From the Book:

- p691 Concept Check 7, 12 - 16
- p692-693 Exercises $5,8,17,18,23,26,29,33,41,43-50$
- p757 Concept Check 3
- p758-759 Exercises 3-6, 9-11, 13-17, 21, 22

Extras:
(1) The equation $t=\ln (r+s t)$ implicitly defines t as a function of r and s. Find both $\partial t / \partial r$ and $\partial t / \partial s$.
(2) Let $f(x, y)=7-3 x^{2}-6 y^{2}$.
(a) Find the gradient of f at the point $(-1,1)$.
(b) For the level curve containing the point $(-1,1)$, find an equation for the tangent line to this level curve at the point $(-1,1)$.
(c) Sketch the level curve through the point $(-1,1)$, the tangent line at this point, and the gradient vector at this point.
(3) Consider the function $f(x, y)=e^{1-x}-2 x y^{3}$.
(a) Find the rate of change of f at $(1,2)$ in the direction of $\mathbf{v}=-3 \mathbf{i}+4 \mathbf{j}$.
(b) In what direction (unit vector) does f decrease at the maximum rate? What is this maximum rate of change?
(c) In what directions is the rate of change of f at $(1,2)$ equal to 0 ? Your answer should be a pair of opposite unit vectors.
(4) Suppose the gradient $\nabla f(2,4)$ of a function $f(x, y)$ has length equal to 5 . Is there a direction \mathbf{u} such that the directional derivative $D_{\mathbf{u}} f$ at the point $(2,4)$ is 7 ? Explain your answer.
(5) Find the tangent plane to the surface $x^{2}-4 y^{2}+9=z^{2}$ at the point $P=(2,1,3)$.
(6) Find the points on the surface $x^{2}+2 y^{2}-4 z^{2}+2 x y+8 x z=4$ where the tangent plane is parallel to the $x z$-plane.
(7) Find all the critical points of $f(x, y)=x^{3}+x y^{2} / 2+x^{2} y$ and apply the second derivative test to each of them.
(8) Find the absolute maximum and minimum values of the function $f(x, y)=(x-1)^{2}+(y-1)^{2}$ in the rectangular domain $D=\{(x, y): 0 \leq x \leq 1,0 \leq y \leq 2\}$. Justify your answer.
(9) Compute $\iint_{D}(3 x+1) d x d y$ where D is the region in the first quadrant bounded by the parabolas $y=x^{2}$ and $y=(x-1)^{2}$ and the y-axis.
(10) Change the order of integration in the following iterated integral:

$$
\int_{-2}^{2} \int_{0}^{\sqrt{4-y^{2}}} f(x, y) d x d y
$$

(11) (a) Find the area of the region enclosed by the cardioid given in polar coordinates by $r=1+\cos (\theta)$.
(b) Use polar coordinates to evaluate

$$
\int_{0}^{\sqrt{2}} \int_{y}^{\sqrt{4-y^{2}}} \frac{1}{1+x^{2}+y^{2}} d x d y
$$

(12) Find the centroid of a quarter of a unit disk.

