Math 210 - Practice Test 2

(1) Give an example three vectors in \mathbb{R}^{3} for which no two are parallel and yet all three span a plane. Do they form a basis for that plane?
(2) If $A \mathbf{x}=\mathbf{0}$ has just one solution, then what's the most you can say about the matrix A ? What if A were a square matrix?
(3) If the row vectors of an $n \times n$ matrix A are each perpendicular to a non-zero vector \mathbf{v}, then A cannot be invertible. Why not?
(4) Draw the Row Picture and Column Picture that illustrate the equation $\left[\begin{array}{rr}1 & 1 \\ -2 & 0\end{array}\right] \mathbf{x}=\left[\begin{array}{l}3 \\ 2\end{array}\right]$ and its solution.
(5) (a) Draw both the schematic and "literal" pictures of the four fundamental subspaces associated to the matrix $A=\left[\begin{array}{ll}1 & -2 \\ 2 & -4\end{array}\right]$.
(b) On the left side (the row picture) of both the schematic and literal pictures, what corresponds to the set of solutions to $A \mathbf{x}=\mathbf{0}$?
(c) Find the complete solution $\mathbf{x}=\mathbf{x}_{\mathbf{p}}+\mathbf{x}_{\mathbf{n}}$ to the equation $A \mathbf{x}=\mathbf{b}$ where $\mathbf{b}\left[\begin{array}{r}5 \\ 10\end{array}\right]$. Draw the set of solutions in the left side (the row picture) of the literal picture. Is this set of solutions a subspace?
(d) Repeat this problem using the matrix $A=\left[\begin{array}{rr}1 & -2 \\ 2 & 0\end{array}\right]$.
(6) (a) Project the vector $\mathbf{v}=\left[\begin{array}{r}1 \\ 2 \\ -1\end{array}\right]$ into the line W spanned by $\mathbf{w}=\left[\begin{array}{l}0 \\ 3 \\ 1\end{array}\right]$.
(b) Determine the matrix P that projects vectors into W.
(c) If a vector \mathbf{x} is in W^{\perp}, why must $P \mathbf{x}=\mathbf{0}$?
(d) Use this to find a basis for W^{\perp}.
(7) (a) Find the complete solution $\mathbf{x}=\mathbf{x}_{\mathbf{p}}+\mathbf{x}_{\mathbf{n}}$ to the equation $A \mathbf{x}=\mathbf{b}$

$$
\text { where } A=\left[\begin{array}{rrrrr}
1 & -2 & 1 & 0 & -3 \\
0 & 0 & 1 & 1 & 2 \\
2 & 0 & 0 & 3 & -6 \\
2 & -4 & 2 & 0 & -6
\end{array}\right] \text { and } \mathbf{b}\left[\begin{array}{r}
-1 \\
1 \\
0 \\
-2
\end{array}\right] .
$$

(b) Find bases for each $C(A), C\left(A^{T}\right)$, and $N(A)$.
(8) These questions are about the vector space \mathbf{M} of 2×2 matrices (where the "vectors" are 2×2 matrices).
(a) Give a basis for this vector space \mathbf{M} and explain why it is a basis.
(b) What is the dimension of \mathbf{M} ?
(c) Do the 2×2 matrices A such that $A^{\mathrm{T}}=-A$ form a vector space? If so, give a basis and state its dimension. If not, give a reason why not.
(d) Do the invertible 2×2 matrices form a vector space? If so, give a basis and state its dimension. If not, give a reason why not.

