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Reflection Groups

An element g ∈ O(n) is a reflection if it sends some nonzero vector α ∈ Rn

to its negative and fixes the hyperplane orthogonal to α pointwise.

Let G ⊂ O(n) be a finite group generated by reflections.
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The Reflection Representation of Sn, and the Braid Arrangement

Figure: S3 ↷ R3

Figure: S3 ↷ R2 = R3/(1, 1, 1)

Theorem (Coxeter): Let A be an arrangement in Rn of reflecting
hyperplanes for the reflection group G. Then G↷ (Rn ∖ ∪H∈AH) freely and
transitively on the chambers.

We pick one such chamber and call it the “weight cone” denoted CW. The
cone dual to CW we call the “root cone” and denote CR.
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A first Example– Weights and Roots

α2

α1

W1

W2
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Weights and Roots

Fact (Coxeter): Cw is a simplicial cone.

Let w1,w2, . . . ,wn be vectors generating the rays of CW [Jargon: called the
“fundamental weights”] Then the dual cone is defined as

CR ∶= {x ∈ Rn ∶ (x, y) ≤ 0∀y ∈ CW}

Let α1, α2, . . . , αn be vectors which generate rays of CR [Jargon: called the
“simple roots”]
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The first example A2 (S3)

α2

α1

W1

W2

3w1 = −2α2 − 1α1
3w2 = −1α2 − 2α1

−α1 = 2w2−1w1
−α2 = −1w2 + 2w1

( 2 −1
−1 2

)
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Cartan Matrices: Roots in terms of Weights

In type A, it is conventional to let αi = ei − ei+1 so (αi, αi) = 2 ∀i

Lengths of weights are then normalized so that

−

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

∣ ∣ ∣ ∣
∣ ∣ ∣ ∣
α1 α2 . . . αn

∣ ∣ ∣ ∣
∣ ∣ ∣ ∣

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

∣ ∣ ∣ ∣
∣ ∣ ∣ ∣
w1 w2 . . . wn
∣ ∣ ∣ ∣
∣ ∣ ∣ ∣

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

−1

The matrix of α’s is called the Cartan Matrix. It gives the coordinates of
the simple roots in the basis of fundamental weights.
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Waldspurger Matrices

Consider the reflection representation of the symmetric group

ϕ ∶ Sn Ð→ GLn−1(R)

Let D be the matrix with columns the fundamental weights in basis of the
simple roots (i.e. the n − 1 × n − 1 inverse of the Cartan matrix).

W(g) ∶= [ϕ(1) − ϕ(g)]D

expressed in the coordinates of simple roots we will call the
Waldspurger Matrix of g.
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Waldspurger and Mienrenken Theorems

Waldspurger’s Theorem (2005):

For G a finite reflection group acting on a Euclidean vector space V,
CR the (closed) cone over the positive roots, and
C̊W ⊂ V the interior of a fundamental domain for the action of G
(sometimes called the weight cone), one has the following decomposition:

CR = ⊔
g∈G
(1 − g)̊CW

Take away: Waldspurger matrices give a tiling of the root cone!

Meinrenken’s Theorem (2007):

For G an affine reflection group acting on a Euclidean vector space V, and
ÅW ⊂ V the interior of a fundamental domain for the action of G
(sometimes called a fundamental alcove) one has the following
decomposition:

V = ⊔
g∈G
(1 − g)ÅW

Take away: Convex hulls of columns of Waldspurger matrices (and the
zero vector) give a tiling of the Rn!
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The Waldspurger Decomposition for A2 (S3)

CR = ⊔
g∈G
(1 − g)C̊W

α2

α1

(12)

(132)

(13)(123)

(23)

id
W1

W2
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The Mienrenken Decomposition for A2 (S3)

V = ⊔
g∈G
(1 − g)ÅW
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The Waldspurger Decomposition for A3 (S4)

100 001

010

111

110 011

000
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Meinrenken Tile for A3 =S4

Part 2: Geometry⇒ Permutations
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The Fundamental Transformation

Consider 43512 ∈ S5
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⎝
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Classical Permutation Statistics, something weird...

(12) (34)

(23)

(14)

(13) (24)

(1342)

(1324) (1423)

(1234) (1432)

(1243)

(12)(34)

(123)

(132)

*(13)(24)*

(134)

(143)

(243)

(234)

(142)

(124)

∙ four copies of
S3 picture

∙ Codimension
↕

# cycles (c(n,k))

∙ NOT A CW- complex!
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UM Vectors

Theorem:
There are exactly 2n possible columns of Waldspurger matrices of type An.
We will call them UM vectors.

Interesting Bijections:

∙ Unimodal Motzkin Paths.
∙ Elements of the root lattice inside a certain polytope
∙ Abelian ideals in the nilradical of sln
∙ Young diagrams with hooklength less than n.
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The Waldspurger Transform applied to other Matrices

From an n × n matrix M, define the n − 1 × n − 1 matrix,WT (M) where

WT (M)i,j ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
a≤i
b>j

Ma,b i ≤ j

∑
a>i
b≤j

Ma,b i ≥ j
.

Warning: Note thatWT (M) may be “over-determined” on the diagonal.
In the case where M is a permutation matrix, but in general this need not
be the case.

If an n × n matrix M has this property, we will say it is sum-symmetric

M ∈ SSn

The map is linear and surjective, with kernel the diagonal matrices.

WT ∶ SSn ↠ Matn−1
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Waldspurger, Meinrenken and ???

Part 2: Permutations⇒ Alternating Sign
Matrices
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ASMs

An alternating sign matrix (or ASM) is a square matrix of 0s, 1s, and −1s
such that the sum of each row and column is 1 and the nonzero entries in
each row and column alternate in sign.

These matrices generalize permutation matrices and arise naturally when
using Dodgson condensation to compute a determinant.
n − 1 × n − 1 matrices with UM columns and rows with their maxes on the
diagonal are in bijection with n × n ASMs via theWT map!
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Height=Entropy

Theorem:

∑
1≤i,j≤n−1

WT (g) = 12
n
∑
i=1
(g(i) − i)2

1 1 1 0 0

1 2 2 1 0

1 2 3 2 1

0 1 2 2 1

0 0 1 1 1

Fact (A. Lascoux, M. Schützenberger): Half the entropy of a permutation is its
rank in the MacNeille completion of the Bruhat order– a distributive lattice

with elements the alternating sign matrices, or ASMs.
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The Bruhat Order

321

312

132

123

213

231

[1 1
1 1
]

[1 0
1 1

]

[0 0
0 1

]

[0 0
0 0

]

[1 0
0 0

]

[1 1
0 1

]
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The MacNielle Completion of the Bruhat Order

321

312

132

123

213

231

?

[1 1
1 1
]

[1 0
1 1

]

[0 0
0 1

]

[0 0
0 0

]

[1 0
0 0

]

[1 1
0 1

]

[1 0
0 1

]
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The MacNielle Completion for S4
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What does this tells us about the Meinrenken Tile?

Part 3: ASMs⇒ Geometry

24



A Geometric Realization of the Hasse Diagram of AMS lattice
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Open Questions

∙ Does this embedding of the Hasse diagram extend to other types?

∙ Is there a good way to study the Meinrenken tile as a polytopal complex?
∙ Is there always a way to rearrange the pieces in the Mienrenken tile to get
a convex polytopal complex?

∙ The domain of theWT map is SSn If we restrict ourselves to Gln what is
the image? What is its topology?

∙ In experimentation, theWT map seems to preserve both the Birkhoff
polytope and the ASM polytope. Is this true in general?
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Thank You!
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