Total: $30 \mathrm{pts}(=15 \%$ of the final grade) Time allowed: 50 minutes.
You are not allowed to use any electronic devices, such as calculators, laptops or phones, during the test. Please show your steps clearly.

1. (10 pts) Let $f(x)=\sqrt{x-2}$, defined on $[2, \infty)$.
(a) (3 pts) Find the inverse of f.
(b) (3 pts) Find $f^{-1}(2)$.
(c) $(4 \mathrm{pts})$ Compute $\left(f^{-1}\right)^{\prime}(2)$.

Sol. (a) Let $y=\sqrt{x-2}$.

$$
\begin{aligned}
\therefore y^{2} & =x-2 \\
x & =y^{2}+2 .
\end{aligned}
$$

So $f^{-1}(y)=y^{2}+2$.
(You may convert y to x and write $f^{-1}(x)=x^{2}+2$. I don't think it's necessary.)
(b) From (a), $f^{-1}(2)=2^{2}+2=6$. (You can easily check this.)
(c) We compute $f^{\prime}(x)=\left((x-2)^{\frac{1}{2}}\right)^{\prime}=\frac{1}{2}(x-2)^{-\frac{1}{2}}$. So

$$
f^{\prime}(6)=\frac{1}{2}(6-2)^{-\frac{1}{2}}=\frac{1}{2} \cdot \frac{1}{4^{\frac{1}{2}}}=\frac{1}{4} .
$$

Therefore

$$
\left(f^{-1}\right)^{\prime}(2)=\frac{1}{f^{\prime}\left(f^{-1}(2)\right)}=\frac{1}{f^{\prime}(6)}=4
$$

2. (10 pts)
(a) (2 pts) Compute $\int \frac{1}{x} d x$ and $\int 7^{x} d x$.
(b) $(4 \mathrm{pts})$ Expand the quantity $\ln \sqrt{\frac{x+1}{(x-1)^{3}}}$.
(c) (4 pts) Use logarithmic differentiation to find the derivative of $\sqrt{\frac{x+1}{(x-1)^{3}}}$. (Your answer must be exact and fully simplified.)

Sol. (a)

$$
\begin{aligned}
& \int \frac{1}{x} d x=\ln |x|+C \\
& \int 7^{x} d x=\frac{7^{x}}{\ln 7}+C
\end{aligned}
$$

Warning: don't omit $d x$, the absolute sign || and $+C$.
(b)

$$
\begin{aligned}
\ln \sqrt{\frac{x+1}{(x-1)^{3}}} & =\frac{1}{2} \ln \left(\frac{x+1}{(x-1)^{3}}\right) \\
& =\frac{1}{2}\left(\ln (x+1)-\ln \left((x-1)^{3}\right)\right) \\
& =\frac{1}{2}[\ln (x+1)-3 \ln (x-1)] \\
& =\frac{1}{2} \ln (x+1)-\frac{3}{2} \ln (x-1) .
\end{aligned}
$$

(c) Let $y=\sqrt{\frac{x+1}{(x-1)^{3}}}$, so by (a),

$$
\begin{aligned}
\ln y & =\ln \sqrt{\frac{x+1}{(x-1)^{3}}} \\
& =\frac{1}{2} \ln (x+1)-\frac{3}{2} \ln (x-1)
\end{aligned}
$$

Differentiating both sides w.r.t. x,

$$
\begin{aligned}
\frac{y^{\prime}}{y} & =\frac{1}{2} \cdot \frac{1}{x+1}-\frac{3}{2} \cdot \frac{1}{x-1} \\
\therefore y^{\prime} & =y\left(\frac{1}{2(x+1)}-\frac{3}{2(x-1)}\right) \\
& =\sqrt{\frac{x+1}{(x-1)^{3}}}\left(\frac{1}{2(x+1)}-\frac{3}{2(x-1)}\right) \quad \text { (this is an acceptable answer) } \\
& =\frac{(x+1)^{\frac{1}{2}}}{(x-1)^{\frac{3}{2}}}\left(\frac{1}{2(x+1)}-\frac{3}{2(x-1)}\right) \\
& =\frac{1}{2(x-1)^{\frac{3}{2}}(x+1)^{\frac{1}{2}}}-\frac{3(x+1)^{\frac{1}{2}}}{(x-1)^{\frac{5}{2}}} .
\end{aligned}
$$

3. (10 pts)
(a) (3 pts) Differentiate the function $f(x)=e^{x^{2}+1}$.
(b) (3 pts) Compute $\int \frac{e^{\frac{1}{x}}}{x^{2}} d x$.
(c) (4 pts) Compute $\frac{d}{d x}\left(x^{\sin x}\right)$.

Sol. (a) By chain rule, $\left(e^{x^{2}+1}\right)^{\prime}=e^{x^{2}+1} \cdot 2 x=2 x e^{x^{2}+1}$.
(b) Let $u=\frac{1}{x}$, so $d u=-\frac{1}{x^{2}} d x$. Therefore

$$
\int \frac{e^{\frac{1}{x}}}{x^{2}} d x=-\int e^{u} d u=-e^{u}+C=-e^{\frac{1}{x}}+C .
$$

(c) Let $y=x^{\sin x}$. So

$$
\ln y=\sin x \ln x
$$

Differentiating w.r.t. x,

$$
\begin{aligned}
\frac{y^{\prime}}{y} & =\cos x \ln x+\frac{\sin x}{x} \\
y^{\prime} & =y\left(\cos x \ln x+\frac{\sin x}{x}\right) \\
& =x^{\sin x}\left(\cos x \ln x+\frac{\sin x}{x}\right)
\end{aligned}
$$

i.e.

$$
\frac{d}{d x}\left(x^{\sin x}\right)=x^{\sin x}\left(\cos x \ln x+\frac{\sin x}{x}\right) .
$$

