Grid diagrams and Legendrian links in lens spaces

Kenneth L. Baker, Georgia Institute of Technology

J. Elisenda Grigsby, Columbia University

CONTACT STRUCTURES

A contact structure ξ on a 3-manifold Y is a nowhere integrable 2-plane field.

Locally, $\xi = \ker \alpha$ where $\alpha \wedge d\alpha > 0$.

CONTACT STRUCTURES

A contact structure ξ on a 3-manifold Y is a nowhere integrable 2-plane field.

Locally,
$$\xi = \ker \alpha$$
 where $\alpha \wedge d\alpha > 0$.

The standard contact structure on \mathbb{R}^3 may be defined as

$$\xi_{\mathbb{R}^3}=\kerlpha_{\mathbb{R}^3}$$
 where $lpha_{\mathbb{R}^3}=dz-ydx$.

Locally, all contact structures are modeled on $\xi_{\mathbb{R}^3}$.

Locally, all contact structures are modeled on $\xi_{\mathbb{R}^3} = \ker dz - y dx$.

LEGENDRIAN LINKS

Legendrian links in the contact manifold (Y, ξ) are embedded collections of smooth loops whose tangents lie in ξ .

Locally, they look like the y-axis in the standard model...

LEGENDRIAN LINKS

Legendrian links in the contact manifold (Y, ξ) are embedded collections of smooth loops whose tangents lie in ξ .

Locally, they look like the y-axis in the standard model... ...or, contactomorphically, like the x-axis.

LEGENDRIAN LINKS

Legendrian links in the contact manifold (Y, ξ) are embedded collections of smooth loops whose tangents lie in ξ .

Locally, they look like the y-axis in the standard model... ...or, contactomorphically, like the x-axis.

FRONT DIAGRAMS

If \mathcal{L} is a Legendrian curve in $(\mathbb{R}^3, \xi_{\mathbb{R}^3})$, then $\alpha_{\mathbb{R}^3}$ evaluates to 0 on $T_{\rm pt}\mathcal{L}$.

Hence at points of \mathcal{L} : dz - ydx = 0 i.e. y = dz/dx

FRONT DIAGRAMS

If \mathcal{L} is a Legendrian curve in $(\mathbb{R}^3, \xi_{\mathbb{R}^3})$, then $\alpha_{\mathbb{R}^3}$ evaluates to 0 on $T_{\rm pt}\mathcal{L}$.

Hence at points of \mathcal{L} : dz - ydx = 0 i.e. y = dz/dx

The y-coordinate of a point on \mathcal{L} is the slope of the tangency of $\pi_{xz}(\mathcal{L})$ at the image of that point.

FRONT DIAGRAMS

If \mathcal{L} is a Legendrian curve in $(\mathbb{R}^3, \xi_{\mathbb{R}^3})$, then $\alpha_{\mathbb{R}^3}$ evaluates to 0 on $T_{\mathrm{pt}}\mathcal{L}$.

Hence at points of \mathcal{L} : dz - ydx = 0 i.e. y = dz/dx

The y-coordinate of a point on \mathcal{L} is the slope of the tangency of $\pi_{xz}(\mathcal{L})$ at the image of that point.

Thus \mathcal{L} may be recovered from its projection $\pi_{xz}(\mathcal{L})$ to the xz-plane. Such an immersed curve is a front for the Legendrian link \mathcal{L} .

GRID DIAGRAMS TO FRONT DIAGRAMS

GRIDS ON A PLANE; GRIDS ON A TORUS

Grids live naturally on the plane \mathbb{R}^2

—separates \mathbb{R}^3 into half-spaces.

GRIDS ON A PLANE; GRIDS ON A TORUS

Grids live naturally on the torus $\mathbb{R}^2/\mathbb{Z}^2$

Grids live on a Heegaard torus!

Grid circles are meridians of Heegaard solid tori.

Grid diagrams are naturally toroidal...

Grid diagrams are naturally toroidal...

... and are nicely viewed in the prism model of \mathbb{S}^3 .

Links in lens spaces have grid diagrams too.

Here's a GN2 diagram of a knot in L(6,1).

Links in lens spaces have grid diagrams too.

Here's a GN2 diagram of a knot in L(6,1).

But what of contact structures?

STANDARD CONTACT STRUCTURE ON \$3

View \mathbb{S}^3 as the unit sphere in \mathbb{C}^2 :

$$\mathbb{S}^3 = \{(u_1, u_2) \in \mathbb{C}^2 = \mathbb{C}_1 \times \mathbb{C}_2 \colon |u_1|^2 + |u_2|^2 = 1\}$$

and each \mathbb{C}_i with polar coordinates $u_i = (r_i, \theta_i)$.

The standard contact structure on \mathbb{S}^3 is given by

$$\xi_{\mathbb{S}^3} = \mathsf{ker} \; lpha_{\mathbb{S}^3} \quad \mathsf{where} \quad lpha_{\mathbb{S}^3} = r_1^2 \, d heta_1 + r_2^2 \, d heta_2$$

Thinking of \mathbb{S}^3 as $\mathbb{R}^3 \cup \{\infty\}$, one may identify

the
$$r_1 = 1$$
 circle with the z -axis $\cup \{\infty\}$

and the $r_2 = 1$ circle with the unit circle in the xy-plane.

LEGENDRIAN RADII

Radial arcs are Legendrian: $\alpha_{\mathbb{S}^3}(\partial/\partial r_1)=0$

Cores of solid tori are transverse: $\alpha_{\mathbb{S}^3}(\partial/\partial\theta_1)=1$ for $r_1=1$

$$lpha_{\mathbb{S}^3}(\partial/\partial heta_2)=1$$
 for $r_2=1$

LEGENDRIAN RADII

Radial arcs are Legendrian: $\alpha_{\mathbb{S}^3}(\partial/\partial r_1)=0$

Cores of solid tori are transverse: $\alpha_{\mathbb{S}^3}(\partial/\partial\theta_1)=1$ for $r_1=1$ $\alpha_{\mathbb{S}^3}(\partial/\partial\theta_2)=1$ for $r_2=1$

LEGENDRIAN RADII

Radial arcs are Legendrian: $\alpha_{\mathbb{S}^3}(\partial/\partial r_1)=0$

Cores of solid tori are transverse: $\alpha_{\mathbb{S}^3}(\partial/\partial\theta_1)=1$ for $r_1=1$ $\alpha_{\mathbb{S}^3}(\partial/\partial\theta_2)=1$ for $r_2=1$

Unfold $(\mathbb{S}^3, \xi_{\mathbb{S}^3})$ into prism model.

Legendrian radii

Radial arcs are Legendrian: $\alpha_{\mathbb{S}^3}(\partial/\partial r_1)=0$

Cores of solid tori are transverse: $\alpha_{\mathbb{S}^3}(\partial/\partial\theta_1)=1$ for $r_1=1$

$$lpha_{\mathbb{S}^3}(\partial/\partial heta_2)=1$$
 for $r_2=1$

Unfold (\mathbb{S}^3 , $\xi_{\mathbb{S}^3}$) into prism model.

A grid diagram determines a union of Legendrian radii.

But only piecewise smooth!

SMOOTHING TWO LEGENDRIAN RADII

There is a natural way of smoothing the kink between two radii: Twist (and lift) them around the center to meet along a diameter.

THEOREM

A toroidal grid diagram uniquely determines a Legendrian link.

TOROIDAL FRONT DIAGRAMS

If \mathcal{L} is a Legendrian curve in $(\mathbb{S}^3, \xi_{\mathbb{S}^3})$, then $\alpha_{\mathbb{S}^3}$ evaluates to 0 on $T_{\mathrm{pt}}\mathcal{L}$.

Since
$$r_1^2 + r_2^2 = 1$$
, $\alpha_{\mathbb{S}^3} = r_1^2 \, d\theta_1 + (1 - r_1^2) \, d\theta_2$.

Hence at points of \mathcal{L} , setting $m = d\theta_1/d\theta_2$,

$$rac{r_1^2}{(r_1^2-1)}=m$$
 so that $r_1=\sqrt{rac{m}{m-1}}$.

The r_1 -coordinate of a point on $\mathcal L$ is determined by the slope of the tangency of $\pi_{\theta_1\theta_2}(\mathcal L)$ at the image of that point.

TOROIDAL FRONT DIAGRAMS

If \mathcal{L} is a Legendrian curve in $(\mathbb{S}^3, \xi_{\mathbb{S}^3})$, then $\alpha_{\mathbb{S}^3}$ evaluates to 0 on $T_{\mathrm{pt}}\mathcal{L}$.

Since
$$r_1^2 + r_2^2 = 1$$
, $\alpha_{\mathbb{S}^3} = r_1^2 \, d\theta_1 + (1 - r_1^2) \, d\theta_2$.

Hence at points of \mathcal{L} , setting $m = d\theta_1/d\theta_2$,

$$rac{r_1^2}{(r_1^2-1)}=m$$
 so that $r_1=\sqrt{rac{m}{m-1}}$.

The r_1 -coordinate of a point on $\mathcal L$ is determined by the slope of the tangency of $\pi_{\theta_1\theta_2}(\mathcal L)$ at the image of that point.

Thus \mathcal{L} may be recovered from its projection $\pi_{\theta_1\theta_2}(\mathcal{L})$ to the $\theta_1\theta_2$ -torus.

Such an immersed curve is a toroidal front for the Legendrian link \mathcal{L} .

Universally tight contact structures on lens spaces

For each coprime p>0 and q, there is a standard <u>universally tight</u> contact structure $\xi_{p,q}$ on the lens space L(p,q).

Universally tight contact structures on lens spaces

For each coprime p > 0 and q,

there is a standard universally tight contact structure $\xi_{p,q}$ on the lens space L(p,q).

Set
$$\omega_p=e^{\frac{2\pi i}{p}}$$
 and view $L(p,q)$ as the quotient
$$L(p,q)=\mathbb{S}^3/(u_1,u_2)\sim (\omega_p u_1,\omega_p^q u_2)$$

Then $\xi_{p,q}=(\pi_{p,q})_*(\xi_{\mathbb{S}^3})$ where $\pi_{p,q}\colon \mathbb{S}^3\to L(p,q)$ is the covering map.

Universally tight contact structures on lens spaces

For each coprime p > 0 and q,

there is a standard universally tight contact structure $\xi_{p,q}$ on the lens space L(p,q).

Set
$$\omega_p=e^{\frac{2\pi i}{p}}$$
 and view $L(p,q)$ as the quotient
$$L(p,q)=\mathbb{S}^3/(u_1,u_2)\sim (\omega_p u_1,\omega_p^q u_2)$$

Then $\xi_{p,q}=(\pi_{p,q})_*(\xi_{\mathbb{S}^3})$ where $\pi_{p,q}\colon \mathbb{S}^3\to L(p,q)$ is the covering map.

THEOREM

A toroidal grid diagram uniquely determines a Legendrian link in a lens space.

THURSTON-BENNEQUIN AND GRID NUMBER

Using the connection between fronts and grid diagrams,

Matsuda shows

$$-\overline{\operatorname{tb}}(K) - \overline{\operatorname{tb}}(m(K)) \le \operatorname{GN}(K)$$

for all links K in \mathbb{R}^3 .

Ng conjectures this bound is sharp.

THURSTON-BENNEQUIN AND GRID NUMBER

Using the connection between fronts and grid diagrams,

Matsuda shows

$$-\overline{\operatorname{tb}}(K) - \overline{\operatorname{tb}}(m(K)) \le \operatorname{GN}(K)$$

for all links K in \mathbb{R}^3 .

Ng conjectures this bound is sharp.

PROPOSITION The bound

$$-\overline{\operatorname{tb}}(K) - \overline{\operatorname{tb}}(m(K)) \le \operatorname{GN}(K)$$

holds for all links K in lens spaces.

The Berge Conjecture and GN1 knots

THE BERGE CONJECTURE

If a knot in a lens space admits an \mathbb{S}^3 surgery, then it has grid number 1.

THE BERGE CONJECTURE AND GN1 KNOTS

THE BERGE CONJECTURE

If a knot in a lens space admits an \mathbb{S}^3 surgery, then it has grid number 1.

Want bounds on grid number for knots in lens spaces with an \mathbb{S}^3 surgery.

THE BERGE CONJECTURE AND GN1 KNOTS

THE BERGE CONJECTURE

If a knot in a lens space admits an \mathbb{S}^3 surgery, then it has grid number 1.

Want bounds on grid number for knots in lens spaces with an \mathbb{S}^3 surgery.

Our Lens Space Matsuda bound goes in the wrong direction.

But perhaps could prove a Lens Space Ng conjecture...
...at least for knots admitting S³ surgery.

THE BERGE CONJECTURE AND GN1 KNOTS

THE BERGE CONJECTURE

If a knot in a lens space admits an \mathbb{S}^3 surgery, then it has grid number 1.

Want bounds on grid number for knots in lens spaces with an \mathbb{S}^3 surgery.

Our Lens Space Matsuda bound goes in the wrong direction.

But perhaps could prove a Lens Space Ng conjecture...
...at least for knots admitting S³ surgery.

Still need to study tb...

...could use combinatorial knot Floer homology....

http://sketchesoftopology.wordpress.com