Definition of the Integers MTH230 Fall 2014. (based off notes of Armstrong)

Definition 1

 $\mathbb{Z} := \{\dots, -2, -1, 0, 1, 2, \dots\}$

Definition 2

Let \mathbbm{Z} be a set equipped with

• an **equivalence relation** "=" defined by

- (reflexive) $\forall a \in \mathbb{Z}, a = a$
- (symmetric) $\forall a, b \in \mathbb{Z}, a = b \implies b = a$
- (transitive) $\forall a, b, c \in \mathbb{Z}, (a = bANDb = c) \implies a = c$
- a total ordering " \leq " defined by
 - (antisymmetric) $\forall a, b \in \mathbb{Z}, (a \leq bANDb \leq a) \implies a = b$
 - (transitive) $\forall a, b, c \in \mathbb{Z}, (a \leq bANDb \leq c) \implies a \leq c$
 - $\text{(total)} \forall a, b \in \mathbb{Z}, a \leq bORb \leq a$
- and two binary operations (functions from $\mathbb{Z}^2 \to \mathbb{Z}$)
 - (addition) $\forall a, b \in \mathbb{Z}, \exists a + b \in \mathbb{Z}$
 - (multiplication) $\forall a, b \in \mathbb{Z}, \exists ab \in \mathbb{Z}$ (sometimes written $a \cdot b$)

which satisfy the following properties.

Axioms of Addition

- (A1) $\forall a, b \in \mathbb{Z}, a+b=b+a$
- (A2) $\forall a, b, c \in \mathbb{Z}, a + (b + c) = (a + b) + c$ (associative)
- (A3) $\exists 0 \in \mathbb{Z}, \forall a \in \mathbb{Z}, 0 + a = a$ (additive identity exists)
- (A4) $\forall a \in b, \exists b \in \mathbb{Z}, a+b=0$

(additive inverses exist)

(commutative)

These four axioms say that \mathbb{Z} with + is an *additive group*. There is a special element called 0 that is an "identity element" for addition. Every integer a has an "additive inverse" which we call -a.

Axioms of Multiplication

- (M1) $\forall a, b \in \mathbb{Z}, ab = ba$ (commutative)
- (M2) $\forall a, b, c \in \mathbb{Z}, a(bc) = (ab)c$ (associative)

(M3) $\exists 1 \in \mathbb{Z}, 1 \neq 0, \forall a \in \mathbb{Z}, 1a = a$ (multiplicative identity exists)

Note that elements of \mathbb{Z} do NOT have a "multiplicative inverse". So \mathbb{Z} with multiplication is not a group.

Axiom of Distribution

(D) $\forall a, b, c \in \mathbb{Z}, a(b+c) = ab + ab$

This shows how addition and multiplication interact.

Together, these eight axioms say that \mathbb{Z} with + and \cdot is a *(commutative) ring*. Now we describe how arithmetic and order interact.

Axioms of Order

(O1) $\forall a, b, c \in \mathbb{Z}, a \leq b \implies a + c \leq b + c$

- (O2) $\forall a, b, c \in \mathbb{Z}, (a \le bAND0 \le c) \implies ac \le bc$
- (O3) 0 < 1 (that is, $0 \le 1AND0 \ne 1$)

These first eleven properties say that \mathbb{Z} is an *ordered ring*.

However we have not yet defined \mathbb{Z} . There are other ordered rings; for example the real numbers \mathbb{R} .

We need one more subtle axiom to distinguish \mathbb{Z} . It is not obvious...

First, let $\mathbb{N} = \{a \in \mathbb{Z} : 1 \leq a\}$ denote the set of **natural numbers**.

The Well-Ordering Axiom

(WO) $\forall X \subset \mathbb{N}, X \neq \emptyset, \exists a \in X, \forall b \in X, a \leq b$

That is, "Every non-empty subset of \mathbb{N} has a smallest element."

This is also known as the **principle of induction**.

Definition 3

Condensed, most efficient definition of \mathbb{Z} due to Giuseppe Peano (1858-1932).

Peano's Axioms

Let \mathbb{N} be a set equipped with

- an equivalence relation "=" and
- a unary "successor" operator $S \colon \mathbb{N} \to \mathbb{N}$

satisfying:

(P4)

- (P1) $1 \in \mathbb{N}$
- (P2) $\forall n \in \mathbb{N}, S(n) \neq 1$
- (P3) $\forall m, n \in \mathbb{N}, S(m) = S(n) \implies m = n$ (S is an injective function)
- If a set $K \subset \mathbb{N}$ satisfies

then $K = \mathbb{N}$

- $1 \in K$ and
 - (The induction principle) $\forall n \in \mathbb{N}, n \in K \implies S(n) \in K,$

(an element called 1 is in \mathbb{N})

(1 is not the successor of any natural number)

Then with lots of work, one can use \mathbb{N} and S to define \mathbb{Z} with all the axioms from Definition 2.