
LEFT - AND RIGHT SIDE CONTINUITY

This solves problem 4 in 3.1.

Continuity to the right. Let f : D → R and x0 ∈ D. Let D+ = D ∩ [x0,∞).
If f is continuous at x0 as a function on D+ we say it is right-continuous at x0.

This definition is equivalent to

(Right) ∀(xn) ⊆ D, xn ≥ x0, xn → x0 implies f(xn) → f(x0)

Continuity to the left. Let f : D → R and x0 ∈ D. Let D− = D ∩ (−∞, x0].
If f is continuous at x0 as a function on D− we say it is left-continuous at x0.

This definition is equivalent to

(Left) ∀(xn) ⊆ D, xn ≤ x0, xn → x0 implies f(xn) → f(x0)

These definitions coincide with the familiar concepts from elementary calculus.

Theorem. The function f is continuous at x0 if and only if it is both right- and
left continuous at x0.

Proof.
⇒ is simple, because f continuous means

∀(xn) ⊆ D, xn → x0 implies f(xn) → f(x0)

in other words, without any specification on whether xn ≥ x0 or xn ≤ x0, so it
is valid for both.

⇐ Let (xn) ⊆ D, xn → x0. Suppose f(xn) does not converge to f(x0). Then
∃ϵ > 0 ∀N ∃n ≥ N |f(xn)− f(x0)| ≥ ϵ.
This implies that either there exist infinitely many terms of the sequence with

xn ∈ D+, or infinitely many with xn ∈ D− such that |f(xn)− f(x0)| ≥ ϵ. In either
case, there exists a subsequence xnk

, k ≥ 1, with all terms in only one of D+ or
D−, such that xnk

→ x0 as k → ∞ and |f(xn)− f(x0)| ≥ ϵ. But such a sequence
violates one of the conditions (Right) or (Left) from above. Contradiction: the
function must be continuous at x0.

Examples

1. f(x) = x, x < 0 and f(x) = x + 1 if x ≥ 0 is not continuous at x0 = 0
because f is discontinuous on D− = (−∞, 0] since f(0) = 1 and not 0 as it should
be according to the left hand side component.

2. Let g, h be continuous functions on D = R. Then f(x) = g(x), x < x0 and
f(x) = h(x) if x ≥ x0 is continuous at x0 if and only if g(x0) = h(x0).

3. Let g, h be continuous functions on D = R. Then f(x) = g(x), x ≥ x0 and
f(x) = h(x) if x > x0 is continuous at x0 if and only if g(x0) = h(x0).
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