LEFT - AND RIGHT SIDE CONTINUITY

This solves problem 4 in 3.1.

Continuity to the right. Let $f : D \to \mathbb{R}$ and $x_0 \in D$. Let $D_+ = D \cap [x_0, \infty)$. If f is continuous at x_0 as a function on D_+ we say it is right-continuous at x_0 .

This definition is equivalent to

(Right) $\forall (x_n) \subseteq D, x_n \ge x_0, x_n \to x_0 \text{ implies } f(x_n) \to f(x_0)$

Continuity to the left. Let $f: D \to \mathbb{R}$ and $x_0 \in D$. Let $D_- = D \cap (-\infty, x_0]$. If f is continuous at x_0 as a function on D_- we say it is left-continuous at x_0 .

This definition is equivalent to

(Left) $\forall (x_n) \subseteq D, x_n \leq x_0, x_n \to x_0 \text{ implies } f(x_n) \to f(x_0)$

These definitions coincide with the familiar concepts from elementary calculus.

Theorem. The function f is continuous at x_0 if and only if it is both right- and left continuous at x_0 .

Proof.

 \Rightarrow is simple, because f continuous means

 $\forall (x_n) \subseteq D, x_n \to x_0 \text{ implies } f(x_n) \to f(x_0)$

in other words, without any specification on whether $x_n \ge x_0$ or $x_n \le x_0$, so it is valid for both.

 $\begin{array}{l} \leftarrow \text{ Let } (x_n) \subseteq D, \, x_n \to x_0. \text{ Suppose } f(x_n) \text{ does not converge to } f(x_0). \text{ Then } \\ \exists \epsilon > 0 \quad \forall N \quad \exists n \geq N \quad |f(x_n) - f(x_0)| \geq \epsilon. \end{array}$

This implies that either there exist infinitely many terms of the sequence with $x_n \in D_+$, or infinitely many with $x_n \in D_-$ such that $|f(x_n) - f(x_0)| \ge \epsilon$. In either case, there exists a subsequence x_{n_k} , $k \ge 1$, with all terms in only one of D_+ or D_- , such that $x_{n_k} \to x_0$ as $k \to \infty$ and $|f(x_n) - f(x_0)| \ge \epsilon$. But such a sequence violates one of the conditions (*Right*) or (*Left*) from above. Contradiction: the function must be continuous at x_0 .

Examples

1. f(x) = x, x < 0 and f(x) = x + 1 if $x \ge 0$ is not continuous at $x_0 = 0$ because f is discontinuous on $D_- = (-\infty, 0]$ since f(0) = 1 and not 0 as it should be according to the left hand side component.

2. Let g, h be continuous functions on $D = \mathbb{R}$. Then f(x) = g(x), $x < x_0$ and f(x) = h(x) if $x \ge x_0$ is continuous at x_0 if and only if $g(x_0) = h(x_0)$.

3. Let g, h be continuous functions on $D = \mathbb{R}$. Then f(x) = g(x), $x \ge x_0$ and f(x) = h(x) if $x > x_0$ is continuous at x_0 if and only if $g(x_0) = h(x_0)$.