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_ CONTACT STRUCTURES

A contact structure £ on a 3—manifold Y

IS a nowhere integrable 2—plane field.

Locally, & =kera where a Ada > 0.

The standard contact structure on R? may be defined as

Ers = ker ags where ags = dz — ydz.

Locally, all contact structures are modeled on &gs.
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Locally, all contact structures are modeled
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FRONT DIAGRAMS

If £ is a Legendrian curve in (R?, &3s),

then ags evaluates to 0 on 7, L.

Hence at pointsof £: dz—ydx =0 ie. y=dz/dz

The y—coordinate of a point on L is
the slope of the tangency of 7,..(L)

at the image of that point.

Thus £ may be recovered from its projection r.,(L£) to the zz—plane.

Such an immersed curve is a front for the Legendrian link L.
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GRID DIAGRAMS TO FRONT DIAGRAMS
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GRIDS ON A PLANE; GRIDS ON A TORUS

Grids live naturally on the plane R?
—separates R? into half-spaces.




GRIDS ON A PLANE; GRIDS ON A TORUS

Grids live naturally on the torus R?/Z*
— separates S° into solid tori.

Grids live on a Heegaard torus!

Grid circles are meridians of Heegaard solid tori.
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Grid diagrams are naturally toroidal...




TOROIDAL GRID DIAGRAMS

.. and are nicely viewed in the prism model of S°.
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TOROIDAL GRID DIAGRAMS

Links in lens spaces have grid diagrams too.




TOROIDAL GRID DIAGRAMS

Links in lens spaces have grid diagrams too.

But what of contact structures?



STANDARD CONTACT STRUCTURE ON S°

View S° as the unit sphere in C?:
SS — {(Hl,’ﬂlg) S '[C-E — EC] X Cg: I’l'l'..‘11|2 + |Lt}g|2 — ].}

and each C; with polar coordinates u; = (r;, 6;).

The standard contact structure on S° is given by

fgz = kerags Wwhere ag: = T‘% df; + T% dbs
Thinking of S® as R® U {o0}, one may identify

the r; = 1 circle with the z—axis U{oo}

and the r, = 1 circle with the unit circle in the zy—plane.



LEGENDRIAN RADII

Radial arcs are Legendrian: ag:(9/0r;) =0

Cores of solid tori are transverse: ass:(0/906,) = 1forr; =1

&53(8/&92) = 1 for o =1




cag:a(c’i'/c’i'ﬂl) = 1 for ri=1
&5:5(8/892) = 1 for o =1

&53(8/8?"1) =0

Radial arcs are Legendrian
Cores of solid tori are transverse
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LEGENDRIAN RADII

Radial arcs are Legendrian: ag:(9/0r;) =0

Cores of solid tori are transverse: ag:(0/06,) = 1forr; =1
&53(8/592) = 1 for o =1

Unfold (S?, &) into prism model.




LEGENDRIAN RADII

Radial arcs are Legendrian: ag:(9/0r;) =0

Cores of solid tori are transverse: ag:(0/06,) = 1forr; =1
&53(8/592) = 1 for o =1

Unfold (S?, &) into prism model.

A grid diagram determines a union of Legendrian radii.
But only piecewise smooth!



SMOOTHING TWO LEGENDRIAN RADII

There is a natural way of smoothing the kink between two radii:

Twist (and lift) them around the center to meet along a diameter.
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THEOREM

A toroidal grid diagram uniquely determines a Legendrian link.



_ TOROIDAL FRONT DIAGRAMS
If £ is a Legendrian curve in (S°, &),
then ags evaluates to 0 on T;,.L.
Sincer?+ri=1, ag=r7df;+ (1—r71%)db:.

Hence at points of L, setting m = df; /d#b,
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The r;—coordinate of a point on L is
determined by the slope of the tangency of w4, (L)

at the image of that point.
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If £ is a Legendrian curve in (S°, &),
then ags evaluates to 0 on T;,.L.
Sincer?+ri=1, ag=r7df;+ (1—r71%)db:.

Hence at points of L, setting m = df; /d#b,

_rf
(r2-1)

=msothatr; = ,/-=.

The r;—coordinate of a point on L is
determined by the slope of the tangency of w4, (L)

at the image of that point.

Thus £ may be recovered from its projection my, 4, (L)
to the 6,6,—torus.

Such an immersed curve is a toroidal front for the Legendrian link L.
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UNIVERSALLY TIGHT CONTACT STRUCTURES ON LENS SPACES

For each coprime p > 0 and g,

there is a standard universally tight contact structure ¢,

on the lens space L(p, q).

Set w, = e+ and view L(p, q) as the quotient

L(p,q) = S°/(u1,u2) ~ (wpuir, wlus)

Then &,, = (7,4)«(&s3) where 7, ,: S* — L(p, q) is the covering map.

THEOREM

A toroidal grid diagram uniquely determines a Legendrian link

In a lens space.



THURSTON-BENNEQUIN AND GRID NUMBER

Using the connection between fronts and grid diagrams,
Matsuda shows

—TB(K) — Th(m(K)) < GN(K)

for all links K in R®.
Ng conjectures this bound is sharp.



THURSTON-BENNEQUIN AND GRID NUMBER

Using the connection between fronts and grid diagrams,
Matsuda shows

—TB(K) — Th(m(K)) < GN(K)

for all links K in R®.
Ng conjectures this bound is sharp.

PROPOSITION The bound
—tb(K) — tb(m(K)) < GN(K)

holds for all links K in lens spaces.
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THE BERGE CONJECTURE AND GN1 KNOTS

THE BERGE CONJECTURE

If a knot in a lens space admits an S° surgery,
then it has grid number 1.

Want bounds on grid number

for knots in lens spaces with an S? surgery.

Our Lens Space Matsuda bound goes in the wrong direction.

But perhaps could prove a Lens Space Ng conjecture...
...at least for knots admitting S° surgery.

Still need to study tb...
...could use combinatorial knot Floer homology....
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