MTH 162 Homework 7

Do the first five problems. Due: Mar 5, 2014 (Wednesday). Hand in to me during the class.

Compulsory:

1–38 ■ Find the limit. Use l'Hospital's Rule where appropriate. If there is a more elementary method, consider using it. If l'Hospital's Rule doesn't apply, explain why.

3.
$$\lim_{x \to (\pi/2)^+} \frac{\cos x}{1 - \sin x}$$

$$4. \lim_{x \to 0} \frac{\sin 4x}{\tan 5x}$$

5.
$$\lim_{t \to 0} \frac{e^{2t} - 1}{\sin t}$$

6.
$$\lim_{x \to 0} \frac{x^2}{1 - \cos x}$$

$$24. \lim_{x\to\infty} \sqrt{x} e^{-x/2}$$

Recommended: (These types of questions may also appear in the exams)

1-38 ■ Find the limit. Use l'Hospital's Rule where appropriate. If there is a more elementary method, consider using it. If l'Hospital's Rule doesn't apply, explain why.

1.
$$\lim_{x \to 1} \frac{x^2 - 1}{x^2 - x}$$

7.
$$\lim_{\theta \to \pi/2} \frac{1 - \sin \theta}{1 + \cos 2\theta}$$

9.
$$\lim_{x \to 0^+} \frac{\ln x}{x}$$

11.
$$\lim_{t \to 1} \frac{t^8 - 1}{t^5 - 1}$$

13.
$$\lim_{x\to 0} \frac{e^x - 1 - x}{x^2}$$

15.
$$\lim_{x\to 0} \frac{x3^x}{3^x-1}$$

17.
$$\lim_{x \to 1} \frac{1 - x + \ln x}{1 + \cos \pi x}$$

19.
$$\lim_{x \to 1} \frac{x^a - ax + a - 1}{(x - 1)^2}$$

21.
$$\lim_{x\to 0} \frac{\cos x - 1 + \frac{1}{2}x^2}{x^4}$$

23.
$$\lim_{x\to 0} \cot 2x \sin 6x$$

25.
$$\lim_{x \to \infty} x^3 e^{-x^2}$$

27.
$$\lim_{x \to 1^+} \ln x \tan(\pi x/2)$$

2.
$$\lim_{x \to 2} \frac{x^2 + x - 6}{x - 2}$$

8.
$$\lim_{\theta \to \pi/2} \frac{1 - \sin \theta}{\csc \theta}$$

$$10. \lim_{x\to\infty} \frac{\ln\sqrt{x}}{x^2}$$

12.
$$\lim_{t\to 0} \frac{8^t - 5^t}{t}$$

14.
$$\lim_{u \to \infty} \frac{e^{u/10}}{u^3}$$

$$16. \lim_{x\to 0} \frac{\cos mx - \cos nx}{x^2}$$

18.
$$\lim_{x\to 0} \frac{x}{\tan^{-1}(4x)}$$

20.
$$\lim_{x \to 0} \frac{e^x - e^{-x} - 2x}{x - \sin x}$$

22.
$$\lim_{x \to a^+} \frac{\cos x \ln(x-a)}{\ln(e^x - e^a)}$$

24.
$$\lim_{x \to \infty} \sqrt{x} e^{-x/2}$$

26.
$$\lim_{x \to 0^+} \sin x \ln x$$

28.
$$\lim_{x\to\infty} x \tan(1/x)$$

29.
$$\lim_{x\to 0^+} \left(\frac{1}{x} - \frac{1}{e^x - 1}\right)$$

30. $\lim_{x\to 0} (\csc x - \cot x)$

$$\mathbf{31.} \lim_{x \to \infty} (x - \ln x)$$

32.
$$\lim_{x \to 1^+} \left[\ln(x^7 - 1) - \ln(x^5 - 1) \right]$$

33.
$$\lim_{x \to 0^+} x^{\sqrt{x}}$$

34.
$$\lim_{x\to 0^+} (\tan 2x)^x$$

35.
$$\lim_{x\to 0} (1-2x)^{1/x}$$

$$36. \lim_{x\to\infty} \left(1+\frac{a}{x}\right)^{bx}$$

37.
$$\lim_{x \to 1^+} x^{1/(1-x)}$$

38.
$$\lim_{x \to \infty} (e^x + x)^{1/x}$$

Challenging (Attempt if you are interested)

41. Prove that

$$\lim_{x \to \infty} \frac{e^x}{x^n} = \infty$$

for any positive integer n. This shows that the exponential function approaches infinity faster than any power of x.

42. Prove that

$$\lim_{x \to \infty} \frac{\ln x}{x^p} = 0$$

for any number p > 0. This shows that the logarithmic function approaches ∞ more slowly than any power of x.