MTH 162 Homework 11

Do the first four problems. Due: Apr 9, 2014 (Wednesday). Hand in to me during the class.

Compulsory:

Ex 8.6

3-10 Find a power series representation for the function

6.
$$f(x) = \frac{1}{x + 10}$$
 (Hint: geometric series)

Ex 8.7

(In the following problems, write down the first four nonzero terms of the series if there is no obvious pattern.)

5-10 ■ Find the Maclaurin series for f(x) using the definition of a Maclaurin series. [Assume that f has a power series expansion.]

sion. Do not show that $R_n(x) \to 0$.] (Maclaurin series=Taylor series centered at 0.)

9.
$$f(x) = \sinh x$$

11–18 ■ Find the Taylor series for f(x) centered at the given value of a. [Assume that f has a power series expansion. Do not show that $R_n(x) \rightarrow 0$.]

17.
$$f(x) = \cos x$$
, $a = \pi$

43-46 • Evaluate the indefinite integral as an infinite series.

$$44. \int \frac{e^x - 1}{x} dx$$

Recommended: (These types of questions may also appear in the exams)

Ex 8.6

3–10 ■ Find a power series representation for the function and determine the interval of convergence.

3.
$$f(x) = \frac{1}{1+x}$$

4.
$$f(x) = \frac{5}{1 - 4x^2}$$

5.
$$f(x) = \frac{2}{3-x}$$

6.
$$f(x) = \frac{1}{x+10}$$

7.
$$f(x) = \frac{x}{9 + x^2}$$

8.
$$f(x) = \frac{x}{2x^2 + 1}$$

9.
$$f(x) = \frac{1+x}{1-x}$$

10.
$$f(x) = \frac{x^2}{a^3 - x^3}$$

[In the exam, I won't ask you to

find the radius of convergence.]

15–20 ■ Find a power series representation for the function and determine the radius of convergence.

15.
$$f(x) = \ln(5 - x)$$

16.
$$f(x) = x^2 \tan^{-1}(x^3)$$

17.
$$f(x) = \frac{x}{(1+4x)^2}$$

$$18. f(x) = \left(\frac{x}{2-x}\right)^3$$

19.
$$f(x) = \frac{1+x}{(1-x)^2}$$

20.
$$f(x) = \frac{x^2 + x}{(1 - x)^3}$$

25–28 ■ Evaluate the indefinite integral as a power series. What is the radius of convergence?

$$25. \int \frac{t}{1-t^8} dt$$

$$26. \int \frac{t}{1+t^3} dt$$

27.
$$\int x^2 \ln(1+x) dx$$

$$28. \int \frac{\tan^{-1}x}{x} \, dx$$

Ex 8.7

5-10 • Find the Maclaurin series for f(x) using the definition of a Maclaurin series. [Assume that f has a power series expansion. Do not show that $R_n(x) \to 0$.] Also find the associated radius of convergence.

5.
$$f(x) = (1 - x)^{-2}$$

6.
$$f(x) = e^{-2x}$$

7.
$$f(x) = \sin \pi x$$

$$8. \ f(x) = x \cos x$$

$$9. f(x) = \sinh x$$

10.
$$f(x) = \cosh x$$

11-18 • Find the Taylor series for f(x) centered at the given value of a. [Assume that f has a power series expansion. Do not show that $R_n(x) \to 0$.]

11.
$$f(x) = x^4 - 3x^2 + 1$$
, $a = 1$

12.
$$f(x) = x - x^3$$
, $a = -2$

13.
$$f(x) = \ln x$$
, $a = 2$

13.
$$f(x) = \ln x$$
, $a = 2$ **14.** $f(x) = 1/x$, $a = -3$

15.
$$f(x) = e^{2x}$$
, $a = 3$

15.
$$f(x) = e^{2x}$$
, $a = 3$ **16.** $f(x) = \sin x$, $a = \pi/2$

17.
$$f(x) = \cos x$$
, $a = \pi$

17.
$$f(x) = \cos x$$
, $a = \pi$ **18.** $f(x) = \sqrt{x}$, $a = 16$

27-36 • Use a Maclaurin series in Table 1 to obtain the Maclaurin series for the given function.

27.
$$f(x) = \sin \pi x$$

28.
$$f(x) = \cos(\pi x/2)$$

29.
$$f(x) = e^x + e^{2x}$$

30.
$$f(x) = e^x + 2e^{-x}$$

31.
$$f(x) = x \cos(\frac{1}{2}x^2)$$

31.
$$f(x) = x \cos(\frac{1}{2}x^2)$$
 32. $f(x) = x^2 \ln(1 + x^3)$

33.
$$f(x) = \frac{x}{\sqrt{4 + x^2}}$$

33.
$$f(x) = \frac{x}{\sqrt{4 + x^2}}$$
 34. $f(x) = \frac{x^2}{\sqrt{2 + x}}$

35.
$$f(x) = \sin^2 x$$
 [*Hint*: Use $\sin^2 x = \frac{1}{2}(1 - \cos 2x)$.]

36.
$$f(x) = \begin{cases} \frac{x - \sin x}{x^3} & \text{if } x \neq 0\\ \frac{1}{6} & \text{if } x = 0 \end{cases}$$

43-46 • Evaluate the indefinite integral as an infinite series.

43.
$$\int x \cos(x^3) dx$$

44.
$$\int \frac{e^x - 1}{x} dx$$

45.
$$\int \frac{\cos x - 1}{x} dx$$

46.
$$\int \arctan(x^2) dx$$

(For the following questions, the estimates of the error will not be tested in the exam.)

47-50 ■ Use series to approximate the definite integral to within the indicated accuracy.

47.
$$\int_0^1 x \cos(x^3) dx$$
 (three decimal places)

48.
$$\int_0^1 \sin(x^4) dx$$
 (four decimal places)

49.
$$\int_0^{0.1} \frac{dx}{\sqrt{1+x^3}} \quad (|\operatorname{error}| < 10^{-8})$$

50.
$$\int_0^{0.5} x^2 e^{-x^2} dx \quad (|\text{error}| < 0.001)$$

51-53 ■ Use series to evaluate the limit.

51.
$$\lim_{x \to 0} \frac{x - \ln(1 + x)}{x^2}$$
 52. $\lim_{x \to 0} \frac{1 - \cos x}{1 + x - e^x}$

52.
$$\lim_{x \to 0} \frac{1 - \cos x}{1 + x - e^x}$$

53.
$$\lim_{x \to 0} \frac{\sin x - x + \frac{1}{6}x^3}{x^5}$$