The exam will consist of **about nine** questions (which may be further divided into **several parts**), with **unequal** weights. You are expected to know how to do the following types of problems (this list is by no means exhaustive, I just want to give you an idea of what you should expect in the exam. For further practice, do the recommended questions or the problems in the book):

- 1. Inverse functions, log, exponential, trigonometric functions, and their calculus
- Find $(f^{-1})'(a)$. $f(x) = x^3 + 3 \sin x + 2 \cos x$, a = 2Use the Laws of Logarithms to expand the quantity.

$$\ln \sqrt[3]{\frac{x-1}{x+1}}$$

Express the quantity as a single logarithm.

$$\ln 3 + \frac{1}{3} \ln 8$$

Use the Laws of Logarithms to expand the quantity.

$$\ln s^4 \sqrt{t \sqrt{u}}$$

Differentiate the function.

$$y = \ln|2 - x - 5x^2|$$

$$g(x) = \ln(x\sqrt{x^2 - 1})$$

Use logarithmic differentiation to find the derivative of the function.

$$y = \sqrt{\frac{x-1}{x^4+1}}$$

Evaluate the integral.

$$\int_{1}^{2} \frac{dt}{8 - 3t}$$

$$\int_{4}^{9} \left(\sqrt{x} + \frac{1}{\sqrt{x}} \right)^{2} dx$$

$$\int_{e}^{6} \frac{dx}{x \ln x}$$

$$\int_1^e \frac{x^2 + x + 1}{x} dx$$

Differentiate the function.

$$y = \frac{e^{u} - e^{-u}}{e^{u} + e^{-u}}$$
$$y = x^{\cos x}$$
$$y = \sqrt{x}^{x}$$

Evaluate the integral.

$$\int_0^1 \frac{\sqrt{1 + e^{-x}}}{e^x} dx \int \frac{2^x}{2^x + 1} dx$$

Find the exact value of each expression.

$$\sin^{-1}(\sqrt{3}/2)$$

$$\tan^{-1}(1/\sqrt{3})$$

arctan 1

Find the derivative of the function.

$$y = \tan^{-1}(x^2)$$

$$y = \sin^{-1}(2x + 1)$$

Evaluate the integral.

$$\int_0^{\sqrt{3}/4} \frac{dx}{1 + 16x^2}$$

$$\int \frac{t^2}{\sqrt{1-t^6}} \, dt$$

$$\int_0^{1/2} \frac{\sin^{-1} x}{\sqrt{1 - x^2}} \, dx$$

Find the derivative.

$$\cosh(\ln x)$$

$$sinh^{-1}(tan x)$$

Evaluate the integral.

$$\int \frac{\cosh x}{\cosh^2 x - 1} \, dx$$

$$\int_4^6 \frac{1}{\sqrt{t^2 - 9}} dt$$

$$\int \frac{e^x}{1 - e^{2x}} dx$$

2. L'hospital Rule

Find the limit.

$$\lim_{x \to (\pi/2)^+} \frac{\cos x}{1 - \sin x}$$

$$\lim_{t \to 0} \frac{e^{2t} - 1}{\sin t}$$

$$\lim_{x\to\infty} \sqrt{x} \, e^{-x/2}$$

3. Integration by parts, Trigonometric integration/substitution

Evaluate the integral.

$$\int \sin^{-1}x \, dx$$
$$\int \cos \sqrt{x} \, dx$$

$$\int_1^4 e^{\sqrt{x}} \, dx$$

$$\int \sin^2 x \, \cos^3 x \, dx$$

Evaluate the integral using trigonometric substitution.

$$\int \frac{dx}{x^2 \sqrt{4 - x^2}}$$

$$\int \frac{x}{\sqrt{1 + x^2}} dx$$
(You may need: (sec x)'= sec x tan x)

$$\int_0^1 \sqrt{x^2 + 1} \, dx$$

$$\int_0^1 \frac{dx}{(x^2 + 1)^2}$$
[You may need the formula: $\cos^2 x = \frac{1}{2} (1 + \cos 2x)$]
al Fractions

4. Partial Fractions

Write out the form of the partial fraction decomposition of the function. Do not determine the numerical values of the coefficients.

(a)
$$\frac{t^6 + 1}{t^6 + t^3}$$
 (b) $\frac{x^5 + 1}{(x^2 - x)(x^4 + 2x^2 + 1)}$

Evaluate the integral.

$$\int_0^1 \frac{x^3 - 4x - 10}{x^2 - x - 6} dx$$

5. Improper integrals

Use the Comparison Theorem to determine whether the integral is convergent or divergent.

$$\int_0^\infty \frac{x}{x^3 + 1} \, dx$$

$$\int_{1}^{\infty} \frac{2 + e^{-x}}{x} dx$$

Determine whether each integral is convergent or divergent. Evaluate those that are convergent.

$$\int_{1}^{\infty} \frac{\ln x}{x} \, dx$$

$$\int_0^\infty \frac{e^x}{e^{2x} + 3} \, dx$$

$$\int_0^5 \frac{w}{w-2} \, dw$$

6. Power Series

Find a power series representation for the function

$$f(x) = \frac{1}{x+10}$$

• Find the Taylor Series of f centered at x=0:

$$f(x) = \sinh x$$

• Find the Taylor Series of f centered at x=a:

$$f(x) = \cos x, \quad a = \pi$$

Evaluate the indefinite integral as an infinite series.

$$\int \frac{e^x - 1}{x} dx$$

• Use the first four non-zero terms of the Taylor series to find an approximate value of the integral:

$$\int_0^1 x \cos(x^3) dx$$

Use series to evaluate the limit.

$$\lim_{x \to 0} \frac{x - \ln(1+x)}{x^2}$$

$$\lim_{x \to 0} \frac{\sin x - x + \frac{1}{6}x^3}{x^5} \qquad \lim_{x \to 0} \frac{1 - \cos x}{1 + x - e^x}$$

7. Polar coordinates, parametric curves

Find an equation of the tangent to the curve at the point corresponding to the given value of the parameter.

$$x = \sin^3 \theta$$
, $y = \cos^3 \theta$; $\theta = \pi/6$

Find the area enclosed by the x-axis and the curve

$$x = 1 + e^t, y = t - t^2.$$

Find the exact length of the curve.

$$x = 1 + 3t^2$$
, $y = 4 + 2t^3$, $0 \le t \le 1$

Find dy/dx.

$$x = t \sin t, \quad y = t^2 + t$$

Identify the curve by finding a Cartesian equation for the curve.

$$r = 2 \cos \theta$$

Find a polar equation for the curve represented by the given Cartesian equation.

$$y = 1 + 3x$$

Find the slope of the tangent line to the given polar curve at the point specified by the value of θ.

$$r = 2 - \sin \theta$$
, $\theta = \pi/3$

Find the area of the region enclosed by one loop of the curve.

$$r = 4 \cos 3\theta$$

$$r^2 = \sin 2\theta$$

Find the exact length of the polar curve.

$$r = 3 \sin \theta$$
, $0 \le \theta \le \pi/3$

$$r=e^{2\theta}, \quad 0 \leq \theta \leq 2\pi$$