Math 311 - Practice Test 3

(1) (a) Give the differential equation describing the motion of an object of mass $m=2$ attached to a spring (with spring constant $k=8$) that is not damped, and solve the equation.
(b) Now connect the mass to a dashpot (with dampening constant b) to dampen the system. What dampening constant $b=b_{\text {crit }}$ causes the system to be critically damped? Give the general solution to this differential equation.
(c) Then solve the equation for each situation $b=2 b_{\text {crit }}$ and $b=\frac{1}{2} b_{\text {crit }}$. Which one is overdamped and which is underdamped?
(2) The motion of a damped mass-spring system experiencing an external periodic force is given by $x^{\prime \prime}+2 x^{\prime}+26 x=600 \cos 10 t$.
(a) Given the solution $x(t)$ satisfying the initial conditions $x(0)=10$, $x^{\prime}(0)=0$.
(b) Identify both the transient and steady periodic components of the solution. That is, write $x(t)=x_{t r}(t)+x_{s p}(t)$ where $\lim _{t \rightarrow \infty} x_{t r}(t)=0$ and $x_{s p}(t)$ is periodic.
(c) Write $x_{s p}(t)$ is amplitude-phase form.
(3) For each of the following systems of linear differential equations
(a) Give the general solution.
(b) Sketch the phase portraits.
(c) Give the solution satisfying $x(0)=0, y(0)=1$ and include/identify the corresponding curve in the phase portrait.

$$
\left\{\begin{array} { l }
{ x ^ { \prime } = 3 x + y } \\
{ y ^ { \prime } = 5 x - y }
\end{array} \quad \left\{\begin{array} { l }
{ x ^ { \prime } = 5 x + 6 y } \\
{ y ^ { \prime } = - 2 x - 2 y }
\end{array} \quad \left\{\begin{array}{ll}
x^{\prime} & =-2 y \\
y^{\prime} & =5 x-2 y
\end{array}\right.\right.\right.
$$

