for the swimmer's trajectory. The initial condition $y\left(-\frac{1}{2}\right)=0$ yields $C=1$, so

$$
y(x)=3 x-4 x^{3}+1
$$

Then

$$
y\left(\frac{1}{2}\right)=3\left(\frac{1}{2}\right)-4\left(\frac{1}{2}\right)^{3}+1=2
$$

so the swimmer drifts 2 miles downstream while he swims 1 mile across the river.

1.2 Problems

In Problems 1 through 10, find a function $y=f(x)$ satisfying the given differential equation and the prescribed initial condition.

1. $\frac{d y}{d x}=2 x+1 ; y(0)=3$
2. $\frac{d y}{d x}=(x-2)^{2} ; y(2)=1$
3. $\frac{d y}{d x}=\sqrt{x} ; y(4)=0$
4. $\frac{d y}{d x}=\frac{1}{x^{2}} ; y(1)=5$
5. $\frac{d y}{d x}=\frac{1}{\sqrt{x+2}} ; y(2)=-1$
6. $\frac{d y}{d x}=x \sqrt{x^{2}+9} ; y(-4)=0$
7. $\frac{d y}{d x}=\frac{10}{x^{2}+1} ; y(0)=0$
8. $\frac{d y}{d x}=\cos 2 x ; y(0)=1$
9. $\frac{d y}{d x}=\frac{1}{\sqrt{1-x^{2}}} ; y(0)=0$
10. $\frac{d y}{d x}=x e^{-x} ; y(0)=1$

In Problems 11 through 18, find the position function $x(t)$ of a moving particle with the given acceleration a (t), initial posiDive $x_{0}=x(0)$, and initial velocity $v_{0}=v(0)$.
11. $a(t)=50, v_{0}=10, x_{0}=20$
$12 a(t)=-20, v_{0}=-15, x_{0}=5$
13. $a(t)=3 t, v_{0}=5, x_{0}=0$
14. $a(t)=2 t+1, v_{0}=-7, x_{0}=4$

ㄷ. $a(t)=4(t+3)^{2}, v_{0}=-1, x_{0}=1$
17.i. $a(t)=\frac{1}{\sqrt{t+4}}, v_{0}=-1, x_{0}=1$

In. $a(t)=\frac{1}{(t+1)^{3}}, v_{0}=0, x_{0}=0$
D3. $a(t)=50 \sin 5 t, v_{0}=-10, x_{0}=8$
inin Poblems 19 through 22, a particle starts at the origin and innels along the x-axis with the velocity function $v(t)$ whose urupl is shown in Figs. 1.2.6 through 1.2.9. Sketch the graph IIllite resulting position function $x(t)$ for $0 \leqq t \leqq 10$.
19.

FIGURE 1.2.6. Graph of the velocity function $v(t)$ of Problem 19.
20.

FIGURE 1.2.7. Graph of the velocity function $v(t)$ of Problem 20.
21.

FIGURE 1.2.8. Graph of the velocity function $v(t)$ of Problem 21.
22.

FIGURE 1.2.9. Graph of the velocity function $v(t)$ of Problem 22.
23. What is the maximnm height attained by the arrow of part (b) of Example 3?
24. A ball is dropped from the top of a building 400 ft high. How long does it take to reach the ground? With what speed does the ball strike the ground?
25. The brakes of a car are applied when it is moving at 100 km / h and provide a constant deceleration of 10 meters per second per second $\left(\mathrm{m} / \mathrm{s}^{2}\right)$. How far does the car travel before coming to a stop?
26. A projectile is fired straight upward with an initial velocity of $100 \mathrm{~m} / \mathrm{s}$ from the top of a building 20 m high and falls to the ground at the base of the building. Find (a) its maximum height above the ground; (b) when it passes the top of the building; (c) its total time in the air.
27. A ball is thrown straight downward from the top of a tall building. The initial speed of the ball is $10 \mathrm{~m} / \mathrm{s}$. It strikes the ground with a speed of $60 \mathrm{~m} / \mathrm{s}$. How tall is the building?
28. A baseball is thrown straight downward with an initial speed of $40 \mathrm{ft} / \mathrm{s}$ from the top of the Washington Monument (555 ft high). How long does it take to reach the ground, and with what speed does the baseball strike the ground?
29. A diesel car gradually speeds $n p$ so that for the first 10 s its acceleration is given by

$$
\frac{d v}{d t}=(0.12) t^{2}+(0.6) t \quad\left(\mathrm{ft} / \mathrm{s}^{2}\right) .
$$

If the car starts from rest ($x_{0}=0, v_{0}=0$), find the distance it has traveled at the end of the first 10 s and its velocity at that time.
30. A car traveling at $60 \mathrm{mi} / \mathrm{h}(88 \mathrm{ft} / \mathrm{s})$ skids 176 ft after its brakes are suddenly applied. Under the assumption that the braking system provides constant deceleration, what is that deceleration? For how long does the skid continue?
31. The skid marks made by an automobile indicated that its brakes were fully applied for a distance of 75 m before it came to a stop. The car in question is known to have a constant deceleration of $20 \mathrm{~m} / \mathrm{s}^{2}$ under these conditions. How fast-in km / h-was the car traveling when the brakes were first applied?
32. Suppose that a car skids 15 m if it is moving at $50 \mathrm{~km} / \mathrm{h}$ when the brakes are applied. Assnming that the car has the same constant deceleration, how far will it skid if it is moving at $100 \mathrm{~km} / \mathrm{h}$ when the brakes are applied?
33. On the planet Gzyx, a ball dropped from a height of 20 ft hits the ground in 2 s . If a ball is dropped from the top of a 200 -ft-tall building on Gzyx, how long will it take to hit the ground? With what speed will it hit?
34. A person can throw a ball straight upward from the surface of the earth to a maximum height of 144 ft . How high could this person throw the ball on the planet Gzyx of Problem 29?
35. A stone is dropped from rest at an initial height h above the surface of the earth. Show that the speed with which it strikes the ground is $v=\sqrt{2 g h}$.
36. Snppose a woman has enough "spring" in her legs to jump (on earth) from the ground to a height of 2.25 feet. If she jumps straight upward with the same initial velocity on the moon-where the surface gravitational acceleration is (approximately) $5.3 \mathrm{ft} / \mathrm{s}^{2}$-how high above the surface will she rise?
37. At noon a car starts from rest at point A and proceeds at constant acceleration along a straight road toward point B. If the car reaches B at 12:50 P.M.with a velocity of $60 \mathrm{mi} / \mathrm{h}$, what is the distance from A to B ?
38. At noon a car starts from rest at point A and proceeds with constant acceleration along a straight road toward point C, 35 miles away. If the constantly accelerated car arrives at C with a velocity of $60 \mathrm{mi} / \mathrm{h}$, at what time does it arrive at C ?
39. If $a=0.5 \mathrm{mi}$ and $v_{0}=9 \mathrm{mi} / \mathrm{h}$ as in Example 4, what must the swimmer's speed v_{S} be in order that he drifts only 1 mile downstream as he crosses the river?
40. Suppose that $a=0.5 \mathrm{mi}, v_{0}=9 \mathrm{mi} / \mathrm{h}$, and $v_{S}=3 \mathrm{mi} / \mathrm{h}$ as in Example 4, but that the velocity of the river is given by the fourth-degree function

$$
v_{R}=v_{0}\left(1-\frac{x^{4}}{a^{4}}\right)
$$

rather than the quadratic function in Eq. (18). Now find how far downstream the swimmer drifts as he crosses the river.
41. A bomb is dropped from a helicopter hovering at an altitade of 800 feet above the ground. From the ground directly beneath the helicopter, a projectile is fired straight upward toward the bomb, exactly 2 seconds after the bomb is released. With what initial velocity shonld the projectile be fired, in order to hit the bomb at an altitude of exactly 400 feet?
42. A spacecraft is in free fall toward the surface of the moon at a speed of $1000 \mathrm{mph}(\mathrm{mi} / \mathrm{h})$. Its retrorockets, when fired, provide a constant deceleration of $20,000 \mathrm{mi} / \mathrm{h}^{2}$. At what height above the lunar surface should the astronauts fire the retrorockets to insnre a soft touchdown? (As in Example 2, ignore the moon's gravitational field.)

1.3 Problems

Poblems 1 through 10, we have provided the slope field of indicated differential equation, together with one or more wion curves. Sketch likely solution curves through the adtisiomal points marked in each slope field.

1. $\frac{d y}{d x}=-y-\sin x$

FIGURE 1.3.15.
$2 \frac{d y}{d x}=x+y$

TVGURE 1.3.16.
31. $\frac{d y}{d x}=y-\sin x$

FIGURE 1.3.17.
4. $\frac{d y}{d x}=x-y$

FIGURE 1.3.18.
5. $\frac{d y}{d x}=y-x+1$

FIGURE 1.3.19.
6. $\frac{d y}{d x}=x-y+1$

FIGURE 1.3.20.
7. $\frac{d y}{d x}=\sin x+\sin y$

FIGURE 1.3.21.
8. $\frac{d y}{d x}=x^{2}-y$

FIGURE 1.3.22.
9. $\frac{d y}{d x}=x^{2}-y-2$

FIGURE 1.3.23.
10. $\frac{d y}{d x}=-x^{2}+\sin y$

FIGURE 1.3.24.

In Problems 11 through 20, determine whether Theorem I does or does not guarantee existence of a solution of the given initial value problem. If existence is guaranteed, determine whether Theorem I does or does not guarantee uniqueness of that solution.
11. $\frac{d y}{d x}=2 x^{2} y^{2} ; \quad y(1)=-1$
12. $\frac{d y}{d x}=x \ln y ; \quad y(1)=1$
13. $\frac{d y}{d x}=\sqrt[3]{y} ; \quad y(0)=1$
14. $\frac{d y}{d x}=\sqrt[3]{y} ; \quad y(0)=0$
15. $\frac{d y}{d x}=\sqrt{x-y} ; \quad y(2)=2$
16. $\frac{d y}{d x}=\sqrt{x-y} ; \quad y(2)=1$
17. $y \frac{d y}{d x}=x-1 ; \quad y(0)=1$
18. $y \frac{d y}{d x}=x-1 ; \quad y(1)=0$
19. $\frac{d y}{d x}=\ln \left(1+y^{2}\right) ; \quad y(0)=0$
20. $\frac{d y}{d x}=x^{2}-y^{2} ; \quad y(0)=1$

In Problems 21 and 22, first use the method of Example 2 to construct a slope field for the given differential equation. Then sketch the solution curve corresponding to the given initial condition. Finally, use this solution curve to estimate the desired value of the solution $y(x)$.
21. $y^{\prime}=x+y, \quad y(0)=0 ; \quad y(-4)=$?
22. $y^{\prime}=y-x, \quad y(4)=0 ; \quad y(-4)=$?

Problems 23 and 24 are like Problems 21 and 22, but now use a computer algebra system to plot and print out a slope field for the given differential equation. If you wish (and know how), you can check your manually sketched solution curve by plotting it with the computer.
23. $y^{\prime}=x^{2}+y^{2}-1, \quad y(0)=0 ; \quad y(2)=$?
24. $y^{\prime}=x+\frac{1}{2} y^{2}, \quad y(-2)=0 ; \quad y(2)=$?
25. You bail out of the helicopter of Example 3 and pull the ripcord of your parachute. Now $k=1.6$ in Eq. (3), so your downward velocity satisfies the initial value problem

$$
\frac{d v}{d t}=32-1.6 v, \quad v(0)=0 .
$$

In order to investigate your chances of snrvival, construct a slope field for this differential equation and sketch the appropriate solution curve. What will yonr limiting velocity be? Will a strategically located haystack do any good? How long will it take yon to reach 95% of your limiting velocity?
26. Suppose the deer population $P(t)$ in a small forest satisfies the logistic equation

$$
\frac{d P}{d t}=0.0225 P-0.0003 P^{2}
$$

Construct a slope field and appropriate solution curve to answer the following qnestions: If there are 25 deer at time $t=0$ and t is measured in months, how long will it take the number of deer to double? What will be the limiting deer population?

The next seven problems illustrate the fact that, if the hypotheses of Theorem 1 are not satisfied, then the initial value probLem $y^{\prime}=f(x, y), y(a)=b$ may have either no solutions, fritely many solutions, or infinitely many solutions.
27. (a) Verify that if c is a constant, then the fanction defined piecewise by

$$
y(x)= \begin{cases}0 & \text { for } x \leqq c \\ (x-c)^{2} & \text { for } x>c\end{cases}
$$

satisfies the differential equation $y^{\prime}=2 \sqrt{y}$ for all x (including the point $x=c$). Construct a figure illustrating the fact that the initial value problem $y^{\prime}=2 \sqrt{y}, y(0)=0$ has infinitely many different solutions. (b) For what values of b does the initial value problem $y^{\prime}=2 \sqrt{y}, y(0)=b$ have (i) no solntion, (ii) a unique solution that is defined for all x ?
22. Verify that if k is a constant, then the function $y(x) \equiv k x$ satisfies the differential equation $x y^{\prime}=y$ for all x. Construct a slope field and several of these straight line solution curves. Then determine (in terms of a and b) how many different solutions the initial value problem $x y^{\prime}=y$, $y(a)=b$ has-one, none, or infinitely many.
29. Verify that if c is a constant, then the function defined piecewise by

$$
y(x)= \begin{cases}0 & \text { for } x \leqq c \\ (x-c)^{3} & \text { for } x>c\end{cases}
$$

satisfies the differential eqnation $y^{\prime}=3 y^{2 / 3}$ for all x. Can you also use the "left half" of the cubic $y=(x-c)^{3}$ in piecing together a solution curve of the differential equation? (See Fig. 1.3.25.) Sketch a variety of such solution curves. Is there a point (a, b) of the $x y$-plane such that the initial value problem $y^{\prime}=3 y^{2 / 3}, y(a)=b$ has either no solution or a unique solution that is defined for all x ? Reconcile your answer with Theorem 1.

FIGURE 1.3.25. A suggestion for Problem 29.
30. Verify that if c is a constant, then the function defined piecewise by

$$
y(x)= \begin{cases}+1 & \text { if } x \leqq c \\ \cos (x-c) & \text { if } c<x<c+\pi \\ -1 & \text { if } x \geqq c+\pi\end{cases}
$$

satisfies the differential equation $y^{\prime}=-\sqrt{1-y^{2}}$ for all x. (Perhaps a preliminary sketch with $c=0$ will be helpful.) Sketch a variety of such solution curves. Then determine (in terms of a and b) how many different solntions the initial value problem $y^{\prime}=-\sqrt{1-y^{2}}, y(a)=b$ has.
31. Carry out an investigation similar to that in Problem 30 , except with the differential equation $y^{\prime}=+\sqrt{1-y^{2}}$. Does it suffice simply to replace $\cos (x-c)$ with $\sin (x-c)$ in piecing together a solution that is defined for all x ?
32. Verify that if $c>0$, then the function defined piecewise by

$$
y(x)= \begin{cases}0 & \text { if } x^{2} \leqq c \\ \left(x^{2}-c\right)^{2} & \text { if } x^{2}>c\end{cases}
$$

satisfies the differential equation $y^{\prime}=4 x \sqrt{y}$ for all x. Sketch a variety of such solution curves for different values of c. Then determine (in terms of a and b) how many different solutions the initial value problem $y^{\prime}=4 x \sqrt{y}$, $y(a)=b$ has.

What general solutions (implicit if necessary, explicit if conveof the differential equations in Problems 1 through 18. nos denote derivatives with respect to x.
$1 \frac{d y}{d x}+2 x y=0$
$\frac{d y}{d x}=y \sin x$
$=-\sqrt{x} \frac{d y}{d x}=\sqrt{1-y^{2}}$
$m \frac{d y}{A x}=(64 x y)^{1 / 3}$
$\left.-x^{2}\right) \frac{d y}{d x}=2 y$
$=x y^{3}$
$\frac{d r}{d x}=\left(y^{4}+1\right) \cos x$
$\frac{E x}{Z}=\frac{(x-1) y^{5}}{x^{2}\left(2 y^{3}-y\right)}$
2. $\frac{d y}{d x}+2 x y^{2}=0$
4. $(1+x) \frac{d y}{d x}=4 y$
6. $\frac{d y}{d x}=3 \sqrt{x y}$
8. $\frac{d y}{d x}=2 x \sec y$
10. $(1+x)^{2} \frac{d y}{d x}=(1+y)^{2}$
12. $y y^{\prime}=x\left(y^{2}+1\right)$
14. $\frac{d y}{d x}=\frac{1+\sqrt{x}}{1+\sqrt{y}}$
16. $\left(x^{2}+1\right)(\tan y) y^{\prime}=x$
$=1+x+y+x y$ (Suggestion: Factor the right-hand

$$
=1-x^{2}+y^{2}-x^{2} y^{2}
$$

mannericit particular solutions of the initial value problems Mhtrmeers 19 through 28.
$=7 e^{r}, \quad y(0)=2 e$
$=3 x^{2}\left(y^{2}+1\right), \quad y(0)=1$
$\frac{d x}{a x}=\frac{x}{\sqrt{x^{2}-16}}, \quad y(5)=2$
$\square=-x^{3} y-y, \quad y(1)=-3$
$-1=2 y, \quad y(1)=1$
$\frac{d y}{d r}=y, \quad y\left(\frac{1}{2} \pi\right)=\frac{1}{2} \pi$
(ivx $-7=2 x^{2} y, \quad y(1)=1$
$=2 r y^{2}+3 x^{2} y^{2}, \quad y(1)=-1$
$=6 e^{2 r-y}$,

$$
y(0)=0
$$

$\frac{A}{A r}=\cos ^{2} y, \quad y(4)=\pi / 4$
ilinu Find a general solution of the differential equation
(b) Find a singular solution that is not in$=y^{2}$. (b) Find a singular solution that is not in-
(c) Inspect a sketch of in the general solution. (c) unamil solution curves to determine the points (a, b) for Wilumith the initial value problem $y^{\prime}=y^{2}, y(a)=b$ has a мйune solution.
30. Solve the differential equation $(d y / d x)^{2}=4 y$ to verify the general solution curves and singular solution curve that are illustrated in Fig. 1.4.5. Then determine the points (a, b) in the plane for which the initial value problem $\left(y^{\prime}\right)^{2}=4 y, y(a)=b$ has (a) no solution, (b) infinitely many solutions that are defined for all x, (c) on some neighborhood of the point $x=a$, only finitely many solntions.
31. Discuss the difference between the differential equations $(d y / d x)^{2}=4 y$ and $d y / d x=2 \sqrt{y}$. Do they have the same solution curves? Why or why not? Determine the points (a, b) in the plane for which the initial value problem $y^{\prime}=2 \sqrt{y}, y(a)=b$ has (a) no solution, (b) a unique solution, (c) infinitely many solutions.
32. Find a general solution and any singular solutions of the differential equation dymyslashdx $=y \sqrt{y^{2}-1}$. Determine the points (a, b) in the plane for which the initial value problem $y^{\prime}=y \sqrt{y^{2}-1}, y(a)=b$ has (a) no solution, (b) a unique solution, (c) infinitely many solutions.
33. (Population growth) A certain city had a population of 25000 in 1960 and a population of 30000 in 1970. Assume that its population will continue to grow exponentially at a constant rate. What population can its city planners expect in the year 2000?
34. (Population growth) In a certain culture of bacteria, the number of bacteria increased sixfold in 10 h . How long did it take for the population to double?
35. (Radiocarbon dating) Carbon extracted from an ancient skull contained only one-sixth as much ${ }^{14} \mathrm{C}$ as carbon extracted from present-day bone. How old is the skull?
36. (Radiocarbon dating) Carbon taken from a purported relic of the time of Christ contained 4.6×10^{10} atoms of ${ }^{14} \mathrm{C}$ per gram. Carbon extracted from a present-day specimen of the same substance contained 5.0×10^{10} atoms of ${ }^{14} \mathrm{C}$ per gram. Compute the approximate age of the relic. What is your opinion as to its anthenticity?
37. (Continuonsly compounded interest) Upon the birth of their first child, a couple deposited $\$ 5000$ in an account that pays 8% interest compounded continuously. The interest payments are allowed to accumulate. How much will the account contain on the child's eighteenth birthday?
38. (Continuously compounded interest) Suppose that you discover in your attic an overdue library book on which your grandfather owed a fine of 30 cents 100 years ago. If an overdue fine grows exponentially at a 5% annual rate compounded continuously, how mnch would you have to pay if you returned the book today?
39. (Drug elimination) Suppose that sodium pentobarbital is used to anesthetize a dog. The dog is anesthetized when its bloodstream contains at least 45 milligrams (mg) of sodium pentobarbitol per kilogram of the dog's body
weight. Suppose also that sodium pentobarhitol is eliminated exponentially from the dog's bloodstream, with a half-life of 5 h . What single dose should be administered in order to anesthetize a $50-\mathrm{kg} \operatorname{dog}$ for 1 h ?
40. The half-life of radioactive cobalt is 5.27 years. Suppose that a nuclear accident has left the level of cobalt radiation in a certain region at 100 times the level acceptable for human habitation. How long will it be until the region is again habitable? (Ignore the probable presence of other radioactive isotopes.)
41. Suppose that a mineral body formed in an ancient cataclysm-perhaps the formation of the earth itselforiginally contained the uranium isotope ${ }^{238} \mathrm{U}$ (which has a half-life of 4.51×10^{9} years) but no lead, the end product of the radioactive decay of ${ }^{238} \mathrm{U}$. If today the ratio of ${ }^{238} \mathrm{U}$ atoms to lead atoms in the mineral body is 0.9 , when did the cataclysm occur?
42. A certain moon rock was found to contain equal uumbers of potassium and argon atoms. Assume that all the argon is the result of radioactive decay of potassium (its half-life is about 1.28×10^{9} years) and that one of every nine potassium atom disintegrations yields an argon atom. What is the age of the rock, measured from the time it contained only potassium?
43. A pitcher of buttermilk initially at $25^{\circ} \mathrm{C}$ is to be cooled by setting it on the front porch, where the temperature is $0^{\circ} \mathrm{C}$. Suppose that the temperature of the buttermilk has dropped to $15^{\circ} \mathrm{C}$ after 20 min . When will it be at $5^{\circ} \mathrm{C}$?
44. When sugar is dissolved in water, the amount A that remains undissolved after t minutes satisfies the differential equation $d A / d t=-k A(k>0)$. If 25% of the sugar dissolves after 1 min , how long does it take for half of the sugar to dissolve?
45. The intensity I of light at a depth of x meters below the surface of a lake satisfies the differential equation $d I / d x=(-1.4) I$. (a) At what depth is the intensity half the intensity I_{0} at the surface (where $x=0$)? (b) What is the intensity at a depth of 10 m (as a fraction of I_{0})? (c) At what depth will the intensity be 1% of that at the surface?
46. The barometric pressure p (in inches of mercury) at an altitude x miles above sea level satisfies the initial value problem $d p / d x=(-0.2) p, p(0)=29.92$. (a) Calculate the barometric pressure at $10,000 \mathrm{ft}$ and again at 30,000 ft . (b) Without prior conditioning, few people can survive when the pressure drops to less than 15 in . of mercury. How high is that?
47. A certain piece of dubious information about phenylethylamine in the drinking water began to spread one day in a city with a population of 100,000 . Within a week, 10,000 people had heard this rumor. Assume that the rate of increase of the number who have heard the rurnor is proportional to the number who have not yet heard it. How long will it be until half the population of the city has heard the rumor?
48. According to one cosmological theory, there were equal amounts of the two uranium isotopes ${ }^{235} \mathrm{U}$ and ${ }^{238} \mathrm{U}$ at the creation of the universe in the "big bang." At present there are 137.7 atoms of ${ }^{238} \mathrm{U}$ for each atom of ${ }^{235} \mathrm{U}$. Using the half-lives 4.51×10^{9} years for ${ }^{238} \mathrm{U}$ and 7.10×10^{8} years for ${ }^{235} \mathrm{U}$, calculate the age of the universe.
49. A cake is removed from an oven at $210^{\circ} \mathrm{F}$ and left to cool at room temperature, which is $70^{\circ} \mathrm{F}$. After 30 min the temperature of the cake is $140^{\circ} \mathrm{F}$. When will it be $100^{\circ} \mathrm{F}$?
50. The amount $A(t)$ of atmospheric pollutants in a certain mountain valley grows naturally and is tripling every 7.5 years.
(a) If the initial amount is 10 pu (pollutant units), write a formula for $A(t)$ giving the amount (in pu) present after t years.
(b) What will be the amount (in pu) of pollutants present in the valley atmosphere after 5 years?
(c) If it will be dangerous to stay in the valley when the amount of pollutants reaches 100 pu , how long will this take?
51. An accident at a nuclear power plant has left the surrounding area polluted with radioactive material that decays naturally. The initial amount of radioactive material present is 15 su (safe units), and 5 months later it is still 10 su .
(a) Write a formula giving the amount $A(t)$ of radioactive material (in su) remaining after t months.
(b) What amount of radioactive material will remain after 8 months?
(c) How long-total number of months or fraction thereof-will it be until $A=1 \mathrm{su}$, so it is safe for people to return to the area?
52. There are now about 3300 different human "language families" in the whole world. Assume that all these are derived from a single original language, and that a language family develops into 1.5 language families every 6 thousand years. About how long ago was the single original human language spoken?
53. Thousands of years ago aucestors of the Native Americans crossed the Bering Strait from Asia and entered the western hemisphere. Siuce then, they have fanned out across North and South America. The single language that the original Native Americans spoke has since split into many Indian "language families." Assume (as in Problem 52) that the number of these language families has been multiplied by 1.5 every 6000 years. There are now 150 Native American language families in the westem hemisphere. About when did the ancestors of today's Native Americans arrive?
54. A tank is shaped like a vertical cylinder; it initially contains water to a depth of 9 ft , and a bottom plug is removed at time $t=0$ (hours). After 1 h the depth of the water has dropped to 4 ft . How long does it take for all the water to drain from the tank?
55. Suppose that the tank of Problem 48 has a radius of 3 ft and that its bottom hole is circular with radius 1 in . How
long will it take the water (initially 9 ft deep) to drain completely?
5. At time $t=0$ the bottom plug (at the vertex) of a full conical water tank 16 ft high is removed. After 1 h the water in the tank is 9 ft deep. When will the tank be empty?
57. Suppose that a cylindrical tank initially containing V_{0} gallons of water drains (through a bottom hole) in T minutes. Use Torricelli's law to show that the volume of water in the tank after $t \leqq T$ minutes is $V=V_{0}[1-(t / T)]^{2}$.

3i. A water tank has the shape obtained by revolving the curve $y=x^{4 / 3}$ around the y-axis. A plug at the bottom is removed at 12 noon, when the depth of water in the tank is 12 ft . At 1 P.M. the depth of the water is 6 ft . When will the tank be empty?
23. A water tank has the shape obtained by revolving the parabola $x^{2}=b y$ around the y-axis. The water depth is 4 ft at 12 noon, when a circular plug in the botton of the tank is removed. At 1 P.M. the depth of the water is 1 ft . (a) Find the depth $y(t)$ of water remaining after t hours. (b) When will the tank he empty? (c) If the initial radius of the top surface of the water is 2 ft , what is the radius of the circular hole in the bottom?
inil. A cylindrical tank with length 5 ft and radius 3 ft is siteated with its axis horizontal. If a circular bottom hole with a radius of 1 in . is opened and the tank is initially balf full of xylene, how long will it take for the liquid to drain completely?

IIL A spherical tank of radius 4 ft is full of gasoline when a fircular bottom hole with radius 1 in. is opened. How long will be required for all the gasoline to drain from the tank?
(iit. S-ppose that an initially full hemispherical water tank of radius 1 m has its flat side as its bottom. It has a bottom bole of radius 1 cm . If this bottom hole is opened at 1 P.M., when will the tank be empty?
nith Consider the initially full hemispherical water tank of Exarple 8 , except that the radius r of its circular bottom hole is now unknown. At 1 P.M. the bottom bole is opened and II 1:30 P.M. the depth of water in the tank is 2 ft . (a) Use Toricelli's law in the form $d V / d t=-(0.6) \pi r^{2} \sqrt{2 g y}$ aking constriction into account) to deternnine when the ork will be empty. (b) What is the radius of the bottom thole?

The clepsydra, or water clock) A 12-h water clock is to te designed with the dimensions shown in Fig. 1.4.10, tuped like the surface obtained by revolving the curve $=f(x)$ around the y-axis. What should be this curve, nad what should be the radius of the circular bottom hole, norder that the water level will fall at the constant rate of - inches per hour (in./h)?

FIGURE 1.4.10. The clepsydra.
65. Just before midday the body of an apparent homicide victim is found in a room that is kept at a constant temperature of $70^{\circ} \mathrm{F}$. At 12 noon the temperature of the body is $80^{\circ} \mathrm{F}$ and at $1 \mathrm{P} . \mathrm{M}$. it is $75^{\circ} \mathrm{F}$. Assume that the temperature of the body at the time of death was $98.6^{\circ} \mathrm{F}$ and that it has cooled in accord with Newton's law. What was the time of death?
66. Early one morning it began to snow at a constant rate. At 7 A.M. a snowplow set off to clear a road. By 8 A.M. it had traveled 2 miles, but it took two more hours (until 10 A.M.) for the snowplow to go an additional 2 miles. (a) Let $t=0$ when it began to snow and let x denote the distance traveled by the snowplow at time t. Assuming that the snowplow clears snow from the road at a constant rate (in cubic feet per hour, say), show that

$$
k \frac{d x}{d t}=\frac{1}{t}
$$

where k is a constant. (b) What time did it start snowing? (Answer: 6 A.M.)
67. A snowplow sets off at 7 A.M. as in Problem 66. Suppose now that by 8 A.M. it had traveled 4 miles and that by 9 A.M. it had moved an additional 3 miles. What time did it start snowing? This is a more difficult snowplow problem because now a transcendental equation must be solved numerically to find the value of k. (Answer: $4: 27 \mathrm{~A} . \mathrm{M}$.)
68. Figure 1.4 .11 shows a bead sliding down a frictionless wire from point P to point Q. The brachistochrone problem asks what shape the wire should be in order to minimize the bead's time of descent from P to Q. In June of 1696 , John Bernoulli proposed this problem as a public challenge, with a 5 -month deadline (later extended to Easter 1697 at George Leibniz's request). Isaac Newton, then retired from academic life and serving as Warden of the Mint in London, received Bernoulli's challenge on January 29, 1697. The very next day he communicated his own solution-the curve of minimal descent time is an

