Math 210 - Practice Test 1

(1) Give an example of two square matrices A and B such that $(A B)^{2} \neq A^{2} B^{2}$.
(2) Find an example of two non-square matrices A and B such that $A B=I_{2 \times 2}$, the 2×2 identity matrix.
(3) For non-zero vectors \mathbf{u}, \mathbf{v}, and \mathbf{w} : If \mathbf{u} is perpendicular to both \mathbf{v} and \mathbf{w}, and \mathbf{v} is perpendicular to \mathbf{w}, then can \mathbf{u} be a linear combination of \mathbf{v} and \mathbf{w} ? Why or why not?
(4) If the row vectors of an $n \times n$ matrix A are each perpendicular to a non-zero vector \mathbf{v}, then A cannot be invertible. Why not?
(5) The column vectors $\mathbf{v}=\left[\begin{array}{r}1 \\ 2 \\ -1\end{array}\right]$ and $\mathbf{w}=\left[\begin{array}{l}0 \\ 3 \\ 1\end{array}\right]$ can also be viewed as 3×1 matrices.
(a) Check that their dot product can be viewed as a matrix multiplication: $\mathbf{v} \bullet \mathbf{w}=\mathbf{v}^{T} \mathbf{w}$. (Of course the left side is a number while the right side is a 1×1 matrix, so we're only slightly cheating.)
(b) Also calculate the matrices $\mathbf{v w}^{T}$ and $\mathbf{w} \mathbf{v}^{T}$. How are they related? Are they invertible?
(6) Draw the Row Picture and Column Picture that illustrate the equation $\left[\begin{array}{rr}1 & 1 \\ -2 & 0\end{array}\right] \mathbf{x}=\left[\begin{array}{l}3 \\ 2\end{array}\right]$ and its solution.
(7) (a) Use Elimination to make the matrix $A=\left[\begin{array}{rrr}0 & 1 & 2 \\ 3 & 2 & 4 \\ 6 & 0 & -3\end{array}\right]$ into an Upper Triangular matrix U. This can be done in three steps.
(b) Write out the corresponding elimination matrices M_{1}, M_{2}, M_{3} that cause this transformation: $M_{3} M_{2} M_{1} A=U$.
(c) Do a full Gauss-Jordan Elimination on A to obtain A^{-1}.
(d) What is the matrix $\left(A^{T}\right)^{-1}$?

