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Abstract

A vertex-magic edge Γ-labeling of a graph G(V,E) with |E| = k is a
bijection from E to an Abelian group Γ of order k such that the sum of
labels of all incident edges of every vertex x ∈ V is equal to the same ele-
ment µ ∈ Γ. We present a vertex-magic edge Z2nm-labeling of Cartesian
product of two cycles, Cn2Cm for n odd. This along with an earlier result
by Ivančo proves that a vertex-magic edge Z2nm-labeling of Cn2Cm exists
for every n,m ≥ 3.
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1 Motivation

The Cartesian product of cycles Cn1
, Cn2

, · · · , Cns
, denoted Cn1

2Cn2
2 · · ·2Cns

can be viewed as the Cayley graph of Abelian group Zn1 × Zn2 × · · · × Zns

generated by group elements (1, 0, . . . , 0), (0, 1, . . . , 0), . . . , (0, 0, . . . , 1). It is an
intriguing question whether we can label the elements (that is, edges, vertices,
or both) of such a graph with elements of the group (or another Abelian group
of an appropriate order) so that the sum of the labels of the elements incident
or adjacent to every edge or vertex is the same group element µ, called a magic
constant. We provide exact definitions of the above notions in Section 2.

It seems natural to label just edges and sum the edge labels incident with
each vertex. Another natural approach is to only label vertices and look at the
sum of labels of vertices adjacent to each vertex. The latter notion has been
studied in several papers already. Froncek [3] studied Znm-labeling of Cn2Cm,
and Cichacz [1] proved more results for some other Abelian groups. Cichacz
and Froncek [2] investigated circulant graphs in this context.

This paper is the first attempt to study the edge labeling version. We present
a method for a vertex-magic edge Z2nm-labeling of Cartesian product of two
cycles, Cn2Cm for n odd, and prove that such labeling exists for every magic
constant, µ = 4ν.
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2 Definitions

First we define the Cartesian product of graphs. Because we focus on products
of two cycles in this paper, we restrict our definition to that case. A more
general definition for s graphs can be obtained recursively.

Definition 1. The Cartesian product G = G12G2 of graphs G1 and G2 with
disjoint vertex and edge sets V1, V2, and E1, E2 respectively, is the graph
with vertex set V = V1 × V2 where any two vertices u = (u1, u2) ∈ G and
v = (v1, v2) ∈ G are adjacent in G if and only if either u1 = v1 and u2 is
adjacent with v2 in G2 or, u2 = v2 and u1 is adjacent with v1 in G1.

Now we define the labelings we are investigating.

Definition 2. A vertex-magic edge Γ-labeling of a graph G(V,E) with |E| = k
is a bijection f from E to an Abelian group Γ of order k such that the sum of
labels of all incident edges of every vertex x ∈ V , called the weight of x and
denoted w(x), is equal to the same element µ ∈ Γ, called the magic constant.
That is,

w(x) =
∑

y:xy∈E
f(xy) = µ

for every vertex x ∈ V .

In fact, our definition is a generalization of a previously studied notion of
vertex-magic edge labeling, where the labels are just consecutive positive inte-
gers. This type of labeling is also often called supermagic labeling.

Definition 3. A vertex-magic edge labeling or a supermagic labeling of a graph
G(V,E) with |E| = k is a bijection g from E to the set {1, 2, . . . , k} such that
the sum of labels of all incident edges of every vertex x ∈ V , called the weight
of x and denoted w(x), is equal to the same integer c, called the magic constant.
That is,

w(x) =
∑

y:xy∈E
g(xy) = c

for every vertex x ∈ V .

As we also briefly discuss analogous results obtained earlier for distance
magic labeling, we define it here as well.

Definition 4. A Γ-distance magic labeling of a graph G(V,E) with |V | = p is
a bijection f from V to and Abelian group Γ of order p such that the sum of
labels of all adjacent vertices of every vertex x ∈ V , called the weight of x and
denoted w(x), is equal to the same element µ ∈ Γ, called the magic constant.
That is,

w(x) =
∑

y:xy∈E
f(y) = µ

for every vertex x ∈ V .
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As in the case of edge labelings, even here results on labeling with positive
integers preceded those on labeling with group elements.

Definition 5. A distance magic labeling of a graph G(V,E) with |V | = p is
a bijection g from V to the set {1, 2, . . . , p} such that the sum of labels of all
adjacent vertices of every vertex x ∈ V , called the weight of x and denoted
w(x), is equal to the same integer c, called the magic constant. That is,

w(x) =
∑

y:xy∈E
g(y) = c

for every vertex x ∈ V .

3 Known results

We first list results on distance magic and Γ-distance magic labelings of Carte-
sian cycle products, as they have been a motivation of our research.

Rao, Singh, and Parameswaran in [5] proved the following.

Theorem 6. The graph Cn2Cm has a distance magic labeling if and only if
n = m ≥ 6 and n,m ≡ 2 (mod 4).

Based on this notion of distance magic graphs, Froncek [3] introduced the
concept of Γ-distance magic labeling and proved a complete result on Γ-distance
magic labeling of Cartesian product of two cycles with cyclic groups.

Theorem 7. The Cartesian product Cn2Cm has a Znm-distance magic labeling
if and only if n,m ≥ 3 and nm is even.

Cichacz and Froncek [2] proved the following.

Theorem 8. Let G be an r-regular graph on n vertices, where r is odd. Then
there does not exist an Abelian group Γ of order n having exactly one involution
(an element that is its own inverse) admitting a Γ-distance magic labeling of G.

Cichacz [1] proved a more general result for other Abelian groups.

Theorem 9. Let n,m, t, s be positive integers, n,m ≥ 3 and l = lcm(n,m). Let
Γ = Zlt × A, where A is an Abelian group of order s and nm = lts. Then the
Cartesian product Cn2Cm has a Γ-distance magic labeling.

Results analogous to Theorem 6 for vertex-magic edge labeling were proved
by Ivančo [4].

Theorem 10. Cn2Cn has a vertex-magic edge labeling for any n ≥ 3.

Theorem 11. Let n,m ≥ 2 be integers. Then C2n2C2m has a vertex-magic
edge labeling.
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Ivančo also conjectured that the Cartesian product Cn2Cm allows a vertex-
magic edge labeling for any n,m ≥ 3.

In the following sections, we prove that a group edge labeling equivalent of
the conjecture is true.

4 Construction

First we present a construction for a product of two odd cycles. We de-
note the horizontal m-cycles by B0, B1, . . . , Bn−1 and the vertical n-cycles by
C0, C1, . . . , Cm−1. Then a vertex xij belongs to Bi and Cj .

We start by labeling the edges of B0 (going from left to right and skipping
every other edge) by consecutive even numbers, 0, 2, 4, . . . , 2m− 2. Because m
is odd, all edges receive labels. Then we continue labeling B1 with the next
m even numbers, 2m, 2m + 2, . . . , 4m − 2. Again, as the number of cycles is
even, we label edges of all n horizontal m-cycles while using all even elements
of Z2nm. In general, edges in B2s are labeled 2s, 2s+ 2, 2s+ 4, . . . , 2s+ 2m− 2,
where the superscript is taken mod n.

The layout of the labels is shown in Figure 1.

xi0xi1 xi1xi2 xi2xi3 xi3xi4 · · · xi(m−1)xi0

B0 0 m+ 1 2 m+ 3 · · · m− 1
B1 2m 3m+ 1 2m+ 2 3m+ 3 · · · 3m− 1
B2 4m 5m+ 1 4m+ 2 5m+ 3 · · · 5m− 1
· · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · ·
Bn−2 −4m −3m+ 1 −4m+ 2 −3m+ 3 · · · −3m− 1
Bn−1 −2m −m+ 1 −2m+ 2 −m+ 3 · · · −m− 1

Figure 1: Labeled horizontal cycles, n,m odd

We will call the sum of labels of the horizontal edges incident with a vertex
xij the horizontal partial weight of xij and denote it by wh(xij). Similarly, the
sum of labels of the vertical edges incident with xij will be called the vertical
partial weight of xij and denoted by wv(xij). More precisely,

wh(xij) = f(xi(j−1)xij) + f(xijxi(j+1))

and
wv(xij) = f(x(i−1)jxij) + f(xijx(i+1)j).

The partial weights wh(xij) of vertices are listed in Figure 2. Notice that the
partial weights in each column form a coset of Z2nm induced by the subgroup
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〈4m〉. Therefore, we need to label the vertical cycles so that each cycle has
partial weights wv forming an appropriate coset as well. We will call the cosets
of type 〈4m〉+ 2t even and those of type 〈2m〉+ 2t+ 1 odd.

Namely, for a column with partial weights in a coset 〈4m〉+ 2t, we want the
vertical cycle with partial weights wv forming the coset 〈4m〉 − 2t, listed in the
opposite order. Then we have wh(xij) = 4mi+ 2t and wv(xij) = 4m(n− i)− 2t
which yields w(xij) = 4mi+ 2t+ 4nm− 4mi− 2t = 4nm = 0.

xi0 xi1 xi2 xi3 · · · xi(m−1)

B0 m− 1 m+ 1 m+ 3 m+ 5 · · · 3m− 3
B1 5m− 1 5m+ 1 5m+ 3 5m+ 5 · · · 7m− 3
B2 9m− 1 9m+ 1 9m+ 3 9m+ 5 · · · 11m− 3
· · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · ·
Bn−2 −7m− 1 −7m+ 1 −7m+ 3 −7m+ 5 · · · −5m− 3
Bn−1 −3m− 1 −3m+ 1 −3m+ 3 −3m+ 5 · · · −m− 3

Figure 2: Partial weights in horizontal cycles, n,m odd

We achieve this goal by labeling edges of each Cj consecutively with elements
of a coset induced by the subgroup 〈4m〉. However, because n,m are both odd,
we have 〈4m〉 = 〈2m〉. We also set m′ = (m− 1)/2 to simplify notation in the
labeling presented below in Figure 3.

There are two cases, depending on whether m′ is odd or even. They both
have the same partial weights, because they only differ by the placement of ele-
ment nm in their labels. The labels in each column (that is, a coset) either all
contain that element, or none do. Moreover, for any two consecutive columns,
exactly one of them has nm added in each term. Thus, the sum of two neigh-
boring edges making up the partial weight in every other cycle contains 2nm,
which in Z2nm is indeed equal to zero. We need to do that to ensure that the
labels form odd cosets, as we have used all even ones for the horizontal cycles.

The partial weights for vertical cycles are presented in Figure 4. Adding the
partial weights in Figures 2 and 4, we can see that the total weights all equal
zero and thus the labeling is vertex-magic. We provide a more rigorous proof
below.

Theorem 12. For n,m both odd, Cn2Cm can be labeled with group elements
from Z2nm to form a vertex-magic edge Z2nm-labeling with magic constant µ =
0.
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C0 C1 C2 C3 · · · Cm−1

x0j −m+ 1 −m− 1 −m− 3 −m− 5 · · · −3m+ 3
x1j −5m+ 1 −5m− 1 −5m− 3 −5m− 5 · · · −7m+ 3
x2j −9m+ 1 −9m− 1 −9m− 3 −9m− 5 · · · −11m+ 3
· · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · ·
x(n−2)j 7m+ 1 7m− 1 7m− 3 7m− 5 · · · 5m+ 3
x(n−1)j 3m+ 1 3m− 1 3m− 3 3m− 5 · · · m+ 3

Figure 4: Partial weights in vertical cycles, n,m odd

Proof. Let again m = 2m′ + 1. First we look at the horizontal labels

f(xijxi(j+1)) =

{
2mi+ j for j even

2mi+m+ j for j odd.

Therefore, for j even we get

wh(xij) = f(xi(j−1)xij) + f(xijxi(j+1))

= (2mi+m+ j − 1) + (2mi+ j)

= (4i+ 1)m+ 2j − 1

and for j odd,

wh(xij) = f(xi(j−1)xij) + f(xijxi(j+1))

= (2mi+ j − 1) + (2mi+m+ j)

= (4i+ 1)m+ 2j − 1.

So, in both cases the partial weight is

wh(xij) = (4i+ 1)m+ 2j − 1. (1)

For the vertical labels, we need to distinguish two cases. When m′ is even, we
have

f(xijx(i+1)j) =

{
−m(2i+ 1)−m′ − j for j even

−m(2i+ 1)− nm−m′ − j for j odd.

Then for j even we have

wv(xij) = f(x(i−1)jxij) + f(xijx(i+1)j)

= (−m(2i− 1)−m′ − j) + (−m(2i+ 1)−m′ − j)
= −4mi− 2m′ − 2j

7



and for j odd we have

wv(xij) = f(x(i−1)jxij) + f(xijx(i+1)j)

= (−m(2i− 1)− nm−m′ − j) + (−m(2i+ 1)− nm−m′ − j)
= −4mi− 4nm− 2m′ − 2j

= −4mi− 2m′ − 2j

as for j even. Now substituting back m = 2m′ + 1, we obtain

wv(xij) = −4mi− 2m′− 2j = −4mi− (m− 1)− 2j = −(4i+ 1)m− 2j+ 1. (2)

It now follows from (1) and (2) that

w(xij) = wh(xij) +wv(xij) = ((4i+ 1)m+ 2j − 1) + (−(4i+ 1)m− 2j + 1) = 0,

as desired.
When m′ is odd, we have

f(xijx(i+1)j) =

{
−m(2i+ 1)− nm−m′ − j for j even

−m(2i+ 1)−m′ − j for j odd.

Then for j even we have

wv(xij) = f(x(i−1)jxij) + f(xijx(i+1)j)

= (−m(2i− 1)− nm−m′ − j) + (−m(2i+ 1)− nm−m′ − j)
= −4mi− 4nm− 2m′ − 2j

= −4mi− 2m′ − 2j

and for j odd we have

wv(xij) = f(x(i−1)jxij) + f(xijx(i+1)j)

= (−m(2i− 1)−m′ − j) + (−m(2i+ 1)−m′ − j)
= −4mi− 2m′ − 2j

as well. We observe that the vertical partial weight is the same as for m′ even,
so we again obtain

wv(xij) = −(4i+ 1)m− 2j + 1. (3)

This is the same temporary weight as for m′ even in (2), so adding (1) and (3)
we have again

w(xij) = wh(xij) + wv(xij) = 0,

which completes the proof.
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The construction for n odd and m even is similar. Using the same notation,
we set n = 2n′ + 1,m = 2m′ and label edges of B0 consecutively with elements
0, 2, . . . , 2m− 2. Then we continue with B1 starting at 2m and so on, utilizing
all even elements of Z2nm. The labeling is presented in Figure 5.

The partial weights in this case are not all different, as they only use elements
from the cosets 〈2m〉 + 4t + 2. In particular, coset 〈2m〉 + 4t + 2 appears in
columns t and m′ + t. However, while the cosets are in the same position for
t = 0, for other values of t the values in column m′ + t are cyclically shifted up
by n′ + 1 positions (or by n′ down, which is indeed the same) compared with
column t. The partial weights are also shown in Figure 5.

For vertical cycles, we again use all odd cosets, namely for Cj the coset
〈2m〉− (2j−1). Looking at Figure 6 the labels may be a bit confusing, starting
with Cm′ . This is because we made some simplifications in the above formula.
For instance, since m = 2m′, we have

f(x0m′x1m′) = (n− 1)m− (2(m′+ 1)− 1) = (n− 1)m− (m− 1) = (n− 2)m+ 1.

A detailed proof follows.

Theorem 13. For n odd and m even, Cn2Cm can be labeled with group ele-
ments from Z2nm to form a vertex-magic edge Z2nm-labeling with magic constant
µ = 0.

Proof. Let n = 2n′ + 1 and m = 2m′. The horizontal labels are defined as

f(xijxi(j+1)) = 2mi+ 2j.

Hence, for j 6= 0 we have the horizontal partial weights

wh(xij) = f(xi(j−1)xij) + f(xijxi(j+1))

= (2mi+ 2(j − 1)) + (2mi+ 2j)

= 4mi+ 4j − 2 (4)

and for j = 0 we have

wh(xi0) = f(xi(m−1)xi0) + f(xi0xi1)

= (2mi+ 2(m− 1)) + 2mi

= 4mi+ 2m− 2 (5)

The vertical edges are labeled

f(xijx(i+1)j) = m(n− 1)− 2mi− (2j − 1) = m(n− 2i− 1)− 2j + 1

for j 6= 0 and
f(xi0x(i+1)0) = −2m(i+ 1) + 1

9



x
i0
x
i1

x
i1
x
i2

x
i2
x
i3
··
·
x
im

′ x
i(
m

′ +
1
)

x
i(
m

′ +
1
)
x
i(
m

′ +
2
)
··
·

x
i(
m
−
1
)
x
i0

B
0

0
2

4
··
·

m
m

+
2
··
·

2
m
−

2
B

1
2
m

2m
+

2
2
m

+
4
··
·

3
m

3
m

+
2
··
·

4
m
−

2
B

2
4
m

4m
+

2
4
m

+
4
··
·

5m
5
m

+
2
··
·

6
m
−

2
··
·

··
·

··
·

··
·
··
·

··
·

··
·
··
·

··
·

B
n
′

(n
−

1)
m

(n
−

1)
m

+
2

(n
−

1
)m

+
4
··
·

n
m

n
m

+
2
··
·

(n
+

1
)m
−

2

B
n
′ +

1
(n

+
1)
m

(n
+

1)
m

+
2

(n
+

1
)m

+
4
··
·

(n
+

2
)m

(n
+

2
)m

+
2
··
·

(n
+

3
)m
−

2
··
·

··
·

··
·

··
·
··
·

··
·

··
·
··
·

··
·

B
n
−
2

−
4m

−
4m

+
2

−
4
m

+
4
··
·

−
3m

−
3m

+
2
··
·

−
2m
−

2
B
n
−
1

−
2m

−
2
m

+
2

−
2m

+
4
··
·

−
m

−
m

+
2
··
·

−
2

x
i0

x
i1

x
i2
··
·

x
im

′
x
i(
m

′ +
1
)
··
·

x
i(
m
−
1
)

B
0

2m
−

2
2

6
··
·

2m
−

2
2m

+
2
··
·

4m
−

6
B

1
6m
−

2
4
m

+
2

4
m

+
6
··
·

6m
−

2
6m

+
2
··
·

8m
−

6
B

2
10
m
−

2
8
m

+
2

8
m

+
6
··
·

1
0
m
−

2
1
0m

+
2
··
·

1
2m
−

6
··
·

··
·

··
·

··
·
··
·

··
·

··
·
··
·

··
·

B
n
′

−
2

−
2
m

+
2

−
2m

+
6
··
·

−
2

2
··
·

2m
−

6

B
n
′ +

1
4m
−

2
2
m

+
2

2
m

+
6
··
·

4
m
−

2
4m

+
2
··
·

6m
−

6
··
·

··
·

··
·

··
·
··
·

··
·

··
·
··
·

··
·

B
n
−
2
−

6
m
−

2
−

8
m

+
2

−
8m

+
6
··
·

−
6
m
−

2
−

6m
+

2
··
·

−
4m
−

6
B
n
−
1
−

2
m
−

2
−

4m
+

2
−

4m
+

6
··
·

−
2
m
−

2
−

2m
+

2
··
·

−
6

F
ig

u
re

5:
L

ab
el

ed
h

or
iz

o
n
ta

l
cy

cl
es

a
n

d
p

a
rt

ia
l

w
ei

g
h
ts

,
n

o
d

d
,
m

ev
en

10



C
0

C
1

C
2
··
·

C
m

′
C
m

′ +
1
··
·

C
m
−
1

x
0
j
x
1
j

−
2
m

+
1

(n
−

1)
m
−

1
(n
−

1
)m
−

3
··
·

(n
−

2
)m

+
1

(n
−

2
)m
−

1
··
·

(n
−

3
)m

+
3

x
1
j
x
2
j

−
4
m

+
1

(n
−

3)
m
−

1
(n
−

3
)m
−

3
··
·

(n
−

4
)m

+
1

(n
−

4
)m
−

1
··
·

(n
−

5
)m

+
3

x
2
j
x
3
j

−
6
m

+
1

(n
−

5)
m
−

1
(n
−

5
)m
−

3
··
·

(n
−

6
)m

+
1

(n
−

6
)m
−

1
··
·

(n
−

9
)m

+
3

··
·

··
·

··
·

··
·
··
·

··
·

··
·
··
·

··
·

x
n
′ j
x
(n

′ +
1
)j

−
(n
′
+

1)
m

+
1

−
1

−
3
··
·

−
m

+
1

−
m
−

1
··
·

−
2
m

+
3

x
(n

′ +
1
)j
x
(n

′ +
2
)j
−

(n
′
+

3)
m

+
1

−
2m
−

1
−

2m
−

3
··
·

−
3m

+
1

−
3
m
−

1
··
·

−
4
m

+
3

··
·

··
·

··
·

··
·
··
·

··
·

··
·
··
·

··
·

x
(n
−
2
)j
x
(n
−
1
)j

2
m

+
1

(n
+

3)
m
−

1
(n

+
3
)m
−

3
··
·

(n
+

2
)m

+
1

(n
+

2
)m
−

1
··
·

(n
+

1
)m

+
3

x
(n
−
1
)j
x
0
j

1
(n

+
1)
m
−

1
(n

+
1
)m
−

3
··
·

n
m

+
1

n
m
−

1
··
·

(n
−

1
)m

+
3

C
0

C
1

C
2
··
·

C
m

′
C
m

′ +
1
··
·

C
m
−
1

x
0
j

−
2
m

+
2

−
2

−
6
··
·

−
2m

+
2

−
2
m
−

2
··
·

−
4m

+
6

x
1
j

−
6
m

+
2

−
4m
−

2
−

4m
−

6
··
·

−
6m

+
2

−
6
m
−

2
··
·

−
8
m

+
6

x
2
j

−
10
m

+
2

−
8m
−

2
−

8m
−

6
··
·

−
1
0m

+
2

−
1
0
m
−

2
··
·

−
1
2
m

+
6

··
·

··
·

··
·

··
·
··
·

··
·

··
·
··
·

··
·

x
n
′ j

2
2
m
−

2
2
m
−

6
··
·

2
−

2
··
·

−
2
m

+
6

x
(n

′ +
1
)j

−
4
m

+
2

−
2m
−

2
−

2m
−

6
··
·

−
4m

+
2

−
4
m
−

2
··
·

−
6
m

+
6

··
·

··
·

··
·

··
·
··
·

··
·

··
·
··
·

··
·

x
n
−
2

6
m

+
2

8
m
−

2
8
m
−

6
··
·

6m
+

2
6
m
−

2
··
·

4
m

+
6

x
n
−
1

2
m

+
2

4
m
−

2
4
m
−

6
··
·

2m
+

2
2
m
−

2
··
·

6

F
ig

u
re

6:
L

ab
el

ed
ve

rt
ic

a
l

cy
cl

es
a
n

d
p

a
rt

ia
l

w
ei

g
h
ts

,
n

o
d

d
,
m

ev
en

11



otherwise. Therefore, the partial weights in the vertical cycles are

wv(xij) = f(x(i−1)jxij) + f(xijx(i+1)j)

= (m(n− 2i+ 1)− 2j + 1) + (m(n− 2i− 1)− 2j + 1)

= 2nm− 4mi− 4j + 2

= −4mi− 4j + 2 (6)

and for j = 0 we have

wh(xi0) = f(x(i−1)0xi0) + f(xi0x(i+1)0)

= (−2mi+ 1) + (−2m(i+ 1) + 1)

= −4mi− 2m+ 2. (7)

Adding (4) and (6), we get

w(xij) = wh(xij) + wv(xij)

= 4mi+ 4j − 2 + (−4mi− 4j + 2)

= 0

and adding (5) and (7), we get

w(xi0) = wh(xi0) + wv(xi0)

= 4mi+ 2m− 2 + (−4mi− 4m+ 2)

= 0,

which completes the proof.

Now we are ready to state our main result.

Theorem 14. The Cartesian product Cn2Cm admits a vertex-magic edge Z2nm-
labeling for all n,m ≥ 3.

Proof. For n odd, the proof follows from Theorems 12 and 13. For both n,m
even it follows from Ivančo’s result in Theorem 11. Obviously, if the weight
of every vertex is the same positive integer c, then by performing addition
in Z2nm rather than in Z we obtain a vertex-magic edge Z2nm-labeling with
µ = c mod 2nm.

Although both labelings in Theorems 12 and 13 result in magic constant
µ = 0, it is easy to observe that when we have any labeling with µ = 0, then
we can also find labelings for any µ = 4ν, where ν is an element of Z2nm. We
prove a slightly more general result.

Observation 15. When a 4-regular graph G of order p admits a vertex-magic
edge Z2p-labeling with magic constant µ, then there is a vertex-magic edge Z2p-
labeling of G with µ+ 4ν for any ν in Z2p. On the other hand, no such labeling
with µ odd can exist.
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Proof. We start with a labeling f inducing a magic constant µ, and define fν
as fν(xy) = f(xy) + ν. This is indeed again a bijection from E to Z2p and
wν(x) = w(x) + 4ν for every x in V .

On the other hand, there is no labeling with an odd magic constant. When
µ = 2ν + 1, then ∑

x∈V
wν(x) = p(2ν + 1) = 2pν + p = p.

Since every edge label contributes to the weights of two vertices, we also have∑
x∈V

wν(x) = 2
∑
xy∈E

fν(xy) = 2p(2p− 1) = 0,

which is a contradiction.

We combine the previous claims into one as follows.

Theorem 16. The Cartesian product Cn2Cm admits a vertex-magic edge Z2nm-
labeling with magic constant µ

(i) if and only if µ ≡ 0 (mod 2) when n,m are both odd,

(ii) if and only if µ ≡ 2 (mod 4) when n,m are both even,

(iii) for every µ ≡ 0 (mod 4) when n is odd and m is even,

whenever n,m ≥ 3. Moreover, no such labeling with µ odd exists for n odd and
m even.

Proof. It follows from Observation 15 that µ ≡ 0 (mod 2) for all three cases.
For n,m both odd, the result follows from Theorem 12 and Observation 15

and the fact that in this case, Z2nm is of order 2nm ≡ 2 (mod 4) and hence
4ν 6= 0 generates the subgroup 〈2〉.

For n,m both even, the labeling with positive integers in Theorem 11 gives
the magic constant c = 4nm+ 2. To see that, we observe that∑

x∈V
w(x) = 2

∑
xy∈E

g(xy),

and because |V | = nm and w(x) = c for every x in V , we have

nmc = 2

2nm∑
t=1

t = 2nm(2nm+ 1)

and hence
c = 2(2nm+ 1).
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Reducing c modulo 2nm, we get µ = 2. It follows from Observation 15 that
a desired labeling exists for any µ ≡ 2 (mod 4). To see that we cannot have
µ ≡ 0 (mod 4), we use the fact that Cn2Cm for n and m even is bipartite with
partite sets V0 and V1. Because every edge has one end-vertex in V0, we have∑

x∈V0

w(x) = |V0|µ =
∑
xy∈E

f(xy),

and because |V0| = 2n′m′, we have

2n′m′µ =
∑

a∈Z2nm

a = nm(2nm− 1) = nm, (8)

since nm is even and thus (nm)(2nm) = 0 and −nm = nm. However, when
µ ≡ 0 (mod 4), say µ = 4ν, the left-hand side in (8) is

2n′m′4ν = 2nmν = 0,

because the multiplication is performed in Z2nm. This is a contradiction showing
that µ 6≡ 0 (mod 4).

Finally, for n odd and m even, Z2nm is of order 2nm ≡ 0 (mod 4) and hence
4ν 6= 0 generates the subgroup 〈4〉. The result then follows from Theorem 13
and 15.

We currently do not know any labeling with µ ≡ 2 (mod 4) for case (iii) in
Theorem 16. Hence, we pose an open problem.

Open Problem. Does there exist a vertex-magic edge Z2nm-labeling of the
Cartesian product Cn2Cm with magic constant µ ≡ 2 (mod 4) for n odd and
m even?

There are two other obvious directions in which one could investigate vertex-
magic edge Z2nm-labelings of Cartesian products of cycles. One is edge Γ-
labelings of products of s cycles for s ≥ 3. Another one is labeling of Cn2Cm
with other Abelian groups of order 2nm. The ultimate goal is to completely
characterize all Abelian groups and cycle lengths such that there exists a vertex-
magic edge Γ-labeling of Cn1

2Cn2
2 · · ·2Cns

where Γ is of order sn1n2 . . . ns.
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