Total: 30 pts ($=15 \%$ of the final grade) Time allowed: 50 minutes.

You are not allowed to use any electronic devices, such as calculators, laptops or phones, during the test. Please show your steps clearly.

1. (10 pts) Let $f(x)=x^{3}-1$.
(a) $(3 \mathrm{pts})$ Find the inverse of f.
(b) (3 pts) Find $f^{-1}(0)$.
(c) $(4 \mathrm{pts})$ Compute $\left(f^{-1}\right)^{\prime}(0)$.

Sol. (a) Let $y=x^{3}-1$, so

$$
\begin{aligned}
x^{3} & =y+1 \\
x & =(y+1)^{\frac{1}{3}} . \\
\therefore f^{-1}(y) & =(y+1)^{\frac{1}{3}} .
\end{aligned}
$$

(b)

$$
f^{-1}(0)=(0+1)^{\frac{1}{3}}=1
$$

(c)

$$
\left(f^{-1}\right)^{\prime}(0)=\frac{1}{f^{\prime}\left(f^{-1}(0)\right)}=\frac{1}{f^{\prime}(1)}
$$

As $f(x)=x^{3}-1, f^{\prime}(x)=3 x^{2}$. So $f^{\prime}(0)=3$ and

$$
\left(f^{-1}\right)^{\prime}(0)=\frac{1}{3}
$$

2. (10 pts)
(a) (2 pts) Compute $\int \frac{2}{x} d x$ and $\frac{d}{d x} 2^{x}$.
(b) $(4 \mathrm{pts})$ Expand the quantity $\ln \sqrt[3]{\frac{(x+e)^{2}}{x}} \cdot(\sqrt[3]{ }$ is the cube root.)
(c) $(4 \mathrm{pts})$ Use logarithmic differentiation to find the derivative of $\sqrt[3]{\frac{(x+e)^{2}}{x}}$.

Sol. (a)

$$
\begin{gathered}
\int \frac{2}{x} d x=2 \int \frac{1}{x} d x=2 \ln |x|+C \\
\frac{d}{d x} 2^{x}=(\ln 2) 2^{x}
\end{gathered}
$$

(b)

$$
\begin{aligned}
\ln \sqrt[3]{\frac{(x+e)^{2}}{x}} & =\frac{1}{3} \ln \frac{(x+e)^{2}}{x} \\
& =\frac{1}{3}(2 \ln (x+e)-\ln x) \\
& =\frac{2}{3} \ln (x+e)-\frac{1}{3} \ln x
\end{aligned}
$$

(c) Let $y=\sqrt[3]{\frac{(x+e)^{2}}{x}}$, then by (a), $\ln y=\frac{2}{3} \ln (x+e)-\frac{1}{3} \ln x$. So differentiating gives

$$
\begin{aligned}
\frac{y^{\prime}}{y} & =\frac{2}{3} \cdot \frac{1}{x+e}-\frac{1}{3 x} \\
\therefore y^{\prime} & =\sqrt[3]{\frac{(x+e)^{2}}{x}}\left(\frac{2}{3(x+e)}-\frac{1}{3 x}\right) .
\end{aligned}
$$

3. (10 pts)
(a) (3 pts) Differentiate the function $f(x)=\ln |\cos x| . \quad$ (। | is the absolute value)
(b) $(3 \mathrm{pts})$ Compute $\int \frac{(\ln x)^{2}}{x} d x$.
(c) (4 pts) Differentiate the function $f(x)=x^{2 x}$.

Sol. (a) By the chain rule,

$$
(\ln |\cos x|)^{\prime}=\frac{(\cos x)^{\prime}}{\cos x}=-\frac{\sin x}{\cos x}=-\tan x
$$

(b) Let $u=\ln x$, so $d u=\frac{1}{x} d x$

$$
\int \frac{(\ln x)^{2}}{x} d x=\int u^{2} d u=\frac{u^{3}}{3}+C=\frac{(\ln x)^{3}}{3}+C
$$

Check: Exercise.
(c) Let $y=x^{2 x}$, then $\ln y=2 x \ln x$. Differentiate this w.r.t. x,

$$
\begin{aligned}
& \frac{y^{\prime}}{y}=2 \ln x+\frac{2 x}{x}=2 \ln x+2 \\
& y^{\prime}=y(2 \ln x+2)=x^{2 x}(2 \ln x+2)=2 x^{2 x}(\ln x+1) .
\end{aligned}
$$

