Definition of the Integers
MTH230 Fall 2014.
(based off notes of Armstrong)

Definition 1
$\mathbb{Z}:=\{\ldots,-2,-1,0,1,2, \ldots\}$

Definition 2

Let \mathbb{Z} be a set equipped with

- an equivalence relation " $=$ " defined by
- (reflexive) $\forall a \in \mathbb{Z}, a=a$
- (symmetric) $\forall a, b \in \mathbb{Z}, a=b \Longrightarrow b=a$
- (transitive) $\forall a, b, c \in \mathbb{Z},(a=b A N D b=c) \Longrightarrow a=c$
- a total ordering " \leq " defined by
- (antisymmetric) $\forall a, b \in \mathbb{Z},(a \leq b A N D b \leq a) \Longrightarrow a=b$
- (transitive) $\forall a, b, c \in \mathbb{Z},(a \leq b A N D b \leq c) \Longrightarrow a \leq c$
- (total) $\forall a, b \in \mathbb{Z}, a \leq b O R b \leq a$
- and two binary operations (functions from $\mathbb{Z}^{2} \rightarrow \mathbb{Z}$)
- (addition) $\forall a, b \in \mathbb{Z}, \exists a+b \in \mathbb{Z}$
- (multiplication) $\forall a, b \in \mathbb{Z}, \exists a b \in \mathbb{Z}$ (sometimes written $a \cdot b$)
which satisfy the following properties.

Axioms of Addition

(A1) $\forall a, b \in \mathbb{Z}, a+b=b+a \quad$ (commutative)
(A2) $\forall a, b, c \in \mathbb{Z}, a+(b+c)=(a+b)+c \quad$ (associative)
(A3) $\exists 0 \in \mathbb{Z}, \forall a \in \mathbb{Z}, 0+a=a \quad$ (additive identity exists)
(A4) $\forall a \in b, \exists b \in \mathbb{Z}, a+b=0 \quad$ (additive inverses exist)
These four axioms say that \mathbb{Z} with + is an additive group. There is a special element called 0 that is an "identity element" for addition. Every integer a has an "additive inverse" which we call $-a$.

Axioms of Multiplication

(M1) $\forall a, b \in \mathbb{Z}, a b=b a \quad$ (commutative)
(M2) $\forall a, b, c \in \mathbb{Z}, a(b c)=(a b) c \quad$ (associative)
(M3) $\exists 1 \in \mathbb{Z}, 1 \neq 0, \forall a \in Z, 1 a=a \quad$ (multiplicative identity exists)
Note that elements of \mathbb{Z} do NOT have a "multiplicative inverse". So \mathbb{Z} with multiplication is not a group.

Axiom of Distribution

(D) $\forall a, b, c \in \mathbb{Z}, a(b+c)=a b+a b$

This shows how addition and multiplication interact.
Together, these eight axioms say that \mathbb{Z} with + and \cdot is a (commutative) ring.
Now we describe how arithmetic and order interact.

Axioms of Order

(O1) $\forall a, b, c \in \mathbb{Z}, a \leq b \Longrightarrow a+c \leq b+c$
(O2) $\forall a, b, c \in \mathbb{Z},(a \leq b A N D 0 \leq c) \Longrightarrow a c \leq b c$
(O3) $0<1$ (that is, $0 \leq 1 A N D 0 \neq 1$)

These first eleven properties say that \mathbb{Z} is an ordered ring.
However we have not yet defined \mathbb{Z}. There are other ordered rings; for example the real numbers \mathbb{R}.

We need one more subtle axiom to distinguish \mathbb{Z}. It is not obvious..
First, let $\mathbb{N}=\{a \in \mathbb{Z}: 1 \leq a\}$ denote the set of natural numbers.
The Well-Ordering Axiom
(WO) $\forall X \subset \mathbb{N}, X \neq \emptyset, \exists a \in X, \forall b \in X, a \leq b$
That is, "Every non-empty subset of \mathbb{N} has a smallest element."
This is also known as the principle of induction.
Definition 3
Condensed, most efficient definition of \mathbb{Z} due to Giuseppe Peano (1858-1932).
Peano's Axioms
Let \mathbb{N} be a set equipped with

- an equivalence relation "=" and
- a unary "successor" operator $S: \mathbb{N} \rightarrow \mathbb{N}$
satisfying:
(P1) $1 \in \mathbb{N} \quad$ (an element called 1 is in \mathbb{N})
(P2) $\forall n \in \mathbb{N}, S(n) \neq 1 \quad$ (1 is not the successor of any natural number)
(P3) $\forall m, n \in \mathbb{N}, S(m)=S(n) \Longrightarrow m=n \quad$ (S is an injective function)
If a set $K \subset \mathbb{N}$ satisfies
$1 \in K$ and
(P4)
$\forall n \in \mathbb{N}, n \in K \Longrightarrow S(n) \in K, \quad$ (The induction principle)
then $K=\mathbb{N}$
Then with lots of work, one can use \mathbb{N} and S to define \mathbb{Z} with all the axioms from Definition 2.

