James McKeown

University of Miami

March 5, 2016

James McKeown | University of Miami | March 5, 2016

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Reflection Groups

A element $g \in O(n)$ is a <u>reflection</u> if it sends some nonzero vector $\alpha \in \mathbb{R}^n$ to its negative and fixes the hyperplane orthogonal to α pointwise.

Reflection Groups

- A element $g \in O(n)$ is a <u>reflection</u> if it sends some nonzero vector $\alpha \in \mathbb{R}^n$ to its negative and fixes the hyperplane orthogonal to α pointwise.
- Let $G \subset O(n)$ be a finite group generated by reflections.

Reflection Groups

A element $g \in O(n)$ is a <u>reflection</u> if it sends some nonzero vector $\alpha \in \mathbb{R}^n$ to its negative and fixes the hyperplane orthogonal to α pointwise.

Let $G \subset O(n)$ be a finite group generated by reflections.

Example: $G = \mathfrak{S}_n \subset O(n)$ permuting coordinates

< ロ > < 同 > < 回 > < 回 > < 回 > <

Reducibility

Figure: $\mathfrak{S}_3 \curvearrowright \mathbb{R}^3$

Э

Reducibility

Figure: $\mathfrak{S}_3 \curvearrowright \mathbb{R}^3$

Figure: $\mathfrak{S}_3 \curvearrowright \mathbb{R}^2 = \mathbb{R}^3/(1,1,1)$

A finite reflection group (W, ρ) is called <u>irreducible</u> if it cannot be written as an orthogonal direct sum of (nontrivial) finite reflection groups.

Reducibility

Figure: $\mathfrak{S}_3 \curvearrowright \mathbb{R}^3$

Figure: $\mathfrak{S}_3 \curvearrowright \mathbb{R}^2 = \mathbb{R}^3/(1,1,1)$

A finite reflection group (W, ρ) is called <u>irreducible</u> if it cannot be written as an orthogonal direct sum of (nontrivial) finite reflection groups.

FACT: Finite reflection groups are completely reducible.

Q:) Can we classify irreducible finite reflection groups?

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Q:) Can we classify irreducible finite reflection groups? A:) YES!

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Q:) Can we classify irreducible finite reflection groups? A:) YES!

In 1934, building on the work of Möbius, Jordan, Shläfli, Killing, Cartan, and Weyl, HSM Coxeter used diagrams for the classification of finitely generated reflection groups.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Vertices are a special set of generating reflections.

- Vertices are a special set of generating reflections.
- No edge means the generators commute.

- Vertices are a special set of generating reflections.
- No edge means the generators commute.
- Unlabeled edges between vertices *i* and *j* impose the relation $(S_iS_j)^3 = 1$.

- Vertices are a special set of generating reflections.
- No edge means the generators commute.
- Unlabeled edges between vertices *i* and *j* impose the relation $(S_iS_j)^3 = 1$.
- Edges labeled k between vertices i and j impose the relation $(S_iS_j)^k = 1$.

Theorem (Coxeter): Let \mathcal{A} be an arrangement in \mathbb{R}^n of reflecting hyperplanes for the reflection group G. Then $G \curvearrowright (\mathbb{R}^n \setminus \cup_{H \in \mathcal{A}} H)$ simply and transitively on the chambers.

イロト イポト イヨト イヨト

Theorem (Coxeter): Let \mathcal{A} be an arrangement in \mathbb{R}^n of reflecting hyperplanes for the reflection group G. Then $G \curvearrowright (\mathbb{R}^n \lor \cup_{H \in \mathcal{A}} H)$ simply and transitively on the chambers.

We pick one such chamber and call it the "weight cone" denoted C_W . The cone dual to C_W we call the "root cone" and denote C_R .

(日)

Fact (Coxeter): C_w is a simplicial cone.

Let w_1, w_2, \ldots, w_n be vectors generating the rays of C_W [Jargon: called the "fundamental weights"] Then the dual cone is defined as

$$C_R \coloneqq \{x \in \mathbb{R}^n : (x, y) \le 0 \forall y \in C_W\}$$

Let $\alpha_1, \alpha_2, \ldots, \alpha_n$ be vectors which generate rays of C_R [Jargon: called the "simple roots"]

イロト イポト イヨト イヨト

In type A, it is conventional to let $\alpha_i = e_i - e_{i+1}$ so $(\alpha_i, \alpha_i) = 2 \forall i$

イロン イヨン イヨン イヨン

In type A, it is conventional to let $\alpha_i = e_i - e_{i+1}$ so $(\alpha_i, \alpha_i) = 2 \forall i$

Lengths of weights are then normalized so that

$$-\begin{pmatrix} | & | & | & | \\ | & | & | & | \\ \alpha_1 & \alpha_2 & \dots & \alpha_n \\ | & | & | & | \\ | & | & | & | \end{pmatrix} = \begin{pmatrix} | & | & | & | \\ | & | & | & | \\ w_1 & w_2 & \dots & w_n \\ | & | & | & | \\ | & | & | & | \end{pmatrix}^{-1}$$

・ロト ・聞 ト ・ ヨト ・ ヨト

In type A, it is conventional to let $\alpha_i = e_i - e_{i+1}$ so $(\alpha_i, \alpha_i) = 2 \forall i$

Lengths of weights are then normalized so that

$$-\begin{pmatrix} | & | & | & | \\ | & | & | & | \\ \alpha_1 & \alpha_2 & \dots & \alpha_n \\ | & | & | & | \\ | & | & | & | \end{pmatrix} = \begin{pmatrix} | & | & | & | & | \\ | & | & | & | \\ w_1 & w_2 & \dots & w_n \\ | & | & | & | \\ | & | & | & | \end{pmatrix}^{-1}$$

The matrix of α 's is called the <u>Cartan Matrix</u>. It gives the coordinates of the simple roots in the basis of fundamental weights.

イロト イヨト イヨト

Waldspurger's Theorem

Waldspurger's Theorem (2005!):

For G a finite reflection group acting on a Euclidean vector space V, C_R the (closed) root cone, and $\mathring{C}_W \subset V$ the interior of the weight cone, one has the following decomposition:

$$C_R = \bigsqcup_{g \in G} (1 - g) \mathring{C}_W$$

Waldspurger's Theorem

Waldspurger's Theorem (2005!):

For G a finite reflection group acting on a Euclidean vector space V, C_R the (closed) root cone, and $\mathring{C}_W \subset V$ the interior of the weight cone, one has the following decomposition:

$$C_R = \bigsqcup_{g \in G} (1 - g) \mathring{C}_W$$

It is amazing that this decomposition exists for all reflection groups!

> <同> < 三> < 三>

Waldspurger's Theorem

Waldspurger's Theorem (2005!):

For G a finite reflection group acting on a Euclidean vector space V, C_R the (closed) root cone, and $\mathring{C}_W \subset V$ the interior of the weight cone, one has the following decomposition:

$$C_R = \bigsqcup_{g \in G} (1 - g) \mathring{C}_W$$

It is amazing that this decomposition exists for all reflection groups! In type A_n what does it tell us about the symmetric group \mathfrak{S}_{n+1} ?

(日)

Slice it, put it in root coordinates

Э

イロト イヨト イヨト イヨト

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Э

イロン イヨン イヨン イヨン

・ロン ・四 ・ ・ ヨ ・ ・ ヨ ・

(日) (四) (目) (日) (日)

・ロン ・四 ・ ・ ヨ ・ ・ ヨ ・

Theorem (Armstrong, M. 2015): The following algorithm turns linear algebra into combinatorics:

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Consider $43512 \in \mathfrak{S}_5$

Э

Consider $43512 \in \mathfrak{S}_5$

æ

Consider $43512 \in \mathfrak{S}_5$

proof

Proof: Let *P* be the $(n-1) \times (n-1)$ matrix for the permutation $\pi \in S_n$ expressed in root coordinates. Let *C* be the $(n-1) \times (n-1)$ Cartan matrix and let *D* be the $(n-1) \times (n-1)$ matrix

$$D_{i,j} = \begin{cases} \sum_{\substack{a \le i \\ b > j}} \pi_{a,b} & i \le j \\ \sum_{\substack{a > i \\ b \le j}} \pi_{a,b} & i \ge j \end{cases}$$

We will show (I - P) = DC.

(日) (同) (三) (三) (三)

proof

We use the fact that $C = A^T A$ where A is the $n \times (n-1)$ matrix

$$A = \begin{pmatrix} 1 & 0 & 0 & \dots & 0 \\ -1 & 1 & 0 & \dots & 0 \\ 0 & -1 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 1 \\ 0 & 0 & 0 & \dots & -1 \end{pmatrix}$$

to rewrite the conjecture :

$$P = I - DA^T A$$

We multiply both sides on the left by A:

$$AP = A - ADA^T A$$

Substitute $AP = \pi A$ and cancel the A's on the right:

$$\pi = I - ADA^{T}$$

This we will verify.

James McKeown | University of Miami | March 5, 2016

Simply multiplying A and D we see that $(AD)_{i,j} = D_{i,j} - D_{i-1,j}$ with the understanding $D_{0,k} := 0$ for all k. One more multiplication gives us that

$$(ADA^{T})_{i,j} = D_{i,j} - D_{i-1,j} - D_{i,j-1} + D_{i-1,j-1}$$

once again, with the understanding that if either i = 0 or j = 0 then $D_{i,j} := 0$

イロト イヨト イヨト

Case 1

If i = j then

$$(ADA^{T})_{i,j} = D_{i,j} - D_{i-1,j} - D_{i,j-1} + D_{i-1,j-1}$$

= $\sum_{\substack{a \le i \\ b > j}} \pi_{a,b} - \sum_{\substack{a \le i-1 \\ b > j}} \pi_{a,b} - \sum_{\substack{a > i \\ b \le j-1}} \pi_{a,b} + \sum_{\substack{a > i-1 \\ b \le j-1}} \pi_{a,b}$
= $\sum_{\substack{k \ne j \\ k \ne j}} \pi_{i,k}$
= $\begin{cases} 0 & \pi_{i,j} = 1 \\ 1 & \pi_{i,j} = 0 \end{cases}$

If the second to last equality seems like a bit of a jump consider that we are summing over the following terms of permutation matrices:

Thus, $(I - ADA^T)_{i,j} = \pi_{i,j}$ for this case.

Case 2

If i < j then

$$(ADA^{T})_{i,j} = D_{i,j} - D_{i-1,j} - D_{i,j-1} + D_{i-1,j-1}$$

= $\sum_{\substack{a \le i \\ b > j}} \pi_{a,b} - \sum_{\substack{a \le i-1 \\ b > j}} \pi_{a,b} - \sum_{\substack{a \le i \\ b > j-1}} \pi_{a,b} + \sum_{\substack{a \le i-1 \\ b > j-1}} \pi_{a,b}$
= $-\pi_{i,j}$

This last equality is, again, perhaps more easily understood visually:

Thus, $(I - ADA^T)_{i,j} = \pi_{i,j}$ for this case as well.

Case 3

If i > j then

$$(ADA^{T})_{i,j} = D_{i,j} - D_{i-1,j} - D_{i,j-1} + D_{i-1,j-1}$$

= $\sum_{\substack{a>i\\b\leq j}} \pi_{a,b} - \sum_{\substack{a>i-1\\b\leq j}} \pi_{a,b} - \sum_{\substack{a>i\\b\leq j-1}} \pi_{a,b} + \sum_{\substack{a>i-1\\b\leq j-1}} \pi_{a,b}$
= $-\pi_{i,j}$

Here once more, the visual aid comes to the rescue and makes the last equality apparent.

$$\begin{pmatrix} \ddots & \vdots & \vdots & \vdots & z \\ \ldots & \overline{n_{i}}_{i,j-1} & \overline{n_{i}}_{i,j} & \overline{n_{i}}_{i,j-1} & \overline{n_{i-j}}_{i-j-1} & \overline{n_{i-j}$$

Thus, $(I - ADA^T)_{i,j} = \pi_{i,j}$ in this final case.

æ

æ.

・ロン ・部 ・ ・ ヨン ・ ヨン

Theorem:

 2^n vertices arise as columns of Waldspurger matrices for type A_n .

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem: 2^n vertices arise as columns of Waldspurger matrices for type A_n . Sketch of a proof:

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem:

 2^n vertices arise as columns of Waldspurger matrices for type A_n . Sketch of a proof:

• Only a zero or a one can appear at the top and bottom of a column.

Theorem:

 2^n vertices arise as columns of Waldspurger matrices for type A_n .

Sketch of a proof:

- Only a zero or a one can appear at the top and bottom of a column.
- Entries in the columns are unimodal.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem:

 2^n vertices arise as columns of Waldspurger matrices for type A_n .

Sketch of a proof:

- Only a zero or a one can appear at the top and bottom of a column.
- Entries in the columns are unimodal.
- Entries in the columns can only increase or decrease by one.
Consequences of the algorithm

Theorem:

 2^n vertices arise as columns of Waldspurger matrices for type A_n .

Sketch of a proof:

- Only a zero or a one can appear at the top and bottom of a column.
- Entries in the columns are unimodal.
- Entries in the columns can only increase or decrease by one.
- There are 2^{n-1} Unimodal Motzkin Paths of length *n*.

Consequences of the algorithm

Theorem:

 2^n vertices arise as columns of Waldspurger matrices for type A_n .

Sketch of a proof:

- Only a zero or a one can appear at the top and bottom of a column.
- Entries in the columns are unimodal.
- Entries in the columns can only increase or decrease by one.
- There are 2^{n-1} Unimodal Motzkin Paths of length *n*.
- Given any column with these properties, one has enough freedom to complete it to a Waldspurger matrix.

イロト イポト イヨト イヨト

Connection to Young's lattice

In 2002 Ruedi Suter exhibited a subposet of Young's lattice with dihedral symmetry.

For $n \ge 3$ define Y_n to be the induced subgraph of partitions with hooklength less than or equal to n. Y_n has they same dihedral symmetry as a regular *n*-gon.

The Combinatorics of the Waldspurger Decomposition

Why this bijection?... Abelian Ideals!

 Ruedi Suter showed that elements in Y_n represent abelian ideals of the Borel subalgebra of sl_n(C)

イロト イポト イヨト イヨト

Why this bijection?... Abelian Ideals!

- Ruedi Suter showed that elements in Y_n represent abelian ideals of the Borel subalgebra of sl_n(C)
- An ideal of a Lie algebra is a set with the absorbing property with respect to the bracket.

Why this bijection?... Abelian Ideals!

- Ruedi Suter showed that elements in Y_n represent abelian ideals of the Borel subalgebra of sl_n(C)
- An ideal of a Lie algebra is a set with the absorbing property with respect to the bracket.
- An ideal of a Lie algebra is called <u>abelian</u> if the Lie bracket vanishes on it.

イロト イポト イヨト イヨト

The Combinatorics of the Waldspurger Decomposition

The Borel subalgebra of $\mathfrak{sl}_5(\mathbb{C})$ consists of all strictly upper triangular matrices. These partitions represent each of its abelian ideals.

Wide Open:

Lie Algebra ↓ The Waldspurger Decomposition

Does this connection with abelian ideals hold in other types?

Wide Open:

Lie Algebra ↓ The Waldspurger Decomposition

Does this connection with abelian ideals hold in other types?

Does the dihedral symmetry say anything about the Waldspurger picture?

Wide Open:

Lie Algebra ↓ The Waldspurger Decomposition

Does this connection with abelian ideals hold in other types?

Does the dihedral symmetry say anything about the Waldspurger picture?

Is there more going on here?

The Combinatorics of the Waldspurger Decomposition

Original Goal, backtracking

 Complete the Waldspurger decomposition to a CW-complex and compute its f-vector.

Original Goal, backtracking

- Complete the Waldspurger decomposition to a CW-complex and compute its f-vector.
- This gives even more "virtual vertices" than those from Waldspurger matrices.

Original Goal, backtracking

- Complete the Waldspurger decomposition to a CW-complex and compute its f-vector.
- This gives even more "virtual vertices" than those from Waldspurger matrices.
- New approach: Use the recursive structure and consider facets.

Theorem (Bibikov, Zhgoon): Two facets c_1 and c_2 share a codimension one boundary iff $c_1s_i = c_2s_i$ for s_i and s_i adjacent transpositions.

This defines a graph on n - cycles.

Questions

What properties does this graph have?

Questions

- What properties does this graph have?
- Is there a different, natural way to complete the Waldspurger decomposition to a CW complex? Simplicial complex?

- What properties does this graph have?
- Is there a different, natural way to complete the Waldspurger decomposition to a CW complex? Simplicial complex?
- Is there more depth to the correspondence between Waldspurger vectors and partitions with bounded hook lengths in Young's lattice?

