Practice Problems for Final

- (A) Review previous Practice Problems.
- (B) Additional Problems From the Book:
 - p757 Concept Check 7, 8, 9
 - p758–759 Exercises 7, 8, 12, 23–27, 29-34, 42–47, 49, 13–17, 21, 22
 - p836 Concept Check 1-16 (could skip 3c)
 - p837 1-14, 16, 17, 25, 26, 27, 29, 37, 38

Extras:

- (1) Find both (a) a normal vector and (b) an equation for the plane tangent to the surface that is the graph of the function $f(x,y) = 3x^2 - y^2 + 2x$ at the point (1, -2, f(1, -2)).
- (2) The position of a particle over time t is given by the vector function $\mathbf{r}(t) = \langle t^2 1, t^2 + 1, t^3 \rangle$. Find its (i) velocity, (ii) speed, and (iii) direction (i.e. the unit tangent vector \mathbf{T}) as functions of time t. (iv) Give an equation for the line tangent to the curve $\mathbf{r}(t)$ at time t = 1.
- (3) Evaluate the integral $\int_{-3}^{3} \int_{0}^{\sqrt{9-x^2}} \int_{0}^{9-x^2-y^2} \sqrt{x^2+y^2} \, dz \, dy \, dx$ by changing to cylindrical coordinates.

- (4) Let S be the solid bounded by the parabolic cylinder $x = y^2$ and the planes x = z, z = 0, and x = 1.
 - (a) Find the volume of S.
 - (b) Find the x-coordinate of the centroid of S.
- (5) Set up an iterated integral to calculate the volume of the solid in region $x \ge 0$, $y \ge 0$, and z > 0 beneath the cone $z = \sqrt{x^2 + y^2}$ and within the sphere $x^2 + y^2 + z^2 = 9$ using spherical coordinates.
- (6) (\ddagger See edit \ddagger) Let's generalize the volume of the sphere of radius *a*.
 - (a) Use a double integral to calculate the Area of the circle $x^2 + y^2 = a^2$.
 - (b) Use a triple integral to calculate the Volume of the sphere $x^2 + y^2 + z^2 = a^2$.
 - (c) Use a quadruple integral to calculate the "HyperVolume" of the "hypersphere" $x^2 + x^2$ $y^2 + z^2 + w^2 = a^2$.
 - (d) Find a formula for the "*n*-volume" of the *n*-Sphere $x_1^2 + x_2^2 + \cdots + x_n^2 = a^2$? (No, this won't be on the final.)

Edit: Polar and Spherical coordinates make (a) and (b) simple. Using Euclidean coordinates requires $\int 2\sqrt{a^2 - u^2} \, du = u\sqrt{a^2 - u^2} + a^2 \arcsin(u/a) + C$

which you do not need to memorize for the exam. The generalizations (c) and (d) are more challenging.

- (7) Consider the vector field $\mathbf{F}(x, y, z) = \langle yz, xz, xy + z^2 \rangle$. Let C be the arc of the intersection of the plane x = y with the sphere $x^2 + y^2 + z^2 = 9$ from (0, 0, -3) to (0, 0, 3) that goes through the point $(3\sqrt{2}/2, 3\sqrt{2}/2, 0)$.
 - (a) Find a function f so that $\mathbf{F} = \nabla f$.
 - (b) Compute the work done by \mathbf{F} along C.
- (8) Evaluate the integral $\int_C (xe^z + ze^x) ds$ where C is the line segment from (0, 0, 0) to (3, 0, 3).
- (9) Use Green's Theorem to evaluate the line integral $\int_C (y+e^{\sqrt{x}})dx + (2x+\cos y^2)dy$ counterclockwise around the curve C that is the boundary of the region enclosed by the parabolas $y = x^2$ and $x = y^2$.
- (10) Use the Divergence Theorem to calculate the surface integral $\iint_{S} \mathbf{F} \cdot \mathbf{n} dS$ where $\mathbf{F}(x, y, z) =$ $\langle 3xy^2, xe^z, z^3 \rangle$ where S is the surface of the solid bounded by the cylinder $y^2 + z^2 = 1$ and the planes x = -1 and x = 2.