MTH 162 Homework 4

Do the first six problems. Due: Feb 12, 2014 (Wednesday). Hand in to me during the class.

Compulsory:

Ex 5.5

- 20. (a) How long will it take an investment to double in value if the interest rate is 6% compounded continuously?
 - (b) What is the equivalent annual interest rate?

(Hints: (a) The time needed is independent of the initial amount. You may let the initial amount be A_0 . For both parts, give the exact answers first and then find the approximate values by using a calculator.)

Ex 5.6

1-6 ■ Find the exact value of each expression. (Can you do it without a calculator or looking up the table? If you have difficulties, read Appendix A of the book.)

1. (a) $\sin^{-1}(\sqrt{3}/2)$

(b) $\cos^{-1}(-1)$

2. (a) $\tan^{-1}(1/\sqrt{3})$

(b) $\sec^{-1} 2$

3. (a) arctan 1

(b) $\sin^{-1}(1/\sqrt{2})$ (arctan is the same as \tan^{-1})

16–29 ■ Find the derivative of the function. Simplify where possible.

16. $y = \tan^{-1}(x^2)$

19. $y = \sin^{-1}(2x + 1)$

Recommended: (These types of questions may also appear in the exams)

Ex 5.4

1-6 • Find the exact value of each expression.

- **4.** (a) $\cot^{-1}(-\sqrt{3})$
- (b) $arccos(-\frac{1}{2})$
- **5.** (a) tan(arctan 10) (b) $sin^{-1}(sin(7\pi/3))$
- **6.** (a) $tan(sec^{-1}4)$ (b) $sin(2 sin^{-1}(\frac{3}{5}))$

16-29 Find the derivative of the function. Simplify where possible.

- **16.** $y = \tan^{-1}(x^2)$
- **17.** $y = (\tan^{-1} x)^2$
- **18.** $g(x) = \sqrt{x^2 1} \sec^{-1} x$
- **19.** $y = \sin^{-1}(2x + 1)$ **20.** $y = \tan^{-1}(x \sqrt{1 + x^2})$
- **21.** $G(x) = \sqrt{1 x^2} \arccos x$ **22.** $F(\theta) = \arcsin \sqrt{\sin \theta}$
- **23.** $h(t) = \cot^{-1}(t) + \cot^{-1}(1/t)$
- **24.** $y = \cos^{-1}(\sin^{-1}t)$
- **25.** $y = \arctan(\cos \theta)$
- **26.** $f(x) = x \ln(\arctan x)$
- **27.** $y = x \sin^{-1} x + \sqrt{1 x^2}$ **28.** $y = \arctan \sqrt{\frac{1 x}{1 + x}}$

29.
$$y = \arccos\left(\frac{b + a\cos x}{a + b\cos x}\right), \quad 0 \le x \le \pi, \ a > b > 0$$

Challenging: (Harder problems. Attempt if you are interested.)

Ex 5.4

8–10 ■ Simplify the expression.

8. $tan(sin^{-1}x)$

9. $\sin(\tan^{-1}x)$

10. $\cos(2 \tan^{-1} x)$

12. (a) Prove that $\sin^{-1}x + \cos^{-1}x = \pi/2$.

(b) Use part (a) to prove Formula 6.