3 = \mathfrak{S}_4$

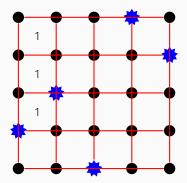


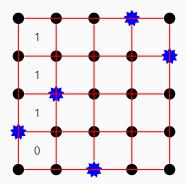
Part 2: Geometry \Rightarrow Permutations

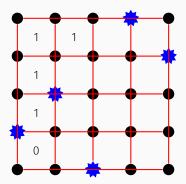


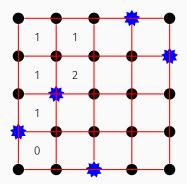


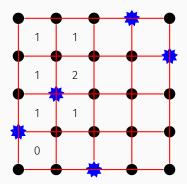


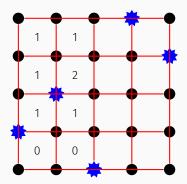


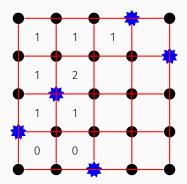


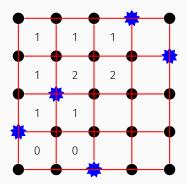


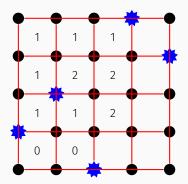


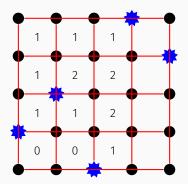


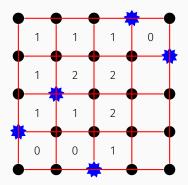


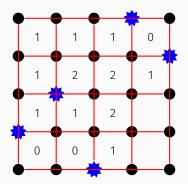


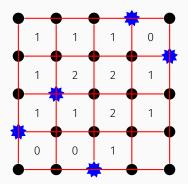


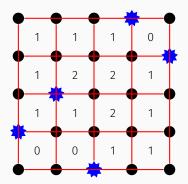


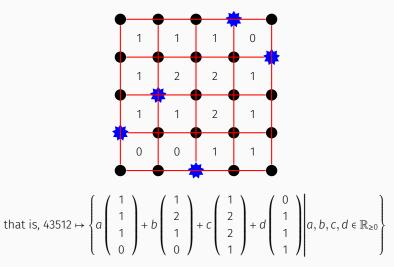


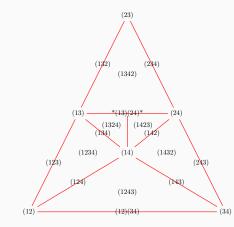


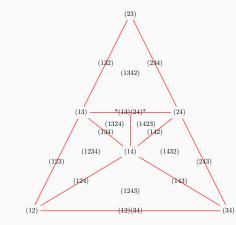




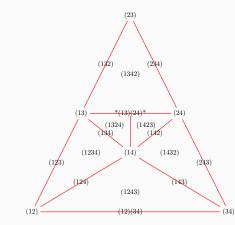




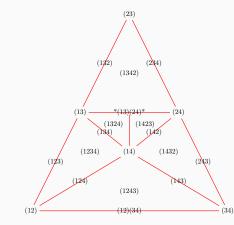




four copies of
S₃ picture



four copies of
\$\mathcal{G}_3\$ picture



• four copies of \mathfrak{S}_3 picture

· NOT A CW- complex!

There are exactly 2^n possible columns of Waldspurger matrices of type A_n . We will call them UM vectors.

There are exactly 2^n possible columns of Waldspurger matrices of type A_n . We will call them UM vectors.

There are exactly 2^n possible columns of Waldspurger matrices of type A_n . We will call them UM vectors.

Interesting Bijections:

· Unimodal Motzkin Paths.

There are exactly 2^n possible columns of Waldspurger matrices of type A_n . We will call them UM vectors.

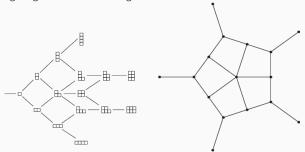
- · Unimodal Motzkin Paths.
- $\cdot\,$ Elements of the root lattice inside a certain polytope

There are exactly 2^{*n*} possible columns of Waldspurger matrices of type A_n. We will call them UM vectors.

- · Unimodal Motzkin Paths.
- $\cdot\,$ Elements of the root lattice inside a certain polytope
- $\cdot\,$ Abelian ideals in the nilradical of \mathfrak{sl}_n

There are exactly 2^{*n*} possible columns of Waldspurger matrices of type A_n. We will call them UM vectors.

- · Unimodal Motzkin Paths.
- $\cdot\,$ Elements of the root lattice inside a certain polytope
- $\cdot\,$ Abelian ideals in the nilradical of \mathfrak{sl}_n
- · Young diagrams with hooklength less than *n*.



$$\mathcal{WT}(M)_{i,j} := \begin{cases} \sum_{\substack{a \leq i \\ b > j}} M_{a,b} & i \leq j \\ \sum_{\substack{a > i \\ b < i}} M_{a,b} & i \geq j \end{cases}.$$

$$\mathcal{WT}(M)_{i,j} := \begin{cases} \sum_{\substack{a \leq i \\ b > j}} M_{a,b} & i \leq j \\ \sum_{\substack{a > i \\ b \leq j}} M_{a,b} & i \geq j \end{cases}.$$

Warning: Note that WT(M) may be "over-determined" on the diagonal. In the case where *M* is a permutation matrix, but in general this need not be the case.

$$\mathcal{WT}(M)_{i,j} \coloneqq \begin{cases} \sum_{\substack{a \leq i \\ b > j}} M_{a,b} & i \leq j \\ \sum_{\substack{a > i \\ b \leq j}} M_{a,b} & i \geq j \end{cases}.$$

Proposition: WT(M) is well-defined if and only if the *i*th row sum of M equals the *i*th column sum of M, for $1 \le i \le n$.

$$\mathcal{WT}(M)_{i,j} := \begin{cases} \sum_{\substack{a \le i \\ b > j}} M_{a,b} & i \le j \\ \sum_{\substack{a > i \\ b \le j}} M_{a,b} & i \ge j \end{cases}.$$

Proposition: WT(M) is well-defined if and only if the *i*th row sum of *M* equals the *i*th column sum of *M*, for $1 \le i \le n$.

If an *n* × *n* matrix *M* has this property, we will say it is **sum-symmetric**

 $M\in SS_n$

$$\mathcal{WT}(M)_{i,j} := \begin{cases} \sum_{\substack{a \le i \\ b > j}} M_{a,b} & i \le j \\ \sum_{\substack{a > i \\ b \le j}} M_{a,b} & i \ge j \end{cases}.$$

Proposition: WT(M) is well-defined if and only if the *i*th row sum of *M* equals the *i*th column sum of *M*, for $1 \le i \le n$.

If an *n* × *n* matrix *M* has this property, we will say it is **sum-symmetric**

 $M\in SS_n$

The map is linear and surjective, with kernel the diagonal matrices.

 $\mathcal{WT}: SS_n \twoheadrightarrow Mat_{n-1}$

WALDSPURGER, MEINRENKEN AND ???

WALDSPURGER, MEINRENKEN AND ???

Part 2: Permutations ⇒ Alternating Sign Matrices

An alternating sign matrix (or ASM) is a square matrix of 0s, 1s, and -1s such that the sum of each row and column is 1 and the nonzero entries in each row and column alternate in sign.

An alternating sign matrix (or ASM) is a square matrix of 0s, 1s, and –1s such that the sum of each row and column is 1 and the nonzero entries in each row and column alternate in sign.

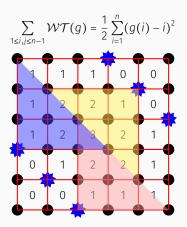
These matrices generalize permutation matrices and arise naturally when using Dodgson condensation to compute a determinant.

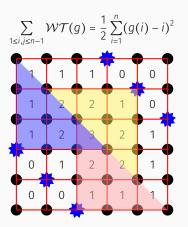
An alternating sign matrix (or ASM) is a square matrix of 0s, 1s, and –1s such that the sum of each row and column is 1 and the nonzero entries in each row and column alternate in sign.

These matrices generalize permutation matrices and arise naturally when using Dodgson condensation to compute a determinant.

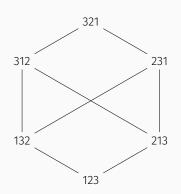
 $n-1 \times n-1$ matrices with UM columns and rows with their maxes on the diagonal are in bijection with $n \times n$ ASMs via the WT map!

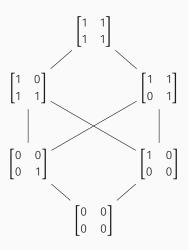
$$\sum_{\substack{|\leq i,j\leq n-1}} \mathcal{WT}(g) = \frac{1}{2} \sum_{i=1}^{n} (g(i) - i)^2$$



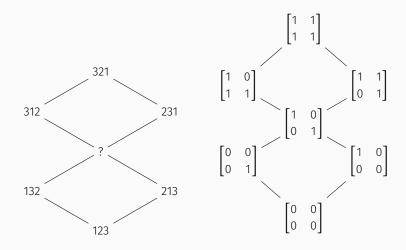


Fact (A. Lascoux, M. Schützenberger): Half the entropy of a permutation is its rank in the MacNeille completion of the Bruhat order– a distributive lattice with elements the alternating sign matrices, or ASMs.

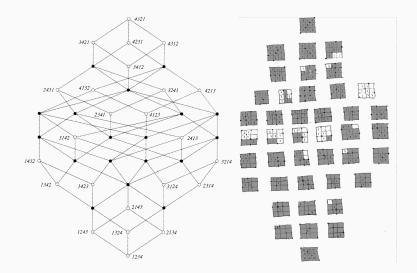




THE MACNIELLE COMPLETION OF THE BRUHAT ORDER

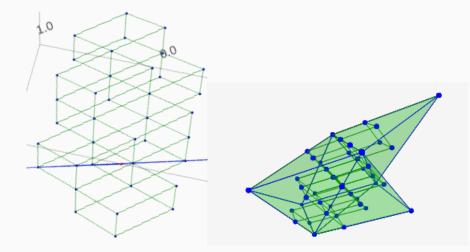


The MacNielle Completion for \mathfrak{S}_4



Part 3: ASMs \Rightarrow Geometry

A GEOMETRIC REALIZATION OF THE HASSE DIAGRAM OF AMS LATTICE



$\cdot \ \prod_{k=0}^{n-1} \frac{(3k+1)!}{(n+k)!} = \frac{1!4!7!\cdots(3n-2)!}{n!(n+1)!\cdots(2n-1)!} = \sum_{\text{labeled forests on } [n]} \text{mult of baricenters?}$

$\cdot \ \prod_{k=0}^{n-1} \frac{(3k+1)!}{(n+k)!} = \frac{1!4!7!\cdots(3n-2)!}{n!(n+1)!\cdots(2n-1)!} = \sum_{\text{labeled forests on } [n]} \text{mult of baricenters?}$

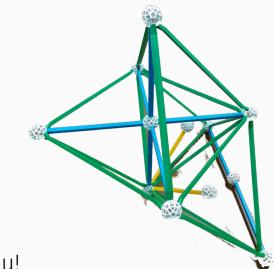
· Does this embedding of the Hasse diagram extend to other types?

- $\cdot \ \prod_{k=0}^{n-1} \frac{(3k+1)!}{(n+k)!} = \frac{1!4!7!\cdots(3n-2)!}{n!(n+1)!\cdots(2n-1)!} = \sum_{\text{labeled forests on } [n]} \text{mult of baricenters?}$
- · Does this embedding of the Hasse diagram extend to other types?
- · Is there a good way to study the Meinrenken tile as a polytopal complex?

- $\cdot \ \prod_{k=0}^{n-1} \frac{(3k+1)!}{(n+k)!} = \frac{1!4!7!\cdots(3n-2)!}{n!(n+1)!\cdots(2n-1)!} = \sum_{\text{labeled forests on } [n]} \text{mult of baricenters?}$
- \cdot Does this embedding of the Hasse diagram extend to other types?
- · Is there a good way to study the Meinrenken tile as a polytopal complex?
- Is there always a way to rearrange the pieces in the Mienrenken tile to get a convex polytopal complex?

- $\cdot \prod_{k=0}^{n-1} \frac{(3k+1)!}{(n+k)!} = \frac{1!4!7!\cdots(3n-2)!}{n!(n+1)!\cdots(2n-1)!} = \sum_{\text{labeled forests on } [n]} \text{mult of baricenters?}$
- \cdot Does this embedding of the Hasse diagram extend to other types?
- \cdot Is there a good way to study the Meinrenken tile as a polytopal complex?
- Is there always a way to rearrange the pieces in the Mienrenken tile to get a convex polytopal complex?
- The domain of the WT map is SS_n If we restrict ourselves to Gl_n what is the image? What is its topology?

- $\cdot \prod_{k=0}^{n-1} \frac{(3k+1)!}{(n+k)!} = \frac{1!4!7!\cdots(3n-2)!}{n!(n+1)!\cdots(2n-1)!} = \sum_{\text{labeled forests on } [n]} \text{mult of baricenters?}$
- \cdot Does this embedding of the Hasse diagram extend to other types?
- · Is there a good way to study the Meinrenken tile as a polytopal complex?
- Is there always a way to rearrange the pieces in the Mienrenken tile to get a convex polytopal complex?
- The domain of the WT map is SS_n If we restrict ourselves to Gl_n what is the image? What is its topology?
- · In experimentation, the \mathcal{WT} map seems to preserve both the Birkhoff polytope and the ASM polytope. Is this true in general?



Thank You!