$\begin{aligned} \text { Math } 210 & \text { - Practice Test } 3 \\ \text { (1) (a) Find the determinant of the matrix } A & =\left[\begin{array}{rrrr}3 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 2 & 1 & 0 \\ 3 & 1 & 0 & -1\end{array}\right] .\end{aligned}$
(b) Is A invertible? If so, what is $\operatorname{det}\left(A^{-1}\right)$? If not, why not?
(2) Quickly, what is the determinant of $A=\left[\begin{array}{rrrrrrr}0 & 0 & 0 & 0 & 1 & -\frac{7}{8} & 6 \\ 3 & 1 & 0 & 42 & \frac{238}{19938} & \pi & 0 \\ 0 & -1 & 28 & 0 & 0 & 3 & -2 \\ 0 & 0 & 2 & 1 & -2 & 2 & 9 \\ 0 & 0 & 0 & 1 & 10 & -7 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 93 \\ 0 & 0 & 0 & 0 & 0 & 0 & -1\end{array}\right]$?
(3) What numbers arise as determinants of orthogonal matrices? Justify your answer.
(4) (a) How can you easily conclude that the matrix $B=\left[\begin{array}{rrrr}3 & 1 & 33 & 8 \\ 9 & -2 & 99 & 1 \\ -7 & 5 & -77 & 11 \\ 2 & 1 & 22 & -8\end{array}\right]$ is singular?
(b) Why does this tell you that 4 is an eigenvalue of $A=\left[\begin{array}{rrrr}7 & 1 & 33 & 8 \\ 9 & 2 & 99 & 1 \\ -7 & 5 & -73 & 11 \\ 2 & 1 & 22 & -4\end{array}\right]$?
(c) Use this to find an eigenvector of A with eigenvalue 4. Then find a unit eigenvector of A with eigenvalue 4.
(5) (a) What are the eigenvalues of $A=\left[\begin{array}{rr}3 & 2 \\ 3 & -2\end{array}\right]$?
(b) Find an eigenvector for each eigenvalue; describe the eigenspace for each eigenvalue.
(c) Use this information to diagonalize A.
(d) Repeat this for the matrix $M=\left[\begin{array}{rrr}3 & 2 & 0 \\ 3 & -2 & 0 \\ 0 & 0 & 4\end{array}\right]$.
(6) The matrix $A=\left[\begin{array}{rrr}1 & 0 & 3 \\ 0 & -2 & 0 \\ 3 & 0 & 1\end{array}\right]$ is symmetric. Find an orthonormal basis for \mathbb{R}^{3} consisting of eigenvectors of A. Use this to construct a diagonalization $A=Q \Lambda Q^{T}$.
(7) The Singular Value Decomposition of $A=\left[\begin{array}{rrrr}1 & 0 & -1 & -1 \\ 2 & -2 & 0 & 2\end{array}\right]$ is:

$$
\begin{aligned}
& A \quad U \quad \Sigma \quad V^{T} \\
& {\left[\begin{array}{rrrr}
1 & 0 & -1 & -1 \\
2 & -2 & 0 & 2
\end{array}\right]=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \quad\left[\begin{array}{rrrr}
2 \sqrt{3} & 0 & 0 & 0 \\
0 & \sqrt{3} & 0 & 0
\end{array}\right]\left[\begin{array}{rrrr}
1 / \sqrt{3} & -1 / \sqrt{3} & 0 & 1 / \sqrt{3} \\
1 / \sqrt{3} & 0 & -1 / \sqrt{3} & -1 / \sqrt{3} \\
1 / \sqrt{6} & 2 / \sqrt{6} & 0 & 1 / \sqrt{6} \\
1 / \sqrt{6} & 0 & 2 / \sqrt{6} & -1 / \sqrt{6}
\end{array}\right]}
\end{aligned}
$$

(a) What are the eigenvalues of $A^{T} A$? What are the eigenvalues of $A A^{T}$?
(b) What is the closest rank 1 approximation to A ?
(c) Using this SVD, give an orthonormal basis for the null space of A.
(d) What is the pseudoinverse A^{+}of A ?
(8) Let P_{2} be the vector space of polynomials of degree at most 2 . That is, $P_{2}=\left\{a x^{2}+b x+c \mid a, b, c \in \mathbb{R}\right\}$.
(a) Show that the transformation $T: P_{2} \rightarrow P_{2}$ that takes a polynomial $p(x)$ to the polynomial $p(x-1)$ is a linear transformation.
(b) Choose a basis for P_{2} and find the associated matrix of this linear transformation.

