Math 210 — Practice Test 2

- (1) Give an example three vectors in \mathbb{R}^3 for which no two are parallel and yet all three span a plane. Do they form a basis for that plane?
- (2) If $A\mathbf{x} = \mathbf{0}$ has just one solution, then what's the most you can say about the matrix A? What if A were a square matrix?
- (3) If the row vectors of an $n \times n$ matrix A are each perpendicular to a non-zero vector **v**, then A cannot be invertible. Why not?
- (4) Draw the Row Picture and Column Picture that illustrate the equation $\begin{bmatrix} 1 & 1 \\ -2 & 0 \end{bmatrix} \mathbf{x} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$ and its solution.
- (5) (a) Draw both the schematic and "literal" pictures of the four fundamental subspaces associated to the matrix $A = \begin{bmatrix} 1 & -2 \\ 2 & -4 \end{bmatrix}$.
 - (b) On the left side (the row picture) of both the schematic and literal pictures, what corresponds to the set of solutions to $A\mathbf{x} = \mathbf{0}$?
 - (c) Find the complete solution $\mathbf{x} = \mathbf{x}_{\mathbf{p}} + \mathbf{x}_{\mathbf{n}}$ to the equation $A\mathbf{x} = \mathbf{b}$ where $\mathbf{b} \begin{bmatrix} 5\\10 \end{bmatrix}$. Draw the set of solutions in the left side (the row picture) of the literal picture. Is this set of solutions a subspace?

(d) Repeat this problem using the matrix $A = \begin{bmatrix} 1 & -2 \\ 2 & 0 \end{bmatrix}$.

(6) (a) Project the vector
$$\mathbf{v} = \begin{bmatrix} 1\\ 2\\ -1 \end{bmatrix}$$
 into the line W spanned by $\mathbf{w} = \begin{bmatrix} 0\\ 3\\ 1 \end{bmatrix}$.

- (b) Determine the matrix P that projects vectors into W.
- (c) If a vector \mathbf{x} is in W^{\perp} , why must $P\mathbf{x} = \mathbf{0}$?
- (d) Use this to find a basis for W^{\perp} .

(7) (a) Find the complete solution
$$\mathbf{x} = \mathbf{x}_{\mathbf{p}} + \mathbf{x}_{\mathbf{n}}$$
 to the equation $A\mathbf{x} = \mathbf{b}$

where
$$A = \begin{bmatrix} 1 & -2 & 1 & 0 & -3 \\ 0 & 0 & 1 & 1 & 2 \\ 2 & 0 & 0 & 3 & -6 \\ 2 & -4 & 2 & 0 & -6 \end{bmatrix}$$
 and $\mathbf{b} \begin{bmatrix} -1 \\ 1 \\ 0 \\ -2 \end{bmatrix}$

- (b) Find bases for each C(A), $C(A^T)$, and N(A).
- (8) These questions are about the vector space **M** of 2×2 matrices (where the "vectors" are 2×2 matrices).
 - (a) Give a basis for this vector space **M** and explain why it is a basis.
 - (b) What is the dimension of **M**?
 - (c) Do the 2×2 matrices A such that $A^{T} = -A$ form a vector space? If so, give a basis and state its dimension. If not, give a reason why not.
 - (d) Do the invertible 2×2 matrices form a vector space? If so, give a basis and state its dimension. If not, give a reason why not.