Math 311 — Practice — Test 1

- (1) Verify that $y_1 = \cos x \cos 2x$ is a solution to the differential equation $y'' + y = 3\cos 2x$.
- (2) Consider the equation $y' = \sqrt[3]{y} + \sin(2\pi y)$.
 - (a) Does there exist a solution to the equation with the initial condition y(0) = 0? If so, can you tell if it is unique? Explain.
 - (b) What if y(0) = 1 instead?
 - (c) There is a unique solution to the initial equation that runs through the point (x, y) = (5, 8). What is the slope of the tangent line to that solution at the point (5, 8)?
- (3) Find general solutions to the following differential equations. (Explicit if convenient, implicit if not.) (a) $(x^2 + 1)(\sec^2 y)y' = x$
 - (b) $xy' + 2x^2y x^2 = 0$

 - (c) $2xyy' = x^2 + 2y^2$ (This is homogeneous....)
 - (d) $(x^3 + 2y^2)dx + (4xy + 6y^2)dy = 0$
- (4) Find particular solutions to these initial value problems.

 - (a) $\frac{dx}{dt} = 10x x^2, x(0) = 1$ (b) $\frac{dy}{dx} = 3x^2(y^2 + 1), y(0) = 1$
- (5) A 200 m^3 room initially contains fresh air. At time t = 0, a faulty heating system causes gas containing 20% carbon monoxide to be pumped into the room at a rate of $3m^3$ per minute. The well-mixed air is vented out at the same rate.
 - (a) Write a differential equation with appropriate initial conditions that describes this situation.
 - (b) Solve the initial value problem.
 - (c) A carbon monoxide detector in the room is triggered when the carbon monoxide reaches 1%. Give an expression (reasonably simplified) for the time at which the alarm will sound.
- (6) "Reverse engineer" a substitution problem: (1) Start with a differential equation you can solve, but use v instead of y. (2) Then make a substitution like $v = e^y$ to replace the v's with y's. (3) Differentiate your substitution to replace dv/dx with dy/dx.

For example, from (3)(b) we get $xv' + 2x^2v - x^2 = 0$. Using the substitution v = 1/y + 1, differentiating gives $\frac{dv}{dx} = \frac{-1}{y^2} \frac{dy}{dx}$. (That is, $v' = -y'/y^2$.) Plugging in makes the equation become $\frac{-x}{y^2}y' + 2x^2(\frac{1}{y} + 1) - x^2 = 0$. This simplifies to $y' - 2xy - 2y^2 + xy^2 = 0$ which seems much more difficult to solve. How might this new differential equation be solved?

Try a few of your own design.

- (7) Create some exact differential equations that you can solve.
- (8) Create some linear equations that you can solve.
- (9) Sketch the slope field to $\frac{dy}{dx} = 1/y x$ on the domain x > 0 and y > 0. Also sketch some solution curves.