Math 311 — Practice Test 2

CHAPTER 2

- (1) For the autonomous differential equation $\frac{dx}{dt} = x^2 4x + 3$:
 - (a) Find all critical point and draw a phase diagram. For each critical point, determine if it is stable, unstable, or semi-stable.
 - (b) If x(t) is a solution to the IVP $x_0 = x(0)$, determine $\lim_{t\to\infty} x(t)$ in terms of x_0 .
 - (c) Sketch several solution curves on an appropriate domain.
 - (d) Give a general solution to the differential equation.
- (2) For the autonomous differential equation dx/dt = x²(e^{2x-3} 1):
 (a) Find all critical point and draw a phase diagram. For each critical point, determine if it is stable, unstable, or semi-stable.
 - (b) If x(t) is a solution to the IVP $x_0 = x(0)$, determine $\lim_{t\to\infty} x(t)$ in terms of x_0 .
 - (c) Sketch several solution curves on an appropriate domain.
- (3) Make a differential equation that mathematically models the spread of a rumor in the situation described below. Determine the relevant domains for your variables. Qualitatively describe how the rumor may spread depending on initial conditions.

In a large university with a fixed population of people, the rate of change of the number of those people who have heard a certain rumor is proportional to the number that have not yet heard the rumor.

- (4) An object moving horizontally experiences resistance due to friction that is:
 - (a) proportional to the square root of its speed (absolute value of velocity) and
 - (b) in the direction opposite its motion.

If there are no other forces contributing to its horizontal motion, obtain an equation for its velocity v(t) at time t with initial velocity $v(0) = v_0 > 0$.

Also obtain an equation for its position x(t) with initial position $x(0) = x_0$.

CHAPTER 3

- (5) How many solutions are there to the IVP $y'' + \cos(x)y' + \frac{1}{1+x^2}y = 0$ where y(0) = 2 and y'(0) = -1? What is the domain of each solution?
- (6) Show that $y_1 = x$ and $y_2 = x \ln x$ are linearly independent solutions to the differential equation $x^2y'' - xy' + y = 0$. Give a general solution. Then find the solution that satisfies the initial conditions y(1) = 7 and y'(1) = 2.
- (7) Give a general solution to 2y''' + 3y'' + 2y' = 0.
- (8) Give general solutions to the following differential equations:
 - $y'' 4y' + 4y = \sin(2x)$ • $y^{(4)} - 4y'' + 4y = 6e^{2t}$
- (9) Give a differential equation that has $y = 3xe^{-x} + 2x^2\cos(x/3)$ as a solution.
- (10) Solve the IVP $x'' + 2x' 8x = -3te^{2t}, x(0) = 1, x'(0) = 0.$
- (11) Solve the differential equation $Ly = 7e^{-3t}$ where L is the linear differential operator $L = (D^2 - 9)D$.