Math 311 - Practice - Test 1

(1) Verify that $y_{1}=\cos x-\cos 2 x$ is a solution to the differential equation $y^{\prime \prime}+y=3 \cos 2 x$.
(2) Consider the equation $y^{\prime}=\sqrt[3]{y}+\sin (2 \pi y)$.
(a) Does there exist a solution to the equation with the initial condition $y(0)=0$? If so, can you tell if it is unique? Explain.
(b) What if $y(0)=1$ instead?
(c) There is a unique solution to the initial equation that runs through the point $(x, y)=(5,8)$. What is the slope of the tangent line to that solution at the point $(5,8)$?
(3) Find general solutions to the following differential equations. (Explicit if convenient, implicit if not.)
(a) $\left(x^{2}+1\right)\left(\sec ^{2} y\right) y^{\prime}=x$
(b) $x y^{\prime}+2 x^{2} y-x^{2}=0$
(c) $2 x y y^{\prime}=x^{2}+2 y^{2}$ (This is homogeneous....)
(d) $\left(x^{3}+2 y^{2}\right) d x+\left(4 x y+6 y^{2}\right) d y=0$
(4) Find particular solutions to these initial value problems.
(a) $\frac{d x}{d t}=10 x-x^{2}, x(0)=1$
(b) $\frac{d y}{d x}=3 x^{2}\left(y^{2}+1\right), y(0)=1$
(5) A $200 m^{3}$ room initially contains fresh air. At time $t=0$, a faulty heating system causes gas containing 20% carbon monoxide to be pumped into the room at a rate of $3 \mathrm{~m}^{3}$ per minute. The well-mixed air is vented out at the same rate.
(a) Write a differential equation with appropriate initial conditions that describes this situation.
(b) Solve the initial value problem.
(c) A carbon monoxide detector in the room is triggered when the carbon monoxide reaches 1%. Give an expression (reasonably simplified) for the time at which the alarm will sound.
(6) "Reverse engineer" a substitution problem: (1) Start with a differential equation you can solve, but use v instead of y. (2) Then make a substitution like $v=e^{y}$ to replace the v 's with y 's. (3) Differentiate your substitution to replace $d v / d x$ with $d y / d x$.

For example, from $(3)(\mathrm{b})$ we get $x v^{\prime}+2 x^{2} v-x^{2}=0$. Using the substitution $v=1 / y+1$, differentiating gives $\frac{d v}{d x}=\frac{-1}{y^{2}} \frac{d y}{d x}$. (That is, $v^{\prime}=-y^{\prime} / y^{2}$.) Plugging in makes the equation become $\frac{-x}{y^{2}} y^{\prime}+2 x^{2}\left(\frac{1}{y}+1\right)-x^{2}=0$. This simplifies to $y^{\prime}-2 x y-2 y^{2}+x y^{2}=0$ which seems much more difficult to solve. How might this new differential equation be solved?

Try a few of your own design.
(7) Create some exact differential equations that you can solve.
(8) Create some linear equations that you can solve.
(9) Sketch the slope field to $\frac{d y}{d x}=1 / y-x$ on the domain $x>0$ and $y>0$. Also sketch some solution curves.

