MTH 162 Homework 12

Do the first four problems. Due: Apr 16, 2014 (Wednesday). Hand in to me during the class.

Compulsory:

Ex 9.2

3-6 ■ Find an equation of the tangent to the curve at the point corresponding to the given value of the parameter.

6.
$$x = \sin^3 \theta$$
, $y = \cos^3 \theta$; $\theta = \pi/6$

29. Find the area enclosed by the x-axis and the curve $x = 1 + e^t, y = t - t^2.$

(Hint: find the intersection of this curve with the x-axis to find the lower and upper limits for the area integral.)

37–40 ■ Find the exact length of the curve.

37.
$$x = 1 + 3t^2$$
, $y = 4 + 2t^3$, $0 \le t \le 1$

Ex 9.3

3-4 ■ Plot the point whose polar coordinates are given. Then find the Cartesian coordinates of the point.

- **3.** (a) $(1, \pi)$ (b) $(2, -2\pi/3)$ (c) $(-2, 3\pi/4)$

Recommended: (These types of questions may also appear in the exams)

Ex 9.2

1-2 • Find dy/dx.

1.
$$x = t \sin t$$
, $y = t^2 + t$

1.
$$x = t \sin t$$
, $y = t^2 + t$ **2.** $x = 1/t$, $y = \sqrt{t} e^{-t}$

3-6 ■ Find an equation of the tangent to the curve at the point corresponding to the given value of the parameter.

3.
$$x = 1 + 4t - t^2$$
, $y = 2 - t^3$; $t = 1$

4.
$$x = t - t^{-1}$$
, $y = 1 + t^2$; $t = 1$

5.
$$x = t \cos t$$
, $y = t \sin t$; $t = \pi$

6.
$$x = \sin^3 \theta$$
, $y = \cos^3 \theta$; $\theta = \pi/6$

13-16 • Find the points on the curve where the tangent is horizontal or vertical. If you have a graphing device, graph the curve to check your work.

13.
$$x = t^3 - 3t$$
, $y = t^2 - 3$

14.
$$x = t^3 - 3t$$
, $y = t^3 - 3t^2$

15.
$$x = 2\cos\theta$$
, $y = \sin 2\theta$

16.
$$x = e^{\sin \theta}$$
, $y = e^{\cos \theta}$

37–40 ■ Find the exact length of the curve.

38.
$$x = e^t + e^{-t}$$
, $y = 5 - 2t$, $0 \le t \le 3$

39.
$$x = t \sin t$$
, $y = t \cos t$, $0 \le t \le 1$

40.
$$x = 3 \cos t - \cos 3t$$
, $y = 3 \sin t - \sin 3t$, $0 \le t \le \pi$

Ex 9.3

3-4 ■ Plot the point whose polar coordinates are given. Then find the Cartesian coordinates of the point.

3. (a) $(1, \pi)$ (b) $(2, -2\pi/3)$ (c) $(-2, 3\pi/4)$

4. (a) $\left(-\sqrt{2}, 5\pi/4\right)$ (b) $(1, 5\pi/2)$ (c) $(2, -7\pi/6)$

5-6 ■ The Cartesian coordinates of a point are given.

- (i) Find polar coordinates (r, θ) of the point, where r > 0and $0 \le \theta < 2\pi$.
- (ii) Find polar coordinates (r, θ) of the point, where r < 0and $0 \le \theta < 2\pi$.

5. (a) (2, -2)

(b) $(-1, \sqrt{3})$

6. (a) $(3\sqrt{3}, 3)$

(b) (1, -2)