Compulsory

Ex. 5.1 23 (We've assumed $2+3 x \geq 0$ so that $\sqrt{2+3 x}$ makes sense.)

$$
\begin{aligned}
y & =1+\sqrt{2+3 x} \\
y-1 & =\sqrt{2+3 x} \\
(y-1)^{2} & =(\sqrt{2+3 x})^{2}=2+3 x \\
3 x & =(y-1)^{2}-2 \\
x & =\frac{1}{3}\left((y-1)^{2}-2\right) .
\end{aligned}
$$

So

$$
f^{-1}(y)=\frac{1}{3}\left((y-1)^{2}-2\right) .
$$

38 By inspection, $f(0)=0+3 \sin 0+2 \cos 0=2$, so $f^{-1}(2)=0$.

$$
f^{\prime}(x)=3 x^{2}+3 \cos x-2 \sin x
$$

So

$$
f^{\prime}(0)=0+3 \cos 0-2 \sin 0=0+3-0=3 .
$$

Therefore

$$
\left(f^{-1}\right)^{\prime}(2)=\frac{1}{f^{\prime}(0)}=\frac{1}{3}
$$

Ex. 5.22

$$
\begin{aligned}
\ln \sqrt[3]{\frac{x-1}{x+1}} & =\ln \left[\left(\frac{x-1}{x+1}\right)^{\frac{1}{3}}\right] \\
& =\frac{1}{3} \ln \left(\frac{x-1}{x+1}\right) \\
& =\frac{1}{3}(\ln (x-1)-\ln (x+1)) .
\end{aligned}
$$

6

$$
\begin{aligned}
\ln 3+\frac{1}{3} \ln 8 & =\ln 3+\ln \left(8^{\frac{1}{3}}\right) \\
& =\ln 3+\ln 2 \\
& =\ln (3 \cdot 2) \\
& =\ln 6 .
\end{aligned}
$$

Recommended

(Check the answers yourself.)
Ex. 5.1 17 The easiest way is by the observation (trial and error) that $h(4)=4+\sqrt{4}=6$. So $h^{-1}(6)=4$.
(Alternatively you can solve for x by squaring $y-x=\sqrt{x}$ and solve for x, though this will produce false solution because squaring is not an reversible process, and this is more complicated.)

22 Let

$$
\begin{aligned}
& y=\frac{4 x-1}{2 x+3} \\
& \therefore 2 y x+3 y=4 x-1 \\
&(4-2 y) x=3 y+1 \\
& x=\frac{3 y+1}{4-2 y} .
\end{aligned}
$$

So $f^{-1}(y)=\frac{3 y+1}{4-2 y}$.
24 Let

$$
\begin{aligned}
y & =2 x^{3}+3 \\
\therefore 2 x^{3} & =y-3 \\
x^{3} & =\frac{1}{2}(y-3) \\
x & =\left(\frac{1}{2}(y-3)\right)^{\frac{1}{3}} .
\end{aligned}
$$

So $f^{-1}(y)=\left(\frac{1}{2}(y-3)\right)^{\frac{1}{3}}$.
25 Let

$$
\begin{aligned}
& y=\frac{1-\sqrt{x}}{1+\sqrt{x}} \\
& \therefore y+y \sqrt{x}=1-\sqrt{x} \\
&(1+y) \sqrt{x}=1-y \\
& \sqrt{x}=\frac{1-y}{1+y} \\
& x=\left(\frac{1-y}{1+y}\right)^{2} .
\end{aligned}
$$

So $f^{-1}(y)=\left(\frac{1-y}{1+y}\right)^{2}$.

26 Let

$$
\begin{gathered}
y=2 x^{2}-8 x \\
\therefore 2 x^{2}-8 x-y=0
\end{gathered}
$$

Regard this as a quadratic equation in x, then

$$
x=\frac{8 \pm \sqrt{8^{2}-4 \cdot 2 \cdot y}}{4}=2 \pm \sqrt{4+\frac{y}{2}} .
$$

As $x \geq 2$, so $x=2+\sqrt{4+\frac{y}{2}}$. So $f^{-1}(y)=2+\sqrt{4+\frac{y}{2}}$.
37 By inspection, $f^{-1}(4)=0(\because f(0)=4)$.

$$
\begin{aligned}
& \quad f^{\prime}(x)=6 x^{2}+6 x+7 \\
& \therefore f^{\prime}(0)=7
\end{aligned}
$$

So $\left(f^{-1}\right)^{\prime}(4)=\frac{1}{f^{\prime}(0)}=\frac{1}{7}$.
39 By inspection, $f^{-1}(3)=0(\because f(0)=3)$. By chain rule,

$$
\begin{aligned}
f^{\prime}(x) & =2 x+\frac{\pi}{2} \sec ^{2}\left(\frac{\pi x}{2}\right) \\
f^{\prime}(0) & =\frac{\pi}{2} \sec ^{2}(0)=\frac{\pi}{2} \cdot \frac{1}{1^{2}}=\frac{\pi}{2} \\
\therefore\left(f^{-1}\right)^{\prime}(3) & =\frac{1}{f^{\prime}(0)}=\frac{2}{\pi} .
\end{aligned}
$$

40 By inspection, as $f(1)=\sqrt{4}=2$, so $f^{-1}(2)=1$.

$$
\begin{aligned}
f^{\prime}(x) & =\frac{1}{2}\left(x^{3}+x^{2}+x+1\right)^{-\frac{1}{2}} \cdot\left(3 x^{2}+2 x+1\right) \\
\therefore f^{\prime}(1) & =\frac{1}{2} 4^{-\frac{1}{2}} \cdot 6=\frac{3}{2} \\
\therefore\left(f^{-1}\right)^{\prime}(2) & =\frac{2}{3} .
\end{aligned}
$$

Ex. 5.2

1

$$
\ln \sqrt{a b}=\ln (a b)^{\frac{1}{2}}=\frac{1}{2} \ln (a b)=\frac{1}{2}(\ln a+\ln b) .
$$

4

$$
\begin{aligned}
\ln s^{4} \sqrt{t \sqrt{u}}=\ln s^{4}+\ln \sqrt{t \sqrt{u}} & =4 \ln s+\frac{1}{2} \ln (t \sqrt{u}) \\
& =4 \ln s+\frac{1}{2}\left(\ln t+\frac{1}{2} \ln u\right) \\
& =4 \ln s+\frac{1}{2} \ln t+\frac{1}{4} \ln u .
\end{aligned}
$$

5

$$
\ln \left(5 \cdot 3^{5}\right)(=\ln 1215)
$$

7

$$
\begin{aligned}
& \frac{1}{3} \ln (x+2)^{3}+\frac{1}{2}\left[\ln x-\ln \left(x^{2}+3 x+2\right)^{2}\right] \\
= & \ln (x+2)^{\frac{3}{3}}+\frac{1}{2}\left[\ln \frac{x}{\left(x^{2}+3 x+2\right)^{2}}\right] \\
= & \ln (x+2)+\ln \left(\frac{x}{\left(x^{2}+3 x+2\right)^{2}}\right)^{\frac{1}{2}} \\
= & \ln (x+2)+\ln \left(\frac{\sqrt{x}}{x^{2}+3 x+2}\right) \\
= & \ln \left(\frac{\sqrt{x} \cdot(x+2)}{x^{2}+3 x+2}\right) .
\end{aligned}
$$

8

$$
\ln \left[\frac{(a+b)(a-b)}{c^{2}}\right]=\ln \frac{a^{2}-b^{2}}{c^{2}}
$$

Harder problems(Optional)

31 (a) Direct computation gives $f^{-1}(x)=\sqrt{1-x^{2}}$, which is exactly f itself.
(b) From the equation $y=\sqrt{1-x^{2}}$, it's easy to see that the graph is (a part of) the circle, which is symmetric about the line $y=x$, so f^{-1} must be the same as f.
43 As $f(3)=\int_{3}^{3} \sqrt{1+t^{3}} d t=0$, so $f^{-1}(0)=3$. By the fundamental theorem of calculus, $f^{\prime}(3)=\sqrt{1+3^{3}}=\sqrt{28}$. So $\left(f^{-1}\right)^{\prime}(0)=\frac{1}{\sqrt{28}}$.

48 (a) We have $f(g(x))=x$ as $g=f^{-1}$. Differentiating this once,

$$
f^{\prime}(g(x)) g^{\prime}(x)=1 .
$$

Differentiate this w.r.t. x again,

$$
\begin{gathered}
f^{\prime \prime}(g(x))\left(g^{\prime}(x)\right)^{2}+f^{\prime}(g(x)) g^{\prime \prime}(x)=0 . \\
\therefore g^{\prime \prime}(x)=-\frac{f^{\prime \prime}(g(x)) g^{\prime}(x)^{2}}{f^{\prime}(g(x))}=-\frac{f^{\prime \prime}(g(x))}{f^{\prime}(g(x))^{3}} . \quad\left(\because g^{\prime}(x)=\frac{1}{f^{\prime}(g(x))}\right)
\end{gathered}
$$

(b) If f is increasing and concave upward, $f^{\prime}>0$ and $f^{\prime \prime}>0$, so by (a), $g^{\prime \prime}(x)<0$. i.e. g is concave downward.

Ex. 5.2

69 By definition, $\ln x=\int_{1}^{n} \frac{1}{x} d x$. So for a positive integer $n, \ln n$ is the area under the graph $\frac{1}{x}$ for $1 \leq x \leq n$. In particular, by dividing the interval $[1, n]$ into $n-1$ equal parts and noting that the area under the graph of $\frac{1}{x}$ in the interval $[k, k+1]$ is bounded from above by $\frac{1}{k}$ and from below by $\frac{1}{k+1}\left(\because \frac{1}{k+1} \leq \frac{1}{x} \leq \frac{1}{k}\right.$ for $k \leq x \leq k+1$). By summing these two inequalities from $k=1$ up to $n-1$, we can get the estimate.

73 By the definition of f^{\prime}, for $f=\ln$

$$
f^{\prime}(1)=\lim _{x \rightarrow 0} \frac{\ln (1+x)-\ln 1}{x}=\lim _{x \rightarrow 0} \frac{\ln (1+x)}{x} .
$$

On the other hand, $f^{\prime}(1)=\frac{1}{1}=1$, so $\lim _{x \rightarrow 0} \frac{\ln (1+x)}{x}=1$.

