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The Combinatorics of the Waldspurger Decomposition

Reflection Groups

A element g ∈ O(n) is a reflection if it sends some nonzero vector
α ∈ Rn to its negative and fixes the hyperplane orthogonal to α
pointwise.

Let G ⊂ O(n) be a finite group generated by reflections.

Example: G =Sn ⊂ O(n) permuting coordinates
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The Combinatorics of the Waldspurger Decomposition

Reducibility

Figure: S3 ↷ R3

Figure: S3 ↷ R2 = R3/(1,1,1)

A finite reflection group (W , ρ) is called irreducible if it cannot be
written as an orthogonal direct sum of (nontrivial) finite reflection
groups.

FACT: Finite reflection groups are completely reducible.

James McKeown | University of Miami | March 5, 2016 3 / 36



The Combinatorics of the Waldspurger Decomposition

Reducibility

Figure: S3 ↷ R3

Figure: S3 ↷ R2 = R3/(1,1,1)

A finite reflection group (W , ρ) is called irreducible if it cannot be
written as an orthogonal direct sum of (nontrivial) finite reflection
groups.

FACT: Finite reflection groups are completely reducible.

James McKeown | University of Miami | March 5, 2016 3 / 36



The Combinatorics of the Waldspurger Decomposition

Reducibility

Figure: S3 ↷ R3

Figure: S3 ↷ R2 = R3/(1,1,1)

A finite reflection group (W , ρ) is called irreducible if it cannot be
written as an orthogonal direct sum of (nontrivial) finite reflection
groups.

FACT: Finite reflection groups are completely reducible.

James McKeown | University of Miami | March 5, 2016 3 / 36



The Combinatorics of the Waldspurger Decomposition

Q:) Can we classify irreducible finite reflection groups?

A:) YES!

In 1934, building on the work of Möbius, Jordan, Shläfli, Killing,
Cartan, and Weyl, HSM Coxeter used diagrams for the classification
of finitely generated reflection groups.
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The Combinatorics of the Waldspurger Decomposition

Classification of Irreducible Finite Reflection Groups

Vertices are a special set of generating reflections.

No edge means the generators commute.

Unlabeled edges between vertices i and j impose the relation
(SiSj)3 = 1.

Edges labeled k between vertices i and j impose the relation
(SiSj)k = 1.
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The Combinatorics of the Waldspurger Decomposition

Theorem (Coxeter): Let A be an arrangement in Rn of reflecting
hyperplanes for the reflection group G . Then G ↷ (Rn ∖ ∪H∈AH)
simply and transitively on the chambers.

We pick one such chamber and call it the “weight cone” denoted
CW . The cone dual to CW we call the “root cone” and denote CR .
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The Combinatorics of the Waldspurger Decomposition

Fact (Coxeter): Cw is a simplicial cone.

Let w1,w2, . . . ,wn be vectors generating the rays of CW [Jargon: called
the “fundamental weights”] Then the dual cone is defined as

CR ∶= {x ∈ Rn ∶ (x , y) ≤ 0∀y ∈ CW }

Let α1, α2, . . . , αn be vectors which generate rays of CR [Jargon: called
the “simple roots”]
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The Combinatorics of the Waldspurger Decomposition

The first example A2 (S3)

α2

α1

W1

W2
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The Combinatorics of the Waldspurger Decomposition

The first example A2 (S3)

α2

α1

W1

W2

3w1 = −2α2 − 1α1

3w2 = −1α2 − 2α1

−α1 = 2w2−1w1

−α2 = −1w2 + 2w1

( 2 −1
−1 2

)
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In type A, it is conventional to let αi = ei − ei+1 so (αi , αi) = 2 ∀i

Lengths of weights are then normalized so that

−

⎛
⎜⎜⎜⎜⎜⎜
⎝

∣ ∣ ∣ ∣
∣ ∣ ∣ ∣
α1 α2 . . . αn

∣ ∣ ∣ ∣
∣ ∣ ∣ ∣

⎞
⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜
⎝

∣ ∣ ∣ ∣
∣ ∣ ∣ ∣
w1 w2 . . . wn

∣ ∣ ∣ ∣
∣ ∣ ∣ ∣

⎞
⎟⎟⎟⎟⎟⎟
⎠

−1

The matrix of α’s is called the Cartan Matrix. It gives the coordinates
of the simple roots in the basis of fundamental weights.
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The Combinatorics of the Waldspurger Decomposition

Waldspurger’s Theorem

Waldspurger’s Theorem (2005!):

For G a finite reflection group acting on a Euclidean vector space V ,
CR the (closed) root cone, and C̊W ⊂ V the interior of the weight
cone, one has the following decomposition:

CR = ⊔
g∈G

(1 − g)C̊W

It is amazing that this decomposition exists for all reflection groups!

In type An what does it tell us about the symmetric group Sn+1?
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The Combinatorics of the Waldspurger Decomposition

The Waldspurger Decomposition for A2 (S3)

CR = ⊔

g∈G

(1 − g)C̊W

α2

α1

(12)

(132)

(13)(123)

(23)

id

W1

W2
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The Combinatorics of the Waldspurger Decomposition

Slice it, put it in root coordinates

(12) (13) (23)
(123) (132)

(1,0) (1,1) (0,1)
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The Waldspurger Decomposition for A3 (S4)

100 001

010

111

110 011

000
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The Combinatorics of the Waldspurger Decomposition

Classical Permutation Statistics, something weird...

(12) (34)

(23)

(14)

(13) (24)

(1342)

(1324) (1423)

(1234) (1432)

(1243)

(12)(34)

(123)

(132)

*(13)(24)*

(134)

(143)

(243)

(234)

(142)

(124)

four copies of
S3 picture

Dimension
↕

# cycles (c(n, k))

NOT A CW-
complex!
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The Combinatorics of the Waldspurger Decomposition

Theorem (Armstrong, M. 2015): The following algorithm turns linear
algebra into combinatorics:
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A Cute Algorithm

Consider 43512 ∈S5

1

1

1

0

1

2

1

0

1

2

2

1

0

1

1

1

that is,

43512↦

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

a

⎛
⎜⎜⎜
⎝

1
1
1
0

⎞
⎟⎟⎟
⎠
+ b

⎛
⎜⎜⎜
⎝

1
2
1
0

⎞
⎟⎟⎟
⎠
+ c

⎛
⎜⎜⎜
⎝

1
2
2
1

⎞
⎟⎟⎟
⎠
+ d

⎛
⎜⎜⎜
⎝

0
1
1
1

⎞
⎟⎟⎟
⎠

RRRRRRRRRRRRRRRRRRR

a,b, c ,d ∈ R≥0

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
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The Combinatorics of the Waldspurger Decomposition

proof

Proof: Let P be the (n − 1) × (n − 1) matrix for the permutation π ∈ Sn
expressed in root coordinates. Let C be the (n − 1) × (n − 1) Cartan matrix
and let D be the (n − 1) × (n − 1) matrix

Di ,j =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∑
a≤i
b>j

πa,b i ≤ j

∑
a>i
b≤j

πa,b i ≥ j
.

We will show (I −P) = DC.
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The Combinatorics of the Waldspurger Decomposition

proof

We use the fact that C = ATA where A is the n × (n − 1) matrix

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 0 . . . 0
−1 1 0 . . . 0
0 −1 1 . . . 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 . . . 1
0 0 0 . . . −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

to rewrite the conjecture :

P = I −DATA

We multiply both sides on the left by A:

AP = A −ADATA

Substitute AP = πA and cancel the A’s on the right:

π = I −ADAT

This we will verify.
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The Combinatorics of the Waldspurger Decomposition

Simply multiplying A and D we see that (AD)i ,j = Di ,j −Di−1,j with the
understanding D0,k ∶= 0 for all k . One more multiplication gives us that

(ADAT )i ,j = Di ,j −Di−1,j −Di ,j−1 +Di−1,j−1

once again, with the understanding that if either i = 0 or j = 0 then Di ,j ∶= 0

James McKeown | University of Miami | March 5, 2016 20 / 36



The Combinatorics of the Waldspurger Decomposition

Case 1

If i = j then

(ADAT )i ,j = Di ,j −Di−1,j −Di ,j−1 +Di−1,j−1

= ∑
a≤i
b>j

πa,b − ∑
a≤i−1
b>j

πa,b − ∑
a>i

b≤j−1

πa,b + ∑
a>i−1
b≤j−1

πa,b

= ∑
k≠j

πi ,k

=
⎧⎪⎪⎨⎪⎪⎩

0 πi ,j = 1

1 πi ,j = 0

If the second to last equality seems like a bit of a jump consider that we
are summing over the following terms of permutation matrices:

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

⋱ ⋮ ⋮ ⋮ ⋰
. . . πi−1,j−1 πi−1,j πi−1,j+1 . . .
. . . πi ,j−1 πi ,j πi ,j+1 . . .

. . . πi+1,j−1 πi+1,j πi+1,j+1 . . .
⋰ ⋮ ⋮ ⋮ ⋱

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

-
⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

⋱ ⋮ ⋮ ⋮ ⋰
. . . πi−1,j−1 πi−1,j πi−1,j+1 . . .

. . . πi ,j−1 πi ,j πi ,j+1 . . .

. . . πi+1,j−1 πi+1,j πi+1,j+1 . . .
⋰ ⋮ ⋮ ⋮ ⋱

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

-
⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

⋱ ⋮ ⋮ ⋮ ⋰
. . . πi−1,j−1 πi−1,j πi−1,j+1 . . .
. . . πi ,j−1 πi ,j πi ,j+1 . . .

. . . πi+1,j−1 πi+1,j πi+1,j+1 . . .
⋰ ⋮ ⋮ ⋮ ⋱

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

+
⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

⋱ ⋮ ⋮ ⋮ ⋰
. . . πi−1,j−1 πi−1,j πi−1,j+1 . . .

. . . πi ,j−1 πi ,j πi ,j+1 . . .

. . . πi+1,j−1 πi+1,j πi+1,j+1 . . .
⋰ ⋮ ⋮ ⋮ ⋱

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

Thus, (I −ADAT )i ,j = πi ,j for this case.
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The Combinatorics of the Waldspurger Decomposition

Case 2

If i < j then

(ADAT )i ,j = Di ,j −Di−1,j −Di ,j−1 +Di−1,j−1

= ∑
a≤i
b>j

πa,b − ∑
a≤i−1
b>j

πa,b − ∑
a≤i

b>j−1

πa,b + ∑
a≤i−1
b>j−1

πa,b

= −πi ,j

This last equality is, again, perhaps more easily understood visually:

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

⋱ ⋮ ⋮ ⋮ ⋰
. . . πi−1,j−1 πi−1,j πi−1,j+1 . . .
. . . πi ,j−1 πi ,j πi ,j+1 . . .

. . . πi+1,j−1 πi+1,j πi+1,j+1 . . .
⋰ ⋮ ⋮ ⋮ ⋱

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

-
⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

⋱ ⋮ ⋮ ⋮ ⋰
. . . πi−1,j−1 πi−1,j πi−1,j+1 . . .

. . . πi ,j−1 πi ,j πi ,j+1 . . .

. . . πi+1,j−1 πi+1,j πi+1,j+1 . . .
⋰ ⋮ ⋮ ⋮ ⋱

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

-
⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

⋱ ⋮ ⋮ ⋮ ⋰
. . . πi−1,j−1 πi−1,j πi−1,j+1 . . .
. . . πi ,j−1 πi ,j πi ,j+1 . . .

. . . πi+1,j−1 πi+1,j πi+1,j+1 . . .
⋰ ⋮ ⋮ ⋮ ⋱

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

+
⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

⋱ ⋮ ⋮ ⋮ ⋰
. . . πi−1,j−1 πi−1,j πi−1,j+1 . . .

. . . πi ,j−1 πi ,j πi ,j+1 . . .

. . . πi+1,j−1 πi+1,j πi+1,j+1 . . .
⋰ ⋮ ⋮ ⋮ ⋱

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

Thus, (I −ADAT )i ,j = πi ,j for this case as well.
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The Combinatorics of the Waldspurger Decomposition

Case 3

If i > j then

(ADAT )i ,j = Di ,j −Di−1,j −Di ,j−1 +Di−1,j−1

= ∑
a>i
b≤j

πa,b − ∑
a>i−1
b≤j

πa,b − ∑
a>i

b≤j−1

πa,b + ∑
a>i−1
b≤j−1

πa,b

= −πi ,j

Here once more, the visual aid comes to the rescue and makes the last
equality apparent.
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-
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⎝
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⋰ ⋮ ⋮ ⋮ ⋱

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

+
⎛
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⎝

⋱ ⋮ ⋮ ⋮ ⋰
. . . πi−1,j−1 πi−1,j πi−1,j+1 . . .

. . . πi ,j−1 πi ,j πi ,j+1 . . .

. . . πi+1,j−1 πi+1,j πi+1,j+1 . . .
⋰ ⋮ ⋮ ⋮ ⋱

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

Thus, (I −ADAT )i ,j = πi ,j in this final case.
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The Combinatorics of the Waldspurger Decomposition

Consequences of the algorithm

Theorem:
2n vertices arise as columns of Waldspurger matrices for type An.

Sketch of a proof:

Only a zero or a one can appear at the top and bottom of a column.
Entries in the columns are unimodal.
Entries in the columns can only increase or decrease by one.
There are 2n−1 Unimodal Motzkin Paths of length n.
Given any column with these properties, one has enough freedom to
complete it to a Waldspurger matrix.
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The Combinatorics of the Waldspurger Decomposition

Connection to Young’s lattice

In 2002 Ruedi Suter exhibited a subposet of Young’s lattice with dihedral
symmetry.
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The Combinatorics of the Waldspurger Decomposition

For n ≥ 3 define Yn to be the induced subgraph of partitions with
hooklength less than or equal to n. Yn has they same dihedral symmetry
as a regular n-gon.

Yn has 2n−1 elements! (counting the empty partition)
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The Combinatorics of the Waldspurger Decomposition

Why this bijection?... Abelian Ideals!

Ruedi Suter showed that elements in Yn represent abelian ideals of
the Borel subalgebra of sln(C)

An ideal of a Lie algebra is a set with the absorbing property with
respect to the bracket.

An ideal of a Lie algebra is called abelian if the Lie bracket vanishes
on it.
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The Combinatorics of the Waldspurger Decomposition

The Borel subalgebra of sl5(C) consists of all strictly upper triangular
matrices. These partitions represent each of its abelian ideals.
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The Combinatorics of the Waldspurger Decomposition

Wide Open:

Lie Algebra
↕

The Waldspurger Decomposition

Does this connection with abelian ideals hold in other types?

Does the dihedral symmetry say anything about the Waldspurger
picture?

Is there more going on here?
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The Combinatorics of the Waldspurger Decomposition

Original Goal, backtracking

Complete the Waldspurger decomposition to a CW-complex and
compute its f-vector.

This gives even more “virtual vertices” than those from Waldspurger
matrices.

New approach: Use the recursive structure and consider facets.
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The Combinatorics of the Waldspurger Decomposition

Theorem (Bibikov, Zhgoon): Two facets c1 and c2 share a codimension
one boundary iff c1si = c2sj for si and sj adjacent transpositions.

This defines a graph on n − cycles.
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The Combinatorics of the Waldspurger Decomposition

Questions

What properties does this graph have?

Is there a different, natural way to complete the Waldspurger
decomposition to a CW complex? Simplicial complex?

Is there more depth to the correspondence between Waldspurger
vectors and partitions with bounded hook lengths in Young’s lattice?
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