Practice Problems for Final

(A) Review previous Practice Problems.
(B) Additional Problems From the Book:

- p757 Concept Check 7, 8, 9
- p758-759 Exercises 7, 8, 12, 23-27, 29-34, 42-47, 49, 13-17, 21, 22
- p836 Concept Check 1-16 (could skip 3c)
- p837 1-14, 16, 17, 25, 26, 27, 29, 37, 38

Extras:

(1) Find both (a) a normal vector and (b) an equation for the plane tangent to the surface that is the graph of the function $f(x, y)=3 x^{2}-y^{2}+2 x$ at the point $(1,-2, f(1,-2))$.
(2) The position of a particle over time t is given by the vector function $\mathbf{r}(t)=\left\langle t^{2}-1, t^{2}+1, t^{3}\right\rangle$. Find its (i) velocity, (ii) speed, and (iii) direction (i.e. the unit tangent vector \mathbf{T}) as functions of time t. (iv) Give an equation for the line tangent to the curve $\mathbf{r}(t)$ at time $t=1$.
(3) Evaluate the integral $\int_{-3}^{3} \int_{0}^{\sqrt{9-x^{2}}} \int_{0}^{9-x^{2}-y^{2}} \sqrt{x^{2}+y^{2}} d z d y d x$ by changing to cylindrical coordinates.
(4) Let S be the solid bounded by the parabolic cylinder $x=y^{2}$ and the planes $x=z, z=0$, and $x=1$.
(a) Find the volume of S.
(b) Find the x-coordinate of the centroid of S.
(5) Set up an iterated integral to calculate the volume of the solid in region $x \geq 0, y \geq 0$, and $z \geq 0$ beneath the cone $z=\sqrt{x^{2}+y^{2}}$ and within the sphere $x^{2}+y^{2}+z^{2}=9$ using spherical coordinates.
(6) (\ddagger See edit \ddagger) Let’s generalize the volume of the sphere of radius a.
(a) Use a double integral to calculate the Area of the circle $x^{2}+y^{2}=a^{2}$.
(b) Use a triple integral to calculate the Volume of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$.
(c) Use a quadruple integral to calculate the "HyperVolume" of the "hypersphere" $x^{2}+$ $y^{2}+z^{2}+w^{2}=a^{2}$.
(d) Find a formula for the " n-volume" of the n-Sphere $x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}=a^{2}$? (No, this won't be on the final.)
Edit: Polar and Spherical coordinates make (a) and (b) simple. Using Euclidean coordinates requires $\int 2 \sqrt{a^{2}-u^{2}} d u=u \sqrt{a^{2}-u^{2}}+a^{2} \arcsin (u / a)+C$
which you do not need to memorize for the exam. The generalizations (c) and (d) are more challenging.
(7) Consider the vector field $\mathbf{F}(x, y, z)=\left\langle y z, x z, x y+z^{2}\right\rangle$. Let C be the arc of the intersection of the plane $x=y$ with the sphere $x^{2}+y^{2}+z^{2}=9$ from $(0,0,-3)$ to $(0,0,3)$ that goes through the point $(3 \sqrt{2} / 2,3 \sqrt{2} / 2,0)$.
(a) Find a function f so that $\mathbf{F}=\nabla f$.
(b) Compute the work done by \mathbf{F} along C.
(8) Evaluate the integral $\int_{C}\left(x e^{z}+z e^{x}\right) d s$ where C is the line segment from $(0,0,0)$ to $(3,0,3)$.
(9) Use Green's Theorem to evaluate the line integral $\int_{C}\left(y+e^{\sqrt{x}}\right) d x+\left(2 x+\cos y^{2}\right) d y$ counterclockwise around the curve C that is the boundary of the region enclosed by the parabolas $y=x^{2}$ and $x=y^{2}$.
(10) Use the Divergence Theorem to calculate the surface integral $\iint_{S} \mathbf{F} \cdot \mathbf{n} d S$ where $\mathbf{F}(x, y, z)=$ $\left\langle 3 x y^{2}, x e^{z}, z^{3}\right\rangle$ where S is the surface of the solid bounded by the cylinder $y^{2}+z^{2}=1$ and the planes $x=-1$ and $x=2$.

